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+is paper proposes a convolutional neural network (CNN) with three branches based on the three-view drawing principle and
depth panorama for 3D shape recognition. +e three-view drawing principle provides three key views of a 3D shape. A depth
panorama contains the complete 2.5D information of each view. 3V-DepthPano CNN is a CNN system with three branches
designed for depth panoramas generated from the three key views. +is recognition system, i.e., 3V-DepthPano CNN, applies a
three-branch convolutional neural network to aggregate the 3D shape depth panorama information into a more compact 3D
shape descriptor to implement the classification of 3D shapes. Furthermore, we adopt a fine-tuning technique on 3V-DepthPano
CNN and extract shape features to facilitate the retrieval of 3D shapes. +e proposed method implements a good tradeoff state
between higher accuracy and training time. Experiments show that the proposed 3V-DepthPano CNN with 3 views obtains
approximate accuracy to MVCNN with 12/80 views. But the 3V-DepthPano CNN frame takes much shorter time to obtain depth
panoramas and train the network than MVCNN. It is superior to all other existing advanced methods for both classification and
shape retrieval.

1. Introduction

+ree-dimensional shape information provides the impor-
tant geometric features for identifying 3D objects. +ree-
dimensional shape analyses have been widely used in
computer-aided design/manufacturing/engineering (CAD/
CAM/CAE), virtual reality, augmented reality, robotics, and
mechanical industrial design. 3D shape analysis methods
can generally be classified into two categories: 3D data
analysis methods and 2D view learning methods. 3D data
analysis methods are primarily based on the geometric
characteristics of surfaces or surrounding space of a 3D
model recorded in a specific data format. Existing methods
include normality and curvature methods represented by
histograms or feature sets [1, 2], dense sampling and shape
diameters calculation [3], thermonuclear signal represen-
tation of polygonal meshes [4, 5], and voxel-based methods
[6–8]. Except for the voxel-based methods, all these methods
need to extract artificial features at first. Since the effect of
artificial features is often limited by the choices of traditional
geometric feature descriptors, these methods often do not

perform satisfactorily. On the other hand, voxel-based
methods face great challenges in neural network compu-
tation for complex objects due to the enormous voxel data
size. 2D view learning methods obtain a group of 2D views
from a 3D shape and then analyze them by neural networks.
Two-dimensional views can be 2D projections or panoramic
views of a 3D shape [9–13]. Although this type of methods
can potentially lose some 3D details as a shape represen-
tation, they also have many advantages. For example, 2D
data are often more efficient (in terms of memory use) in
representing spatial information. 2D views are sometimes
better in preserving certain 3D geometric properties, such as
noisy surface with holes. Since the approach of learning from
2D views has been widely used in other learning techniques
such as in deep learning, some of the existing learning
techniques for 2D views may be adopted for our use.

Our approach in this paper is a 2D view-based method.
One of the classical 2D view-based methods is proposed by
Murase and Nayar [14], which uses a variety of different
illuminations to render a 3D model in multiple camera
poses, thereby obtaining multiple views for each model. A
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popular graphics technique, LightField [15], draws the
outline of the model from many different perspectives.
Macrini et al. [16] split the contour of the model into
multiple parts and represent each part by a directed acyclic
graph. Cyr and Kimia [17] combine curvatures and 2D views
to measure the similarity of 3D shapes. With the recent
popularity of deep learning techniques, more and more 3D
model recognition methods have begun to apply deep neural
networks. Wang et al. [18] propose a sketch-based model
retrieval method, which uses a sketch to find the closest view
for each model in each class and then uses these views to
train a convolutional neural network. Wu et al. [6] train 3D
voxel data into a 3D convolution filter.

Shi et al. [12] train the cylindrical panorama of the
model. Feng et al. [10] adopt spherical projections to obtain
2D panoramic views. But spherical projection is prone to
distortions. Su et al. [13] generate multiple views of the
model from multiple angles and then use a parallel CNN to
train these views. A view-pooling layer is set in the network
to merge the convolution results of different views.

As a typical deep learning method, DeepPano [12] shows
clear improvement over other traditional 2D view-based
methods. But it adopts only a single view; hence, infor-
mation at the top and the bottom of a 3D shape can be
missed. +e MVCNN method [13] utilizes multiple views
and applies a parallel multibranch deep network to identify
these views. Its recognition rate appears to be the best among
the existing methods. However, using too many views may
cause information redundancy, and 2D views obtained by
planar projection can still lose 3D depth information. In
addition, the process of obtaining 12/80 views of rendering
images is time-consuming.

To overcome the potential loss of 3D information in 2D
view-based methods, we use depth panorama as a view
descriptor to store 2.5D information of a 3D shape. Our 2D
views are obtained by applying the three-view engineering
drawing principle for efficient 2D representations. As in
engineering drawing, the three views, i.e., front view, top
view, and left view, are designed to efficiently represent the
3D structure of a 3D shape. For a certain class of 3D objects,
the 3D shape can be uniquely reconstructed from the three
views. +e process of obtaining 3 views of depth panoramas
is fast. +e proposed 3V-DepthPano CNN method adopts
this principle and selects the three key views (front, top, and
left) to provide maximal projective representation with the
minimal number of 2D views. In addition, we include in this
representation the depth panorama images formed by cy-
lindrical projection in the directions of the three key views as
part of the input to the parallel network for training. Fea-
tures of the three views are integrated together to represent
the 3D shape. A three-branch convolutional neural network,
similar to MVCNN [13], is designed to train the model to
generate a high-precision descriptor which can be used for
model classification and 3D shape retrieval.

+is paper is organized as follows. +e framework of the
proposed 3V-DepthPano CNN method, as well as its
comparison with MVCNN, is introduced in Section 2. In
Section 3, we describe how to choose key views of 3D shape
according to the three-view drawing principle and how to

construct cylindrical projections to obtain panoramas of the
three views. Section 4 develops the technical details for
extracting features of panoramas and for the classification
and retrieval of 3D shapes using 3V-DepthPano CNN.
Several experiments are shown in Section 5 using several
popular datasets to illustrate the effectiveness of 3V-
DepthPano CNN for 3D shape recognition. Comparisons of
the results with several well-known methods are also dis-
cussed. Section 6 concludes this paper with final remarks and
future work.

2. Overview of 3V-DepthPano CNN

Figure 1(a) shows an overview of the framework of our
convolutional neural network.+e 3D shape is projected onto
a cylinder to obtain three panoramic views in the three key
directions. +e three preprocessed panoramas are inputted to
the network and trained in the branches of the neural network
to produce three eigenvectors di, i � 1, 2, 3. In the blend-
pooling layer, three eigenvectors di are merged to obtain a
unified eigenvector dp. Finally, dp is transmitted to the second
part of the network to be trained to obtain the classification
probability fp, which is a feature vector. +e highest prob-
ability in this vector is the final classification category.

Figure 1(b) shows the training pipeline of the MVCNN
method [13]. It places a virtual camera at every 30∘ angle to
generate a rendering image on a projection plane, totaling 12
images. Or alternatively, it can obtain 4 planar rendering
images at angles 0∘, 90∘, 180∘, and 270∘ at each surface point
of the icosahedron bounding box of a 3D shape model,
totaling 80 images. +ese 2D images are transferred to the
CNN with 12 or 80 branches for training. Multiple feature
vectors were obtained at the view-pooling layer. +e
resulting feature vectors are passed to the second CNN for
training. +e main differences between MVCNN and our
3V-DepthPano CNN are in the following aspects: (1) +e
input information is different. MVCNN uses 2D rendering
images, and 3V-DepthPano CNN uses 2.5D depth pano-
ramas. +is leads to different feature descriptors, with the
feature descriptor 3V-DepthPano CNN containing more 3D
spacial information. (2) 3V-DepthPano CNN uses fewer
views than MVCNN: 3 versus 20 or 80. Consequently, 3V-
DepthPano CNN requires a much smaller number of
branches, which lead to better efficiency. (3) Although the
view-pooling layer of MVCNN and the blend-pooling layer
of 3V-DepthPano CNN have similar functionality, i.e.,
fusing multiple feature vectors, the blend-pooling layer of
3V-DepthPano CNN is inserted to a different place to
achieve better analysis accuracy. More details will be given in
Section 4.1.

3. View and Panorama Generation

In order to generate depth panorama of a 3D shape, we
project its depth information to a cylinder surface whose
central axis is parallel to the principal axis of the 3D object.
According to the three-view drawing principle, we choose
x, y, and z axes as the parallel axis to the principal axis of 3D
object.
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+e cylindrical projection in each principal direction is
done similarly to what is proposed in [12], though many
operational details are quite different. For example, in z-axis
projection, as illustrated in Figure 2(a), two groups of coor-
dinate systems are used in the course of cylindrical projection.
One group is the Cartesian coordinate xyz-system relative to
the 3D object. +e other is (θ, h) coordinate system relative to
the cylinder surface, where θ represents the polar angle and h

represents the z-coordinate. +e projection process works as
follows:

(1) Compute the central point C(xc, yc, 0) of the 3D
shape on xoy-plane: xc, yc are the weighted averages
of x, y coordinates of all central points of the tri-
angular patches on the 3D shape, where the weights
are areas of the triangular patches.

(2) Determine the principal axis of the 3D shape: this is the
line that is parallel to z-axis and passes through pointC.

(3) Determine the central axis, radius, and height of the
projected cylinder surface: the principal axis is taken
as the central axis of the cylinder. +e radius and
height of this cylinder are determined in such a way
that the 3D shape is completely surrounded by the
cylinder surface. We first calculate all distances from

every vertex of the 3D shape to point C. If the
maximum distance is dmax, then the radius
R � 2dmax + δ1, δ1 > 0. We also define the height of
the cylinder as H + 2δ2, δ2 > 0, where H is the height
of the 3D shape, as shown in Figure 2(b).

(4) Subdivide the cylinder surface into grid: we uni-
formly divide the cylinder surface along θ-direction
into M1 intervals and then uniformly divide the
surface along h-direction from the top to bottom into
M2 intervals. +e values of M1 and M2 are typically
between 80 and 254, determined by the size and
complexity of the 3D shape.

(5) Project depth information onto the cylinder surface
grid: as shown in Figure 2(b), for each grid point
P(m, n, hp) on the cylinder surface, we can find a
corresponding point Q(xc yc hp) on the principal
axis. +e line PQ will intersect with the 3D shape and
form a series of intersection points Ii, i � 1, 2, 3, . . ..
We define Dp � maxi|QIi| as the depth at point P. If
i � 0 (no intersection point), then Dp � 0. We can
also define the depth as the minimum or average
value of |QIi|. For simplicity, we will only consider
the maximum of |QIi|.
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Figure 1: Comparison of the frame flow between 3V-DepthPano CNN andMVCNN. (a) Convolutional neural network training process of
3V-DepthPano CNN method. (b) Convolutional neural network training process of MVCNN method [13].
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(6) Unfold the cylinder surface grid into a 2D panorama
with depth information: because the cylinder surface
is a type of ruled surfaces, it is convenient to be
unfolded. We cut it open along θ � 0∘ and obtain a
(M + 1) × (M + 1) matrix whose elements are the
values of Dp on the corresponding grid point. To
normalize the scale of the depth values, we subtract
the average and divide standard deviation from the
original matrix to obtain the final normalized 2D
panorama image whose gray scale pixel intensity
represents the normalized depth values.

Apparently, a single cylindrical projection on one view is
not sufficient to capture all necessary 3D information. In the
proposed 3V-DepthPano method, three panorama views in
three key directions are generated to have a more complete
coverage of all depth information necessary to describe a 3D
object.+e depth panorama images of an airplane model in x,
y, and z directions are shown in Figure 3. Figure 4 shows the
depth panorama images for a number of classical 3D models.

4. 3D Shape Recognition Using
3V-DepthPano CNN

4.1. Extracting Features and Constructing Convolutional
Layers. As the depth panoramic views are designed to
capture the important 3D information, features extracted
from these depth panoramic views can be effective in 3D
shape description and retrieval. Although multiple feature
vectors extracted from multiple depth panorama images is a
more powerful shape descriptor than using a single depth
panorama, proper aggregation and fusion of these feature
vectors is still critical to the efficiency of the recognition
system. Our approach is similar to [13] in using panoramas

to training CNN, except that we use three depth panoramas
from three key views to train an CNN with three branches.
First, the panorama of each direction is transmitted to the
corresponding CNN branch. +e resulting eigenvectors are
aggregated into a feature vector in the blend-pooling layer
and then entered into the second part of the network. In the
three-view convolutional neural network framework, the
parameter settings of all CNN branches of the first part of the
network are the same. +e fusion of the features from three
different views using blend-pooling can help reduce the
influence of image distortion in the recognition process. +e
blend-pooling layer is similar to the max pooling layer and
the maxout layer in MVCNN. But the dimensionality of
blend-pooling is much lower than that of MVCNN. In
addition, their locations in their CNNs are also different.
Our experiments show that placing the blend-pooling layer
near the final convolutional layer (conv5) leads to the best
classification performance.

Our CNN model uses the Alexnet network [19] as a
training model, which includes five convolutional layers
conv1∼conv5, three full-connection layers fc6∼fc8, and the
last layer is the softmax classification layer. +e first two
layers of the fully connected layers fc6 and fc7 both have
4096 dimensions, and fc7 outputs the final image de-
scriptor. +e Alexnet network uses Relu instead of the
sigmoid activation function. +e resulting stochastic
gradient descent can converge faster. It utilizes a very
effective model combination version--Droput, which sets
the probability that each hidden neuron’s output is zero as
0.5. For each input, neural networks form different
structures and these structures share common weights.
Because neurons cannot rely on other specific neuronal
structures, they are forced to learn more robust features
that can effectively prevent overfitting.
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Figure 2: Two corresponding coordinate systems and illustration of cylindrical projection.
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4.2. Pretraining Strategies. We first use the large-scale image
data set Imagenet to pretrain 3V-DepthPano CNN with
three branches. +e pretrained CNN model is set as follows:

(1) +e size of each image is adjusted to 256× 256 pixels.
We randomly disturb the order of the images and
then extract the subblocks of 227× 227 of the image
input to the CNN.

(2) Initialize all network parameters randomly. +e
baseline classifier adopted in this paper is Alexnet
[20]. We set the learning rate to 0.01. +e mo-
mentum is 0.9. +e weight attenuation coefficient
is 0.0005. And the random drop probability for
each layer parameter is set to 0.5. +en, the fine-
tuning parameter experiment was carried out.
When the learning rate was changed to 0.1 and the
weight attenuation coefficient was changed to
0.0008, we can get a satisfactory result. So we set
the learning rate to 0.1, the momentum to 0.9, and
the weight attenuation coefficient to 0.0008. +e
random drop probability for each layer parameter
is set to 0.5. During training, network parameters
are updated using a stochastic gradient descent
method. A modified linear unit is used as a non-
linear activation function to prevent the gradient
disappearance and the gradient explosion. After
the input block is convoluted and pooled multiple
times, the system enters the last layer of the full
connection. Softmax translates the output into a
probability distribution of 1000 classes. Softmax
output value is a probability distribution, a real
number between 0 and 1. +e sum of softmax
equals to 1. +e cross entropy is used to determine
the actual output and desired output proximity.
+e softmax and cross entropy are often put to-
gether to judge the output value and expectation.
And taking avantage of the similarity between
them can greatly reduce the computational burden
of sloving the gradient. Softmax uses cross entropy
as a loss function to calculate the difference be-
tween probability distributions.

(3) +e iteration epoches are set as 100 for the pre-
training process (all images are trained once during a
epoch of iteration).

+e learning rate is updated once every 20 epoches and is
reduced to 0.1 times of the learning rate in the last epoch.

4.3. Fine-Tuning Strategies. Because the pretrained image set
and the target task set have different image styles and
numbers of categories, when the target image set is iden-
tified, extracting the image feature using the pretrained CNN
model generally cannot achieve optimal performance. Be-
fore the extraction of the image features, the pretrained CNN
model parameters need to be fine-tuned with the target
image set. +e process of fine-tuning the CNN model is as
follows:

(1) +e image of each target image library is adjusted to
256× 256 pixels. We randomly disturb the order of
the images and then extract 227× 227 subblocks
from the original images to be inputted to the CNN.

(2) Assuming that the number of categories of the
target image data set is t, we change the number of
output neurons of the full-connection layer fc8 of
the model to t. For cov1∼fc7 layers, the parameters
are initialized to those obtained in the pretraining
process. +e parameters of the last layer of the
network are randomly initialized by a Gaussian
distribution G(μ, σ)(μ � 0, σ � 0.01). +e method
of parameter setting in fine-tuning is similar to that
of the 2nd step of the pretraining process. +e
difference is that different learning rates are set for
different network layers in fine-tuning. +e initial
learning rate of the first 7 layers is set to 0.0001, and
the initial learning rate of fc8 is set to 0.01. A small
learning rate is set for the first 7 layers to avoid
destroying the parameters obtained from the pre-
trained CNN model. Setting a higher learning rate
for fc8 can speed up the convergence of the network
to new optimum.+e loss function used in the fine-
tuning process is the square loss function. 3D shape
recognition is essentially a classification problem.
Ourmethod is a view-based two-dimensional image
classification method. Referring to the existing two-
dimensional classification methods, MSE is often
used, so equation (1) is adopted as a loss function,
and the minimized square loss function can be
defined as

L �
1
N

􏽘

N

i�1
􏽘

t

k�1
P
∧

ik − Pik􏼒 􏼓
2
. (1)

(3) +e fine-tuning process includes 60 epoches of
iterations.

Similarly, the learning rate is updated once for every 20
epoches of iterations and is reduced to 0.1 times of its
original value.

5. Experiments

5.1. Datasets. Our experiments use the following data sets:

(1) Princeton ModelNet (http://modelnet.cs.princeton.
edu/) is a large 3D CAD model database containing
127,915 CAD models in 662 categories. It is divided
into 2 subsets for training and testing.

(i) ModelNet10 consists of 4899 CAD models in 10
categories.
All models in this subset have been aligned
properly (the default state is vertical). Among the
models, 3,991 are for training, and the remaining
908 are for testing.

(ii) ModelNet40 contains 40 categories with a total
of 12311 models, in which 9,843 models are used
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for training and 2,468 models are used for
testing.
Models in ModelNet40 do not have manual
alignment, and some model files may exceed the
RAM size. So adjustment to the virtual memory
size may be necessary.

(2) ShapeNetCore (https://www.shapenet.org/) is a
subset of the ShapeNet database, covering 55 com-
mon object categories and approximately 51,300
unique 3D models. +e popular 3D computer vision
benchmark dataset, PASCAL 3D+, is also extracted
from ShapeNetCore.

5.2. Implementation Details. We implemented the network
within the TensorFlow framework on Linux platform. +e
panorama is built separately in MATLAB running on a PC
with Intel Core i5 CPU, NVS 315 GPU, with 8GB of RAM.
+e rendering of a panorama of each 3D shape takes less
than one second using CPU only. More speedup can be
achieved if a GPU is used. In our experiment, the axis
parallel to the 3D shape’s upright direction is defined as the

z-axis. According to the Cartesian coordinate system, each
3D shape is projected from the cylinder parallel to the x, y,
and z directions to obtain three panoramas. +e size of each
panorama is then normalized into a 65×160 image.

5.3. Classification of 3D Shapes. 3D models are classified
using a classification probability vector based on the network
output. +e last layer of the CNN structure is the softmax
layer, which outputs an N-dimensional classification
probability vector, and the item with the highest probability
in the vector is taken as the class the model is classified into.

In order to evaluate the efficiency of the proposed
classification method, the training data are randomly ini-
tialized and then used to train the neural network. +e
trained network outputs the classification probabilities from
its softmax layer, and the class with the highest probability is
used as the prediction result. +is method is then compared
with LightField descriptors [15] (LFD, 4700 dimensions),
spherical harmonic descriptors [8] (SPH, 544 dimensions),
3DShapeNets [6] (4000 dimensions), MVCNN [13] (4096
dimensions), and DeepPano [12] (4096 dimensions) in

(a)

z

(b)

x

(c)

y

(d)

Figure 3: Construction of depth panoramas of a plane model with three views through cylindrical projection.
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Figure 4: Some 3D shapes from data sets and their depth panoramas on three key views.
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terms of classification accuracy. +e results are shown in
Table 1. +e classification accuracy indicates the correct rate
of classification.

For the ModelNet10 database, the classification accuracy
of our proposed 3V-DepthPano CNN is 89.83%, which is
better than all other methods. Compared with LFD and SPH,
our classification accuracy is significantly higher because
automatically extracted features by deep learning embodies
more powerful recognition ability than manually extracted
features by LFD and SPH. Compared with 3DShapeNets
using deep confidence network, our method performs better
because of the power of the 3-branched CNN. Our method
also performs better than DeepPano because we utilize more
complete depth information in three key views while
DeepPano only uses one view.

For the ModelNet40 database, the classification accuracy
of the proposed 3V-DepthPano CNN is 88.95%. In this case,
the classification accuracy of other methods is not only
lower, but the differences are also more significant than in
ModelNet10. +is is because classification in a larger and
more complex shape database requires the use of more
complete 3D information, which is the advantage of our 3V-
DepthPano CNN method.

As illustrated in Figure 1(b), the MVCNNmethod uses
virtual cameras to obtain planar rendering images of a 3D
shape from 12 or 80 views, which are not only cumber-
some but also redundant. We believe the 3-view approach
taken in 3V-DepthPano CNN is more balanced and ef-
ficient in shape feature extraction. From Table 1, we can
see that the classification accuracy of 3V-DepthPano CNN
is very close to those of MVCNN+12 and MVCNN+80,
but with only 3 views instead of 12 or 80 views. Fewer
views can lead to less complexity in data collection and
processing, simpler training branches and networks,
lower feature space dimension, and shorter training and
classification time.

5.4. Retrieval of 3D Shapes. We also applied the proposed
method to 3D shape retrieval. Figure 5 illustrates a
pipeline of this process. During the training process, each
model in the training set is first projected onto a cylin-
drical surface to form a depth panoramic set, which is then
used to fine tune a pretrained 3-view neural network.
During the course of retrieval, the depth panorama of the
target model is matched by similarity to generate a sorted
list of matching results.

Use the pretrained 3V-DepthPano CNN to extract
feature descriptors fc6∼fc8 from each panorama through the
2nd layer of the CNN. We can also obtain the other three
feature descriptors, Ft-fc6, Ft-fc7, and Ft-fc8, using the fine-
tuning techniques discussed in Section 4.3. For similarity
measures, as in [13], the distance d(A, B) between two
models A, B is defined as

d(A, B) �
1
6

􏽘

3

j�1
min
i�1,2,3

Ai − Bi

����
����2 + 􏽘

3

i�1
min

j�1,2,3
Bj − Aj

�����

�����2
⎛⎝ ⎞⎠,

(2)

where ‖Ai − Bj‖2 represents the l2 distance between the
feature vector of i-th panorama of model A and the feature
vector of j-th panorama of model B.

Table 2 shows the retrieval results by different features of
the panoramic database.

As shown in Table 2, the accuracies of 3V-DepthPano
CNN using the features fc6, fc7 and fc8 are 4% to 34% higher
than other methods for dataset ModelNet10.

For dataset ModelNet40 using features fc6, fc7, and fc8,
our accuracies are 10% to 35% higher than other methods
except MVCNNwhich performs only slightly (1.5% to 4.4%)
better than our method. But our method uses a fewer
number of views and is therefore more efficient in both data
processing and computational time. For example, MVCNN
needs about 100 seconds to construct the rendering images
for all 80 views, while 3V-DepthPano CNN needs less than 1
second to obtain depth panoramas for its three views. Since
our CNN only has three branches, the training time needed
is also much shorter.

Table 2 also shows that the accuracy of our method using
features ft-fc6, ft-fc7, and ft-fc8 is higher than those without
fine-tuning. +ey are also higher than those of MVCNN+12
and MVCNN+80. +is clearly demonstrates the effective-
ness of fine-tuning 3V-DepthPano CNN model.

Figure 6 shows the comparison of precision-recall curves
for the above 12 features. +e precision-recall curve illus-
trates the tradeoff between the fraction of retrieved instances
that are positive (precision) and the fraction of retrieved
instances to all positive instances (recall). +e larger the area
under the curve, the better the classification performance.
Figure 6(a) shows the comparison of the precision-recall
curve using the proposed fc6 of 3V-DepthPano and those
using other features for dataset ModelNet10; Figure 6(b)
shows the comparison of the precision-recall curves using
the proposed six features of 3V-DepthPano extracted from
the proposed method for dataset ModelNet10. Figure 6(c)
shows the comparison of the precision-recall curve using the
proposed fc6 of 3V-DepthPano and those using other fea-
tures for dataset ModelNet40; Figure 6(d) shows the com-
parison of the precision-recall curves using the proposed six
features of 3V-DepthPano and that using MVCNN for
dataset ModelNet40.

From Figures 6(a) and 6(c), we can see that the per-
formance of the proposed method is better than of other
advanced methods except MVCNN which requires a much
larger number of views. In Figure 6(b), feature ft-fc7 of six

Table 1: Comparison results of classification accuracies for dif-
ferent methods.

Method View
Accuracy (%)

ModelNet10 ModelNet40
SPH [8] — 79.79 68.23
LFD [15] — 79.87 75.47
3D ShapeNets [6] — 83.54 77.32
DeepPano [12] 1 88.66 82.54
MVCNN+12 [13] 12 — 89.90
MVCNN+80 [13] 80 — 90.10
3 views-Pano 3 89.83 88.95
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Figure 5: +e retrieval flow of 3D shape by 3V-DepthPano CNN.

Table 2: Comparison results of average accuracy rate for 3D shape retrieval.

Feature View
MAP (%)

ModelNet10 ModelNet40
SPH [8] — 44.05 33.26
LFD [15] — 49.82 40.91
3D ShapeNets [6] — 68.26 49.23
DeepPano [12] 1 69.88 56.14
MVCNN+12 [13] 12 — 70.13
MVCNN+80 [13] 80 — 70.41

3V-DepthPano

fc6 3 74.38 65.62
fc7 3 76.12 68.59
fc8 3 75.23 69.56
ft-fc6 3 75.57 67.81
ft-fc7 3 78.89 71.74
ft-fc8 3 77.92 72.14
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Figure 6: Continued.
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features extracted under the 3V-DepthPano method has the
best retrieval performance. In Figure 6(d), the retrieval
performances of fc6, fc7, and fc8 extracted during pre-
training of 3V-DepthPano CNN are slightly lower than that
of the MVCNN method. But after fine-tuning, the retrieval
performances of ft-fc6, ft-fc7, and ft-fc8 are better than that
of the MVCNN method. +is again indicates that our fine-
tuning training strategy is effective.

A survey published in [21] over five leading-edge
methods of 3D shape retrieval compares their experimental
results based on database ShapeNetCore55. +e five
methods are MVCNN, GIFT, ViewAggregation, CCMLT,
and DB-FMCD-FUL-LCDR, which all belong to 2D-view
methods. To compare with this survey result, we also applied
our 3V-DepthPano on database ShapeNetCore55. Table 3
lists MAPs of the six methods for 3D shape retrieval. +e
table shows that the performance of 3V-DepthPano CNN is
very stable, and its MAP is close to that of MVCNN and
clearly better than those of other four methods.

6. Conclusion and Future Work

In this paper, we use the three-view drawing principle to
obtain three key 2.5D depth panoramas of a 3D shape by
cylindrical projection and establish a three-branch convolu-
tional neural network for 3D shape recognition, including
classification and retrieval. +e proposed method only adopts
three views and performs nearly as well as MVCC which
requires 12 or 80 views and much longer processing and
training time. Except MVCC, our method outperforms all
other existing methods. We believe our 3V-DepthPano CNN
strikes a good balance between performance and system
complexity because our baseline network is also MVCNN.
MVCNNhas 12 branches for feature extracting, while ours has
only 3 branches, so the ratio of the time complexity for two
methods is 4 :1. But our network is getting better performance.

Similar to other 2D view-based methods, 3V-DepthPano
CNN also needs to determine the principal axis of 3D

models, which can sometimes influence the recognition
results. In this paper, we only consider x-, y-, and z-axis as
principal axes of the 3D object. How to determine the
principal axes is still a common challenge to all 2D view-
based methods. In addition, we choose the maximum dis-
tance as the stored depth information during cylinder
projection. It is not clear whether other types of depth in-
formation such as minimum distance or mean distance
could perform better. Furthermore, how to determine the
best number of views for optimal performance is a question
that is worthy of further study. In the future, we will perform
research upon these problems and adopt more measures to
further improve the recognition accuracy.
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Figure 6: Comparison of precision-recall curves for the 12 features listed in Table 2.

Table 3: Comparison of six kinds of cutting-edge methods for 3D
shape retrieval.

Method View MAP (%)
MVCNN 12/80 81.7
GIFT 64 74.0
ViewAggergation 12 71.1
CCMLT 36 71.1
DB-FMCD-FUL-LCDR 1 59.6
3V-DepthPano 3 79.8
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