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In this paper, a novel soft sensor is developed by combining long short-term memory (LSTM) network with normalized mutual
information feature selection (NMIFS). In the proposed algorithm, LSTM is designed to handle time series with high nonlinearity
and dynamics of industrial processes. NMIFS is conducted to perform the input variable selection for LSTM to simplify the
excessive complexity of the model. ,e developed soft sensor combines the excellent dynamic modelling of LSTM and precise
variable selection of NMIFS. Simulations on two actual production datasets are used to demonstrate the performance of the
proposed algorithm. ,e developed soft sensor could precisely predict the objective variables and has better performance than
other methods.

1. Introduction

Due to technological constraints, sensor characteristics,
environmental factors, etc., many variables cannot be
measured or the measurement frequency is very low in
actual industrial processes. Soft measurement provides an
excellent solution to construct mathematical models from
easily measured variables to hard ones [1–3]. Neural net-
works (NNs) are advanced methods that can precisely model
complex and nonlinear system and therefore have been
widely used in soft sensors [4–6]. Heidari et al. [7] developed
a new multi-layer perceptron (MLP) network to estimate
nanofluid relative viscosity, which are more accurate than
other NN structures. Sheela and Deepa [8] designed a
synthesized model by combining self-organizing maps
(SOMs) with MLP and then applied it to forecast the wind
speed of a renewable energy process. He et al. [9] developed
an auto-associative hierarchical NN for a soft sensor of
chemical processes, and its application to a purified

terephthalic acid solvent process demonstrated the effec-
tiveness of the algorithm. Zabadaj et al. [10] proposed an
effective soft sensor for the supervisory control of bio-
transformation production, and the efficiency of the ap-
proach was demonstrated. Rehrla et al. [11] developed a soft
sensor method for estimating the active pharmaceutical
ingredient concentration from the system data and the soft
sensor model was tested in the three different continuous
production lines. A novel approach of supervised latent
factor analysis was proposed based on system data regression
modelling, which can effectively predict heterogeneous
variances, and soft sensors are established for quality esti-
mate in the two case studies [12].

However, industrial systems are intrinsic complex and
have high temporal correlations between dataset samples.
,at is, process data are time series with strong nonline-
arities and dynamics, which increases the difficulty of
modelling with conventional NNs. Recently, a powerful type
of NN named long short-term memory (LSTM) was
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designed to handle sequence dependence [13–15]. An LSTM
network is more significant in learning long-term temporal
dependencies since its memory cells can maintain its state
over a long time and standardize the information moving
into and out of the cell.,erefore, LSTMnetworks have been
effectively used in many different fields, such as precipitation
nowcasting [16], traffic forecasting [17], human action
recognition [18], etc. Due to its advantages, LSTM has also
been applied in soft sensor development in industrial pro-
cesses. Yuan et al. developed a supervised LSTM network for
a soft sensor and demonstrated the superiority of the pro-
posed soft sensor by two actual industrial datasets [19]. Sun
proposed a new LSTM network by combining unsupervised
feature selection and supervised dynamic modelling
methods for a soft sensor and validated the network by a
practical CO2 absorption column [20].

,e rapid evolution of distributed control systems (DCSs)
presents us a lot of data, but also another trouble in nonlinear
soft sensing: excessive input variables. If the NN was trained
with excessive input variables, the amount of calculations will
increase and more computing power is required. In the
meantime, the prediction accuracy of the NN is worsened due
to extraneous variables creating additional noise in the
dataset. Hence, many researchers have focused on the effi-
ciency of variable selection approaches for soft sensors
[21–23]. In recent years, mutual information (MI)-based
variable selection approaches have been widely studied due to
their efficacy and ease of realization [24]. Hanchuan et al. [25]
proposed a minimal redundancy maximal correlation crite-
rion to reduce redundancy and apply primitive methods of
relevance and redundancy to select significant input variables.
Estevez et al. [26] proposed an enhanced version of MIFS and
minimal redundancy maximal correlation that imported the
normalized MI as an evaluation of redundancy. ,e devel-
oped NMIFS algorithm showed better performance by
compensating for the MI partial to multiple features and
limiting its setpoint range [0, 1].

,is paper develops a new soft sensor algorithm by
combining LSTM with NMIFS, in which the NMIFS is used
to compress input variables of LSTM. ,e primary contri-
butions of the paper are summarized as follows:

(1) A novel feature selection approach for LSTM with
NMIFS is designed. ,e developed method can ef-
fectively reduce the excessive complexity caused by
redundant candidate variables and then improve the
modelling performance of LSTM.

(2) ,e developed soft sensor algorithm is implemented
in two practical industrial processes.

(3) Comparative simulation results demonstrate that the
developed soft sensor model has better performance
and flexibility in performing feedback control.

,is paper is arranged as follows: Section 2 presents
background theories of the NMIFS and LSTM, and Section 3
describes the development of the presented approach.
Section 4 presents the simulation results and an analysis of
the developed soft sensor with datasets of actual processes.
Some conclusions are given in Section 5.

2. Theoretical Overview

2.1. Input Variable Selection Techniques. ,e existence of
redundant input variables in the training of the NN often
complicates the model, deteriorates the accuracy, and even
brings about overfitting. ,e goal of the input variable
feature selection (IVFS) is to exactly select n variables from
the initial candidate variable set C as the input variable set S

in the modelling, where C includes multifarious input
variables of the algorithm. During variable selection, vari-
ables that have less influence on target variable will be
deleted from S.

,e IVFS algorithm can be applied in a variety of means:
(1) sequential forward selection, selecting an input from C to
join S every time until the prediction accuracy of the model
is no longer improved; (2) sequential backward selection,
where S initially includes all input variables and input
variables are deleted one at a time until the model perfor-
mance is no longer improved; or (3) global optimization,
which finds the optimal solution among all the variable
selection approaches.

It can be demonstrated that if there are m candidate
variables inC, the selection of them input variables results in
(2m − 1) subsets in total. S is hard to be found with large
number of candidate variables. Based on this consideration,
a statistical indicator to calculate the extent of dependence
between input and output variables is selected, and then the
input variable before modelling with NNs is selected. ,is
method of separating variable selection procedures from
model calibration procedures can produce a more efficient
IVFS algorithm, and the resulting S has wider applicability to
different NN algorithms. It is worth noting that the effec-
tiveness of the IVFS approach is based on the statistical
standard applied.

MI is considered as an excellent evaluation standard
because it is a random measure and does not make as-
sumptions about the structure of the dependencies between
variables. MI is also found to be impervious to data
transformations and noise.

2.2. NormalizedMutual Information. Suppose that there are
two random variables X and Y, where X is the input variable
and the output variable Y depends onX. ,e definition of
MI of I(X; Y) for a continuous variable can be shown as
follows [27]:

I(X; Y) � Bp(X, Y)log
p(X, Y)

p(X)p(Y)
dXdY, (1)

where p(X, Y) is the joint probability density function
(PDF) of two variables and p(X) and p(Y) are the marginal
PDFs of X and Y. Figure 1 shows the entropy of X and Y and
its relationship to their MI, in which H(X) and H(Y) are
entropies, and H(X | Y) and H(Y | X) are conditional en-
tropies, respectively.

Generally speaking, MI has three basic attributes:

(1) Symmetry: I(X; Y) � I (Y; X). ,e quantity of in-
formation abstracted from Y about X is equal to that
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from X about Y. ,e only difference is the angle of
the observer.

(2) Positive: I(X; Y)≥ 0. Extracting information about
one event from another, the worst case is zero in-
formation (I(X; Y) � 0). Being aware of one event
does not strengthen the uncertainty of another.

(3) Extremum: I(X; Y)≤ H (X), I(Y; X)≤ H (Y). ,e
quantity of information abstracted from one case
about another is at maximum same as the entropy of
the other case, rather than exceeding the amount of
information contained by the other event itself.

,e MI I(X; Y) provides dependencies for X and Y

measurements and provides reference information for vari-
able selection algorithms, which makes the computation of
MI a crucial procedure in MI-based input variable selection
approaches [28, 29]. However, the mathematical expression
form of the PDF in equation (1) is unconscious in practical
problems. A variety of approximate prediction algorithms of
MI have been extensively researched to analyze PDFs. For
example, kernel density estimation (KDE) is an advanced
technique that superposes a basis function on each point of
the feature data, usually a Gaussian function. ,e PDF ap-
proximation can then be obtained by adopting an envelope of
all the basic functions superimposed on each point. Although
these kinds of algorithms bring superior approximation re-
sults, the computation load is very high, especially in large-
scale problems. Histogram methods provide another com-
petitive method, with admissible precision and significantly
more computational performance than KDE methods.

When MI is applied to practical cases, the calculation
results fluctuate greatly, and it is difficult to directly compare
the similarity between several variables and the target var-
iables used as indicators [30]. ,is paper introduces a
method to normalizeMI.,ere are several methods of doing
so. ,e general idea is to use entropy as the denominator to
regulate the value of MI to between 0 and 1. One common
implementation is the following formula:

N(X, Y) � 2
I(X, Y)

H(X) + H(Y)
. (2)

,en, NMI can be used to evaluate the resemblance
between candidate and target input variables.

2.3. LongShort-TermMemory. ,e LSTM network is applied
to predicting target variables with relatively long intervals
and postponements in the time series. ,e structure of
neurons in LSTM is shown in Figure 2. It includes a cell state
and three gate settings: the cell state is used to record neuron
status, the input and output gates are used to receive and
output parameters, respectively, and the forget gate is used to
dominate the degree of forgetting of the previous unit state
[31, 32].

,e detailed structure and operation mechanism of
LSTM are shown in Figure 3. ,e forgotten part of the
memory unit is decided by the input xt in the forgetting gate
together with the state memory unit St−1 and the interme-
diate output ht−1. ,e retention vector in the memory unit is
determined by the changed xt in the input gate through the
sigmoid and tanh functions. ,e intermediate output ht is
determined by the updated St and output ot. ,e calculation
formula is as follows:

ft � σ Wfxxt + Wfhht−1 + bf ,

it � σ Wixxt + Wihht−1 + bi( ,

gt � ∅ Wgxxt + Wghht−1 + bg ,

ot � σ Woxxt + Wohht−1 + bo( ,

St � gt⊙ it + St−1⊙ft,

ht � ∅ St( ⊙ ot,

(3)

where ft, it, gt, ot, ht, and St are the states of the forgetting
gate, input gate, input node, output gate, intermediate
output, and status unit, respectively; Wfx, Wfh, Wix, Wih,
Wgx, Wgh, Wox, and Woh are the matrix weight multiplied
by input xt of the corresponding gate and the intermediate
output ht−1, respectively; bf, bi, bg, and bo are the biases of
the corresponding gates; ⊙ indicates that the elements in the
vector are multiplied by bits; and σ and ∅ represent the
transformation of the sigmoid and tanh function,
respectively.

3. Development of NMIFS-LSTM

,e evaluation function plays a pivotal role in the MI feature
selection, which directly affects the final performance of the
algorithm. ,e method of selecting the variable with the
most MI of output variable Y and input variable Xi is the
most direct solution. ,e evaluation function is shown in

R � I Xi; Y( . (4)

,e MIFS [33] method introduces penalty terms based
on the measure of relevance, which incorporates correlation
and redundancy between variables. ,e evaluation function
is shown in

H (X, Y)

H (X | Y) I (X ; Y) H (Y | X)

H (X) H (Y)

Figure 1: Structure diagram of entropy and MI.
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R � I Xi; Y(  − β 
xsϵS

I Xi; Xs( , (5)

where S is the selected feature subset, Xs is the selected
feature, and parameter β controls the degree of penalty for
redundant items.

In order to reduce the dependence on parameter β, Kwak
and Chong-Ho Choi [34] proposed the method of MIFS-U,
and the evaluation function expression is exhibited as

R � I Xi; Y(  − β 
xsϵS

I Xs; Y( 

H Xs( 
I Xi; Xs( . (6)

Hanchuan et al. [25] enhanced MIFS and developed the
minimal redundancy maximal relevance algorithm, which
establishes a relationship between sample size and parameter

β. ,e mean value of MI is used as the redundancy eval-
uation index to avoid the selection of parameter β. ,e
evaluation function can be shown as

R � I Xi; Y(  −
1

|S|
β 

xsϵS

I Xi; Xs( . (7)

,e standardized MI between variables was defined by
Estevez et al. [26], and the NMIFS algorithm was proposed.
Its evaluation function can be expressed as

R � I Xi; Y(  −
1

|S|
β 

xsϵS

NI Xi; Xs( , (8)

where the standardized MI is performed as equation (9).,e
regularized MI compensates for the bias of MI to

tanh

tanh

ht

ht

StSt–1

ht–1

xt

σ σ σ

Figure 3: LSTM internal unit structure.

f

g

f

fCell

h

Output gate

Forget gate

Input gate

Block
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multivalued variables, and the regularizedMI value is strictly
restricted to the interval of [0, 1].

NI Xi; Xs(  �
I Xi; Xs( 

min H Xi( , H Xs(  
. (9)

In this paper, a novel variable selection method of
NMIFS-LSTM is developed. ,is method combines NMIFS
and LSTM, and after that, the root mean square error
(RMSE) of the LSTM network is used as the evaluation
standard. ,e proposed algorithm aims to eliminate re-
dundant variables and improve model accuracy. ,e
pseudocode of NMIFS-LSTM can be shown in Algorithm 1.

,e operating mechanism of the NMIFS-LSTM algo-
rithm is mainly divided into two parts. In the algorithm, we
build a model for prediction by LSTMwith NMI for variable
selection. ,e LSTM NN is trained to determine network
hyperparameters and structure. Parameter F is set to “initial
set of n variables” and parameter S set to “empty set.” ,e
calculation method is NMI with the LSTM of RMSE and the
first variable is chosen. We continue to choose next variables
every step until the model gets worse or meets the stop
criterion. Finally, the selected subset is modeled and the
predicted value is obtained. ,e flowchart of the developed
NMIFS-LSTM-based soft sensor model is shown in Figure 4.

4. Simulation Results and Discussion

In this paper, all algorithms use a common dataset with the
same variable selection method after several trials in the same
simulation environment setting. All established models were
simulated in the same experimental environment.,e program
for algorithm simulation was coded in MATLAB 2019 and run

under a Windows 8.1 operating system. ,e simulation results
are recorded with the following standards:

(1) Model size (MS) means the number of candidate
variables selected in the ultimate algorithm

(2) PMSE means the mean square error (MSE) is a
measure that reflects the difference between the
actual and value predicted value and can be calcu-
lated as follows:

PMSE �
1
nt



nt

i�1
yi − yi( 

2
, (10)

where yi and yi are the actual value and predicted
value in the algorithm model of the output variable,
respectively, and nt represents the number of data-
sets in the testing samples

(3) Coefficient of determination (R2) denotes the square
of sample correlation coefficients between the real
value and prediction value

4.1.Application to aDebutanizer. To verify the efficacy of the
developed soft sensor model, it was applied to a real deb-
utanizer column. ,e flow diagram of actual debutanizer
column unit is given in Figure 5. In the refining industry, the
main function of the process is to separate butane from
natural gas. At first, the entering liquid is heated into hot
steam and then sent into the main tower (T102). ,e hot
vapour condenses into liquid and is separated into a set of
fractions with different boiling points. Butane and propane

Input: dataset imprent MT shadow
Output: predicted value
Begin algorithm
Initialize
LSTM is trained to determine network hyperparameters and network structure;
Set F� n; S� empty set (n�number of input variables);
Computation of NMI with LSTM;
For i� 1:j (j is frequency of the stop criterion)
∀fi ∈ F compute I (L; fi);
Find a first variable fi that maximizes I(Lfi) and obtain RMSE;
Set F⟵F/ fi , set S⟵ fi  , set i� 1;
Choose the next variable fi � argmax, fi ∈F−S(minfs ∈S(I(fi, fs; L))) and obtain new RMSE;

set F⟵F/ fi ; set S⟵ S∪ fi , j� j+ 1;
if new RMSE>RMSE
Break

Else
RMSE�newRMSE, return and select the next variable;

End if
Repeat until |S|� j;

End for
Retrain with selected subset
Calculate predicted value

End algorithm

ALGORITHM 1: Pseudocode of NMIFS-LSTM.
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Industrial process

Training time sequences
(x(t), y(t)), t = 1,2, ..., n

Data preprocessing

Training

NMIFS-LSTM variable
selection

Testing

Training LSTM

Determine network
hyperparameters

Determine network structure

Selection of the next variable with eq (8) i = i + 1

Initialization: Set S ← empty set
Set F ← initial set of n variables

Computation of the MI with the output class

Choice of the first variable with eq (4), set i = 1

Run LSTM and get RMSE

Run LSTM again and get newRMSE

newRMSE > RMSE or 
stopping criterion: i < j

Predicted quality value

RMSE = newRMSE

Retrain with select subset

N

Y

Figure 4: Flowchart of the proposed NMIFS-LSTM-based soft sensor model.
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are detached in the column after the treatment under normal
circumstances, which makes the natural gas almost pure
methane.

In this case, the content of butane is very important to
ensure the product quality during the process. However, this
variable is very hard to measure in real time. Hence, a
compatible online soft sensing model was proposed to
forecast the content. Seven practical sensors were installed in
the process, marked as yellow circles in the brief diagram
[35], as displayed in Figure 5. All of these candidate variables
are listed in Table 1.

2394 data samples were presented at intervals of 15
minutes. ,e dataset was separated into two parts: the

dataset of the first 80% applied for training and the others for
testing. On the basis of plant experts guidance [22], the
time delay of the process was probably 20–60 minutes. Based
on this advice, we extended the input variables to
x � x1(t), ..., xp(t), x1(t − 1), ..., xp(t − 1), . . . , x1(t − 4),

..., xp(t − 4)}, in which xi(t − j) means the value of xi at
time t − j. In addition, we added a guided value of (y–t) in
each group to enhance the accuracy of modelling. ,e
number of candidate variables was raised from 7 to 40, which
resulted in additional complexity of the process.

Table 2 presents the experimental results with these
four algorithms. ,e table shows that the NMI-LSTM
algorithm has obvious advantage over others in model

Table 1: Candidate input variables of debutanizer column.

Input Variable ID Description
x1 TI-040 Top temperature
x2 PRC-011 Top pressure
x3 FRC-015 Reflux flow
x4 FRC-018 Flow to next system
x5 TRC-004 6th tray temperature
x6 TI-036 Bottom temperature 1
x7 TI-037 Bottom temperature 2

Table 2: Statistical results for butane content prediction.

MLP NMI-MLP LSTM NMI-LSTM
MS 40 12 40 8
PMSE 0.0720 0.0673 0.0683 0.0421
R2 0.9379 0.9524 0.9502 0.9801
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Figure 6: Measured and predicted content of butane.
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accuracy. ,e simulation performance presents that NMI-
LSTM shows a tighter and higher accurate model than
other methods.

Figure 6 shows the real values and prediction values of
target variable by applying the NMIFS-LSTM model. ,e
fitted graph clearly illustrates that our approach can follow

Circulating pump 1

Processed 
water systems

Accident pulp tank
Dehydration at

first stage

#9
Primary

absorption
tower

The first layer
The second layer total step
The third layer

Circulating pump 2

Circulating pump 3

Circulating pump 4

First spray layer
Second spray layer
Third spray layer
Fourth spray layer

Figure 7: Process flow diagram of primary absorption tower.

Table 3: Candidate input variables of flue gas desulfurization system.

Variable Description Unit
1 Generator power kW
2 #9 furnace original flue gas SO2 mg/m3

3 #9-1 absorption tower export flue gas SO2 mg/m3

4 #9 absorption tower gypsum slurry pH
5 Limestone slurry to #9 absorption tower stream m3/h
6 #9-2 absorption tower pH 1
7 #9-2 absorption tower feed flow m3/h
8 #9-1 circulating slurry pump current A
9 #9-3 circulating slurry pump current A
10 #9 absorption tower entrance flue gas temperature °C
11 ,e sum of air flow CMH
12 ,e sum of coal t
13 #9 absorption tower export flue gas temperature 1 °C
14 #9 absorption tower export flue gas temperature 2 °C
15 #9 absorption tower export flue gas temperature 3 °C
16 #9 furnace chimney entrance net flue gas flow Nm3/h
17 #9 furnace chimney entrance net flue gas pressure Pa
18 #9 furnace raw flue gas NOx mg/m3

19 #9 furnace raw flue gas O2 mg/m3

20 Median value of desulfurization productivity of unit 9 %
21 #9-2 absorption tower export temperature 1 °C
22 #9-2 absorption tower export pressure Pa
23 #9-1 absorption tower export flue gas O2 mg/m3

24 #9 absorption tower level value m
25 #9-2 absorber tower level m
26 Water circulation vacuum pump kW
27 Gypsum slurry outflow pump a current A
28 #9 gypsum slurry cyclone entrance pressure Pa
29 Dewatering machine power kW
30 Gypsum filter cake height m

8 Mathematical Problems in Engineering



the variations of the butane content successfully, which
further verifies its efficacy.

4.2. Application to Power Plant Desulfurization Technology.
,e flue gas desulfurization system and industrial process
parameters are basically collected from unit 9 of a thermal
power plant, which achieves limestone-gypsum wet flue gas
desulfurization technology with twin towers. ,e system’s
SO2 is absorbed by lime or limestone with chemical reaction.
Compared to the single tower, these twin towers can carry
out secondary reaction of transmitted flue gas and eliminate
SO2 in the flue gas more successfully. ,e flue gas desul-
furization process includes SO2 absorption system, flue gas
system, mist eliminator system, absorption tower overflow
device, slurry mixing system of absorption tower, oxidizing
blower, etc. ,ese twin towers have an absorption area of 12
meters in diameter and a height of 32.6 meters. ,e flue gas
containing SO2 moves from bottom to top where the bottom
of the primary absorption tower (PAT) and encounters a
liquid suspension from the spray layer. SO2 chemically reacts
with the alkaline suspension through the gas film and the
liquid film in a molecular diffusion manner. ,e PAT

includes four spray layers that are dominated by circulating
pumps, shown in Figure 7.

,is paper collects the data sample of desulfurization
index parameters of unit 9 of a thermal power plant as the
research object. ,e dataset includes 30 input variables
and a target output variable flue gas SO2 concentration.
All candidate variables are given in Table 3. ,e time span
is from July 1, 2019, to July 7, 2019, with a time interval of
1min and a total of 10000 samples. ,e first 8000 samples
are used as the training data and the others are used as the
testing data. In the practical simulation experiment, re-
dundant variables in the pool of candidate variables can
lead to unsuitable modelling. Consequently, IVFS tech-
nique is very important for building a suitable and stable
soft measurement model.

Table 4 presents the statistics of data-driven models with
different algorithms. Experimental results present that NMI-
LSTM has better performance with fewer input variables
than other approaches. R2 of NMI-LSTM is higher than 90%,
representing that the proposed soft sensor can precisely
forecast the actual values.

Figure 8 shows the prediction curve of SO2 concentra-
tion by NMI-LSTM algorithm. Obviously, NMI-LSTM can

Table 4: Comparison of prediction results of flue gas SO2 with different algorithms.

MLP NMI-MLP LSTM NMI-LSTM
MS 30 11 30 8
PMSE 5.9569 3.3295 3.2419 2.1233
R2 0.3392 0.7765 0.7524 0.9023
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Figure 8: Prediction curve of flue gas SO2 concentration by NMI-LSTM algorithm.
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track the dynamic change of target variable effectively, which
shows that our algorithm is very effective.

5. Conclusion

In this paper, a novel soft sensor was designed to model
complex and dynamic industrial processes with time series
characteristics. ,e LSTM network is trained by datasets
taken from actual processes, and NMI is applied to select the
variables related to the target variable. ,e proposed algo-
rithm deletes one irrelevant variable at every step until all the
variables are removed. After that, the path of variable se-
lection appears and the algorithm takes the segment with the
lowest prediction error. ,e proposed soft sensor was ap-
plied to two practical industrial processes. ,e simulation
and comparison with other algorithms demonstrate the
effectiveness and excellence of our approach. ,e developed
soft sensor provides an additional and reliable monitoring
tool for pivotal variables and can be further applied to the
design of model predictive control systems.

,e proposed soft sensor algorithm is easy to implement,
and the related program can be preserved as a subroutine in
the industrial computer of the DCS. By calling the sub-
routine, the soft sensor could be periodically retrained and
updated with the new production data. ,e disadvantage of
model degradation can be completely eliminated with this
technique.
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