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Aiming at the shortcomings of high feature reduction using traditional rough sets, such as insensitivity with noise data and easy
loss of potentially useful information, combining with genetic algorithm, in this paper, a VPRS-GA (Variable Precision Rough
Set--Genetic Algorithm)model for high-dimensional feature reduction of medical image is proposed. Firstly, rigid inclusion of the
lower approximation is extended to partial inclusion by classification error rate β in the traditional rough set model, and the ability
dealing with noise data is improved. Secondly, some factors of feature reduction are considered, such as attribute dependency,
attributes reduction length, and gene coding weight. A general framework of fitness function is put forward, and different fitness
functions are constructed by using different factors such as weight and classification error rate β. Finally, 98 dimensional features
of PET/CT lung tumor ROI are extracted to build decision information table of lung tumor patients.+ree kinds of experiments in
high-dimensional feature reduction are carried out, using support vector machine to verify the influence of recognition accuracy
in different fitness function parameters and classification error rate. Experimental results show that classification accuracy is
affected deeply by different weight values under the invariable classification error rate condition and by increasing classification
error rate under the invariable weigh value condition. Hence, in order to achieve better recognition accuracy, different problems
use suitable parameter combination.

1. Introduction

Rough set theory was developed by Pawlak in 1982 [1], and it
is a mathematical tool to deal with vagueness and uncer-
tainty. +e classification ability unchanged in its main idea,
decision or classification rules of problem are derived by
knowledge reduction [2]. +e Variable Precision Rough Set
(VPRS) theory, proposed by Ziarko, and is an extension of
original rough set model. For inconsistent information
system, the VPRS model allows a flexible approximation
boundary region by a precision variable β [3]. When β� 0,
Pawlak rough set model is a special case of variable precision

rough set model. +e main task of variable precision rough
set model is to solve the problem of data classification with
no function or uncertainty. +e hierarchical model of at-
tribute reduction for variable precision rough set is studied
by Xiaowei [4]. +ere is abnormal phenomenon in existing
attribute reduction models; therefore, a variable precision
rough set attribute reduction algorithm with the property
of interval is proposed, and the reduction abnormal
problem is transformed into a hierarchical model repre-
sentation, and the reduction anomaly is gradually elimi-
nated by the layer-by-layer reduction model; Jie and
Jiayang [5] puts forward that there may be a reduction
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jump phenomenon in variable precision rough set feature
reduction, which affects the quality of reduction and brings
the problem of attribute reduction of variable precision
rough set; Pei and Qinghua [6] proposes an FCM clustering
algorithm based on variable precision rough set; according
to the threshold characteristics of the variable precision
rough set model, the algorithm divides the objects in the
edge of the cluster into the positive, negative, and boundary
regions, to improve the accuracy of clustering. Two dif-
ferent solutions of variable precision rough set attribute
reduction algorithm are proposed by Hao and Junan [7];
based on tolerance matrix and minimal reduction of at-
tribute core, the attribute kernel idea of variable precision
rough set is proposed. +e experimental results show that
the two algorithms can reduce the search space and im-
prove the efficiency of the algorithm.

Feature reduction is one of the core contents of rough set
theory; in the condition of keeping the classification ability
for knowledge base unchanged, we delete irrelevant or
unimportant knowledge, which can reduce the dimension of
the decision system, reduce the time complexity, and im-
prove the efficiency of the algorithm [8]. People want to find
the minimum reduction, but it has been proved to be an NP-
Hard problem [9]; the main research is how to find the
second optimal solution. Genetic algorithm is a computa-
tional model which is based on the natural selection and
evolution mechanism; its core idea is inspired by the natural
selection rule of the survival of the fittest, can achieve a
highly parallel, random, and adaptive search, is not easy to
fall into local optimal [10], can find the global optimal so-
lution with high probability, and has great advantage in
solving the NP-Hard problem.

In this paper, a new algorithm of PET/CT high-di-
mensional feature selection is proposed based on genetic
algorithm and variable precision rough set model. On one
hand, the algorithm considers the value of chromosome
coding, the minimum number of attributes, and the de-
pendency of attributes to construct a general fitness function
framework and adjusting weight coefficient of each factor to
achieve different fitness function; on the other hand, aiming
at the limitation of Pawlak rough set model, introducing the
classification error rate of β, it extends rigid inclusion of the
lower approximation for traditional rough set to partial
inclusion, not only improving the concept of approximate
space, but also enhancing the ability to deal with noise data
and changing the range of β to achieve different fitness
function. Finally, through extracting PET/CT lung cancer
ROI 98-dimensional feature to construct the information
decision table of lung cancer patients, 8 group experiments
of high-dimensional features selection are done by using
support vector machine to classify and recognize reduction
subsets, to verify the degree of influence on the different
weights and different classification error rate, and find a set
of parameters suitable for this problem (ϖ1 � 1,ω2 �

1,ω3 � 0; β� 0.6). +e experimental results show that dif-
ferent parameters can be used to get different experimental
results, so we should choose the appropriate parameter
combination according to different problems so as to get
better recognition accuracy.

2. Materials and Methods

2.1.PET/CT. PET/CTis a kind of advancedmedical imaging
technology, which is a combination of the good performance
of PET and CT on the same device, and provides the ana-
tomical and functional metabolism of the subjects under the
same conditions [11]. PET is a functional image; it can
provide metabolic information of tissue and organ and
reflect functional changes of the human body from the
molecular level, such as the physiological, pathological,
biochemical, and metabolic, but has poor spatial resolution,
cannot be accurately located, and cannot display the ana-
tomical information of the lesions [12]. CT belongs to the
anatomical structure of images, with high spatial resolution
and density resolution; it has unique advantages in dis-
playing the anatomical structure and density of the body
[13], it also can provide detailed anatomical information of
human organs and tissues, but can not reflect the functional
information of tissues and organs [14] (Figure 1).

2.2. Genetic Algorithm. Genetic algorithm is a computa-
tional model which is based on the natural selection and
evolution mechanism; its core idea is inspired by the natural
selection rule of the survival for the fitness, so the search
algorithm is an iterative process of survival and detection, is
a very effective search and optimization technique, can
achieve a highly parallel, random, and adaptive search,
cannot easily fall into local optimum, and can find the global
optimal solution with high probability and its robustness is
good [15]. General use of genetic algorithm for reduction is
achieved by a binary coding, 1 indicates that the position
selects the corresponding attribute, while 0 indicates that the
corresponding attribute is not selected. Genetic algorithm
consists of four parts: encoding and decoding, fitness
function, genetic operator, and control parameters, genetic
operators include selection operator, crossover operator,
and mutation operator, +e selection operator is generally
selected by roulette wheel selection method, according to the
selection probability pi � (fi/􏽐

M
i�1 fi), crossover operator is

a single point crossover, with a certain probability p to select
individuals to participate in crossover, mutation operator
selects the individual with the probability p and randomly
selects the corresponding gene of the variant individuals to
operate [16]. +e general steps are as follows: determining
the initial population and calculating the target value of each
individual in the population and the corresponding value of
the fitness function, choosing the chromosomes with high
fitness value, and forming a matching set (selection),
according to certain rules of reproduction (crossover and
mutation), to meet the conditions to stop the genetic iter-
ation, or return to step 3 (Figure 2).

2.3. Variable Precision Rough Set. Ziarko proposed the
variable precision rough set model in 1993, he first proposed
the concept of classification error rate; in the case of a given
classification error rate, the objects with the same attributes
can be classified into classes as many as possible [17].
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Definition 1 (equivalence class). Assuming that R is an
equivalence relation on K, a collection of all elements
equivalent to an element k in K is called an equivalence class
of k, denoted as [k].

Definition 2 (indiscernibility relation). If P⊆R and P≠ ϕ,
then ∩P is also an equivalence relation, it is called the
indiscernibility relation on P, denoted as ind [P].

Definition 3 (upper approximation and lower
approximation). +e knowledge base ofK� (U, R), X⊆U, R
is equivalent to the relationship between U. +e lower ap-
proximation of X can be understood as all of the classifi-
cation errors that are not greater than β are included in the R
equivalence class in X. +e upper approximation of X can be
understood as the intersection of all those with classification
error not greater than β and equivalence classes with X is not
empty [18]. Expressions are as follows:

RX β � ∪ Y ∈
U

R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Y⊆X􏼚 􏼛,

RXβ � ∪ Y ∈
U

R

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Y∩X≠φ􏼚 􏼛.

(1)

Assume that the decision information table S� (U, A,
V, f ), where U is a sample of the universe and a nonempty
finite sample set, U � {x1, X2, x3,. . ., Xn}, and Xi represents
each sample. A� P∪Q, P represents a collection of condi-
tional attributes, Q represents a set of decision attributes. V

represents the range of attribute. f: U × A⟶ V is an in-
formation function that gives an attribute value for each
attribute of each xi, that is, ∀a ∈ A, x ∈ U, f(x, a) ∈ Va. X

and Y represent nonempty set in finite field U. P, Q⊆A

represents the condition attribute set and decision attribute
set; ind (P), ind (Q) is an indiscernibility relation determined
by P, Q; ind (P) is a collection of equivalence classes called
condition class, expressed in U/P, i.e., U/ind(P) � {P1, P2,
P3,. . ., Pn}; ind (P) is a collection of equivalence classes called
decision class, expressed in U/Q, that is U/ind(Q) � {Q1, Q2,
Q3, . . ., Qn}.

Definition 4 (majority inclusion relation). If there is a e ∈ Y

for each e ∈ X, then Y contains X, denoted as Y X, then

c(X, Y) �
1 − |X∩Y|/|X|, |X|> 0,

0, |X| � 0,
􏼨 (2)

where |X| represents the cardinality of the set X and c(X, Y)

is the relative classification error rate of set X on set Y.
Make (0≤ β< 0.5); the majority inclusion relation is

defined as Y⊇
β
X⟺ c(X, Y)≤ β; the “majority” requirement

implies that the number of common elements in X and Y is
greater than 50% of the number of elements in X.

Definition 5 (β-reduction). Conditional attribute set P is a
subset of P for β-reduction or approximate reduction of
decision attribute set Q, and the subset is red(P, Q, β) and
meets the following two conditions [19]:

(1) c(P, Q, β) � c(red(P, Q, β), Q, β)

(2) To remove any attribute from red(P, Q, β), condition
(1) is not valid

+

(a) (b) (c)

=

Figure 1: +e source image of CT, PET, PET/CT.
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Figure 2: Flow chart of knowledge reduction method based on genetic algorithm.
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2.3.1. Attribute Dependency

Definition 6. +e dependency of the decision attribute set Q
and the conditional attribute set P is defined as

c(P, Q, β) �
|pos(P, Q, β)|

|U|
. (3)

pos(P, Q, β) � ∪ Y∈U/Qind(P) β
Q, |U| is the number of

objects contained in the domain, |pos(P, Q, β)| is the
number of objects contained in the positive domain of all
equivalence classes that are not greater than the β classifi-
cation error, which indicates that the conditional attributes
can correctly divide the object to U|Q. c(0≤ c≤ 1) is the β
dependency of the decision attribute Q to the conditional
attribute P and is an evaluation of the ability to classify
objects with the classification error β.c � 0 means that P
cannot be used to divide objects into equivalence classes in
Q, c � 1 means that P can be used to divide objects into
equivalence classes in Q completely, 0< c< 1 means that P
can be used to divide objects into equivalence classes in Q
partly.

2.3.2. Attribute Importance

Definition 7. Assume that the decision information table is
S� (U, A, V, f ), A� P∪Q, s ∈ h, the relative importance of
attribute s is

Z(s) �
c(P, Q, β) − c(P − s{ }, Q, β)

c(P, Q, β)
� 1 −

c(P − s{ }, Q, β)

c(P, Q, β)
.

(4)

An attribute is able to distinguish an object; the greater
the value, the stronger the ability.

+e selection of threshold β for variable precision rough
set needs to meet the following requirements.

+e choice of β to make the classification accuracy as
high as possible:

(1) 0≤ β< 0.5
(2) β makes the attributes contained in the reduction

results as little as possible

2.4. SVM. Support vector machine (SVM) is a supervised
learning model for data analysis, pattern recognition, and
regression analysis in the field of machine learning. +e best
compromise between model complexity (the learning ac-
curacy of a particular training sample) and learning ability
(ability to identify an arbitrary sample without error) should
be found based on limited sample information. In order to
obtain the best generalization ability, the basic idea is to use
the structural risk minimization principle to construct the
optimal classification hyperplane in the attribute space. SVM
has some advantages such as good generalization ability,
simple data structure, low computational complexity, short
training time, few parameters selection, high fitting preci-
sion, strong robustness, and so on [20, 21]. It has great
advantages in dealing with small sample, nonlinear, and

high-dimensional pattern recognition. It is often used in
pattern recognition [12, 22], regression estimation, and so
on.

(1) After the introduction of kernel function and penalty
parameter by SVM, the optimal discriminant func-
tion model is

f(x) � sgn 􏽘
n

i�1
aiyjk xi, x( 􏼁 + b⎛⎝ ⎞⎠. (5)

Among it, 0< a<C, yi ∈ {1, − 1}.
(2) +e optimization function of SVM is

Q(a) � 􏽘
n

i�1
ai −

1
2

􏽘

n

i,j�1
aiajyiyjk xi, xj􏼐 􏼑. (6)

(3) +e radial basis kernel function is a widely used
kernel function; the kernel function is used in this
paper:

k(x, y) � exp − g‖x − y‖
2

􏼐 􏼑. (7)

Among them, g> 0, g is an important parameter in the
kernel function, which affects the complexity of SVM
classification algorithm.

+e kernel function parameter g and penalty coefficient
C of support vector machine (SVM) is an important pa-
rameter which affects the performance of SVM classification,
so (C, g) is used as the optimization variable. In the process
of learning SVM, 5-fold cross validation is used to calculate
the optimal classification performance of kernel function
parameter and penalty coefficient, and then the diagnosis
result of optimization is applied to the SVM classifier for
lung cancer, the final selection of the sensitivity, specificity,
accuracy, and computation time as the evaluation indexes of
related experiments.

3. Results and Discussion

3.1. Main Idea. +e main idea of the model is as follows.

3.1.1. Parameters. Population sizeM, chromosome lengthN
(the number of condition attributes), crossover probability
Pc, mutation probability Pm, fitness function F(x), and the
maximum number of iterations K are the parameters.

3.1.2. Coding. +e binary coding method is used, which is
represented by a binary string whose length is equal to the
number of condition attributes; each bit corresponds to a
condition attribute, a bit of 1 indicates that the corre-
sponding condition attribute is selected, 0 indicates that the
condition attribute is not selected, e.g., 00110101{ } repre-
sents a chromosome with a length of 8, and it is known that
the corresponding 1, 2, 5, 7 of 0 indicates that the corre-
sponding condition attribute is not selected, then{c3, C4, C6,
c8} is the last individual to choose the attributes set.

4 Mathematical Problems in Engineering



3.1.3. 4e Initial Population. Assuming the population size
M (the number of chromosomes in the population isM), M
length of Lr chromosome (0, 1) is the randomly generated as
the initial population.

3.1.4. Genetic Operators. Genetic operators include selection
operator, crossover operator, and mutation operator. +e se-
lection operator generally uses the roulette wheel selection
method, according to the selection probability pi �

(fi/􏽐
M
i�1 fi) to select. Crossover operator uses a single-point

crossover, with a certain probability Pc to select the individual
uniform crossover. +e mutation operator selects the indi-
viduals with the probability Pm to carry on the variation, and
randomly selects the corresponding bit of the nonnuclear
attribute.

3.1.5. Fitness Function. +e fitness function is the core of the
genetic algorithm, the fitness value is the only index to evaluate
the fitness function; this paper from the gene encoding value,
the minimum number of attributes reduction, attribute de-
pendency, and other aspects constructs a fitness function
framework, by adjusting the weights of various factors and
changing the classification error rate to achieve different fitness
function. +e fitness function is set as follows:

target1. Attribute dependency: c(P, Q, β) �

(|posβP(Q)|/|U|), it represents the β dependency of
decision attribute Q for conditional attribute P.
target2. Attributes reduction Length: |C reduct| �((|P

| − |Lr|)/|P|), |P| is the number of condition attributes
represented by 0, 1. |Lr| represents the number of 1 in
attribute P, the shorter the better results.
target3. Gene coding weight function: i.e., Penalty
function, target3� 􏽐 abs(r × (r − 1))/|r|. Gene values
can only take 0 and 1, but the chromosome will show
not 1 and not 0, such that the value is less than 0 or
greater than 1. +e value must be punished; therefore,
the gene coding weight function is constructed. If the
gene is 0, r × (r − 1) � 0, but the gene is 1,
r × (r − 1) � 0. So do not punish the genes of 0 or 1, but
if there is a chromosome with a length of 6: r� [0 0 − 2
− 1 2 1], (r − 1) � [− 1 − 1 − 3 − 21 0], r × (r − 1) � [0 0 6 2
2 0], then 􏽐 abs(r × (r − 1)) � 10, length is 6, so
target3�10/6�1.67.

+erefore, the fitness function constructed in this paper is
F(x) � − ω1 × target 1 − ω2 × target 2 + ω3 × target 3, (8)

whereω is the weight coefficient of fitness function,ω� (0, 1, 2,
3), because the genetic algorithm can only find the minimum
value, and the bigger the fitness value, the better it is, so the
objective function is minus and the penalty function is plus.

Flow chart about this model is given in Figure 3.

3.2. Model Concrete Steps

Input: A decision information table S� (U, A, V, f )
Output: red(P, Q, β)

generate (M), Lr� 98//Initial population M, 01 se-
quence of Chromosome length 98
Setting β, ω, crossover probability Pc, mutation
probability Pm, iteration number K
Begin

for i� 1 :K
target1� (|posβP(Q)|/|U|)

target2� ((|P| − |Lr|)/|P|)

target3� (􏽐 abs(r × (r − 1))/|r|)

Fitness
function� − ω1 × target1 − ω2 × target2 + ω3 × target3;
//Fitness function
P� Select (M, 2, Pc);//Crossover probability Pc
Q�Crossover (P, 2, Pc);//Crossover algorithm
Q′�Mutation (Q, Pm);//Mutation algorithm
End

3.3. Experimental Environment and Data

3.3.1. Hardware Environment. Intel Core i5 4670-3.4GHz
with 8.0GB memory and 500GB hard disk were used.

3.3.2. Software Environment. Matlab R2012b, LibSVM, and
Windows 7 operating system were used.

3.3.3. Experimental Data. +e PET/CT images of 2000 lung
cancer patients were collected as the study samples (1000
cases of benign lung tumor, 1000 cases of malignant lung
tumor). Firstly, ROI was extracted from the lung tumor
and pretreated; then 8-dimensional shape features, 7-di-
mensional gray features, 3-dimensional Tamura features,
56-dimensional GLCM features, and the 24-dimensional
frequency domain features were extracted from the lung
tumor ROI, and 98-dimensional feature vectors are dis-
creted and normalized. In the decision attribute, 1 rep-
resents the lung malignant tumor and − 1 represents the
lung benign tumor. Figure 4(a) shows four PET/CT im-
ages, ROI of Lung malignant tumor, and Figure 4(b) shows
four PET/CT images, ROI of lung benign tumor. Table 1
gives the feature values of two patients with lung cancer
(one patient was a malignant tumor and the other was a
benign tumor).

3.4.Analysis ofExperimentalResults. In this paper, 3 kinds of
experiments are designed according to the weight value ω �

(0, 1, 2, 3) of the fitness function and the classification error
rate β � 0.4, 0.2, 0{ } (namely, the inclusion degree
1 − β � 0.6, 0.8, 1{ }). For first type of experiments,
1 − β � 0.6, according to the different values of ω to do the
three groups of experiments totally. For second type of
experiments, ϖ1 � 1,ω2 � 1, ω3 � 0, according to the dif-
ferent values of β to do three groups of experiments. For
third type of experiments, 1 − β � 0.6, by increasing the ω
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value to achieve the best fitness function, to achieve the best
results.

3.4.1. Experiment 1—Research on Different Weight Coeffi-
cients under the Condition in the Same Classification Error
Rate. ϖ values and β values of experiment 1 are shown in
Table 2, and 1 − β� 0.6.

(1) 1st Group Experiment. ϖ1,ω2,ω3{ } � {1, 0, 0}: +e al-
gorithm is run 5 times according to this group weights; the
results of the 5 groups are given in Table 3, including the
reduction of the conditional attributes, the length of re-
duction, the optimal fitness value, the attribute dependency
degree, and the time. +e convergence of VPRS-GA under

the variation for fitness function value in one time is shown
in Figure 5.

Each reduction is classified by SVM classifier, using the
method of 5-fold cross validation, through changing the
training samples and test samples; the results of the five
groups were obtained, including accuracy, sensitivity,
specificity, and time (training samples are constructed by
800 malignant samples and 800 benign samples; testing
samples are constructed by 200 malignant samples and 200
benign samples; the experiment is repeated 5 times by
changing training samples and testing samples). Finally, the
average values of these five groups are obtained as the final
result of the reduction and shown in Table 4.

+e weight value in this group experiment is
ϖ1,ω2,ω3{ } � {1, 0, 0}, attribute dependency degree are

Output attribute
set: C_reduct1, C_re

duct2···C_reductn

Indiscernibility relation
function

Lower approximation

Relative positive domain
posD

c function

Recognition
result

SVM
model

Training
SVM

Reduced
training set

Reduced
testing set

Target

Satisfy
condition?

Yes

No

Mutation Pm

Crossover Pc

Select Ps

F (x) = –ω1 × target1 – ω2 × target2 + ω3 × target3,
β = 0.6, 0.8, 1

Initial population

Fitness value

Figure 3: Flow chart of high-dimensional feature selection based on genetic algorithm and variable precision rough set.

(a) (b)

Figure 4: Part of lung tumor PET/CT image ROI. (a) Part of the lung malignant tumor PET/CT-ROI. (b) Part of the lung benign tumor
PET/CT-ROI.
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Table 1: ROI feature values of lung tumor PET/CT image.

Types of disease Shape
feature

Gray
feature

Tamura
texture

Texture features of GLCM Texture feature of wavelet

0 degree 45
degrees

90
degrees

135
degrees Norm Standard

deviation Energy

Lung malignant
tumor

6.0000 122.2810 14.7000 0.0808 0.0779 0.0790 0.0611 649.2580 37.1752 1.0000
0.0012 1491.1500 30.9650 2.8937 2.9067 2.8989 3.1284 26.9473 3.8486 0.0017
0.0000 38.6154 0.2326 0.2576 0.2820 0.2653 0.4490 9.3520 1.3355 0.0002
0.0000 − 0.5056 0.1668 0.1676 0.1659 0.1649 16.8200 2.4025 0.0007
0.0000 2.4166 0.0792 0.0759 0.0772 0.0566 27.1143 3.8693 0.0017
0.0000 140453 0.2576 0.2820 0.2653 0.4490 20.3163 2.9020 0.0010
0.0000 7.0524 16.4110 16.4469 16.3584 16.4431 13.1755 1.8818 0.0004
0.0000 2.7089 2.7072 2.7100 2.8066 18.3441 2.6199 0.0008

0.5755 0.6007 0.5810 0.7345
210.9390 211.7900 209.5780 208.8250
0.3064 0.3351 0.3135 0.3950

− 0.6779 − 0.6708 − 0.6775 − 0.5696
0.0000 0.0000 0.0000 0.0000
0.7625 0.7802 0.7658 0.8001

Lung benign
tumor

4.0000 50.3912 10.1616 0.8087 0.7915 0.8077 0.7864 379.9170 2.6741 1.0000
0.0033 6.0006 1.8835 0.4324 0.4732 0.4370 0.4840 5.7551 0.8211 0.0002
0.0000 2.4496 2.6329 0.0433 0.0621 0.0469 0.0679 1.1745 0.1677 0.0000
0.0000 0.5649 9.4899 7.8127 9.2429 9.2429 3.4684 0.4955 0.0001
0.0000 2.8589 0.8082 0.7905 0.8072 0.7853 2.0823 0.2972 0.0000
0.0000 3283 0.0433 0.0621 0.0469 0.0679 2.1821 0.3117 0.0000
0.0000 3.2559 7.8367 7.8363 7.8396 7.8363 0.8937 0.1276 0.0000
0.0000 0.4024 0.4301 0.4045 0.4370 2.2387 0.3197 0.0000

0.1782 0.2326 0.1894 0.2481
55.5257 55.0899 55.5291 54.9831
0.0596 0.0873 0.0650 0.0958

− 0.4707 − 0.3295 − 0.4351 − 0.2911
0.0000 0.0000 0.0000 0.0000
2.0429 2.1172 2.0651 2.1394

Table 3: Results of VPRS-GA running 5 times when 1-β� 0.6, ω1 � 1,ω2 � 0,ω3 � 0{ }.

Experiment
times C_ reduction Reduction

length
Optimal

fitness value
Attribute

dependency degree Time (s)

1 {4 5 8 9 11 12 13 17 20 22 23 24 27 30 32 33 35 38 42 48 49
52 57 59 61 62 63 64 65 68 70 72 73 75 77 78 80 87 88 91 92} 41 − 0.9705 0.9705 971.9144

2
{1 2 3 4 5 8 11 12 13 14 16 17 19 23 24 25 26 27 28 30 32 36
38 39 40 42 43 44 46 47 52 53 55 61 63 66 67 69 71 72 73 77

79 80 82 84 85 87 92}
49 − 0.9685 0.9685 1007.6907

3 {4 611 12 1517 18 24 25 26 28 29 31 36 38 39 42 43 45 47 49
53 56 65 68 69 72 76 77 79 80 81 83 85 88 91 92} 37 − 0.9695 0.9695 1043.2000

4 {4 8 9 11 12 13 14 15 17 23 29 34 35 39 40 43 47 48 50 53 55
56 60 61 64 68 70 75 80 81 82 83 84 86} 34 − 0.9790 0.9790 947.3111

5 {3 4 6 81011 12 13151719 20 21 24 26 29 31 39 42 44 45 48
50 53 54 56 59 64 68 77 83 84 87 89 92} 35 − 0.9775 0.9775 964.5092

Average value 39.2 − 0.9730 0.9730 986.9251

Table 2: Fitness function weight proportion and β value.

Experiment times
1 − β � 0.6

ω1 ω2 ω3
First group experiment 1 0 0
Second group experiment 1 1 0
+ird group experiment 1 1 1
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regarded as fitness function. +e average attribute de-
pendency degree is 0.973, the average length of reduction
is 39.2, and the average optimal fitness value is − 0.973.
+e average recognition accuracy of the experiment is
96.92%. +e premature phenomena are shown in Fig-
ure 5, and evolution progress is terminated early.

(2) 2nd Group Experiment. ϖ1,ω2,ω3{ } � {1, 1, 0}: +is
experiment introduces an objective function to control the
length of reduction (the shorter the length of reduction, the
better it is), the influence degree of the objective function
which controls the reduction on the fitness function and the

final recognition accuracy is verified. +e algorithm is run 5
times according to this group weights, and the results of the 5
groups are given in Table 5, including the reduction of the
conditional attributes, the length of reduction, the optimal
fitness value, the attribute dependency, and the time. +e
convergence of VPRS-GA under the variation for fitness
function value in one time is shown in Figure 6.

Each reduction is classified by SVM classifier, using the
method of 5-fold cross validation, through changing the
training samples and test samples, the results of the five
groups were obtained, including accuracy, sensitivity,
specificity, and time (training samples are constructed by
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Figure 5: +e variation of fitness function value in a running process for Experiment 1-first group.

Table 4: +e statistical results of the first group for experiment 1 with the SVM classifier.

Experiment times Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

Reduction 1

1 92.50 86.00 99.00 33.2607
2 97.25 97.50 97.00 34.5051
3 99.00 99.00 99.00 35.8677
4 98.00 99.50 96.50 35.1075
5 99.25 100.00 98.50 35.5948

Average value 97.20 96.40 98.00 34.8672

Reduction 2

1 93.25 87.00 99.50 43.6533
2 97.25 98.00 96.50 44.5900
3 98.75 98.50 99.00 43.9506
4 97.50 99.00 96.00 44.5064
5 99.25 100.00 98.50 44.8513

Average value 97.20 96.50 97.90 44.3103

Reduction 3

1 92.75 87.50 98.00 32.6916
2 95.75 97.50 94.00 33.7209
3 98.00 98.00 98.00 34.0701
4 97.00 98.50 95.50 33.3174
5 98.50 99.50 97.50 33.3257

Average value 96.40 96.20 96.60 33.4251

Reduction 4

1 93.75 88.50 99.00 30.6485
2 96.50 97.50 95.50 31.9240
3 97.50 97.00 98.00 32.4082
4 97.75 99.00 96.50 32.5419
5 99.00 100.00 98.00 36.1516

Average value 96.90 96.40 97.40 31.8806

Reduction 5

1 94.00 89.00 99.00 31.9557
2 96.50 97.50 95.50 33.6909
3 97.25 97.00 97.50 33.0159
4 97.75 99.00 96.50 39.9980
5 99.00 100.00 98.00 32.5692

Average value 96.90 96.50 97.30 34.2459
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800 malignant samples and 800 benign samples; testing
samples are constructed by 200 malignant samples and 200
benign samples; the experiment is repeated 5 times by
changing training samples and testing samples). Finally, the
average values of these five groups are obtained as the final
result of the reduction and shown in Table 6.

+e experimental weight of this group is ϖ1,{

ω2,ω3} � {1, 1, 0}; attribute dependency degree and the
length of reduction are regarded as fitness function. As can
be seen from Table 5, the reduction length is 13, 17, and so
on. +e average length of reduction was 17, which was
significantly reduced compared with the average length of
the reduction in Table 3 in the experiment of the first groups,
which reduced the time, improved the efficiency of the al-
gorithm, and increased the attribute dependency of the
algorithm, even up to 1. +e average recognition accuracy of
the experimental group was 96.98%, which was increased by
0.06% compared with that in the first groups.

(3) 3rd Group Experiment. ϖ1,ω2,ω3{ } � {1, 1, 1}: On the
basis of attribute dependency degree and attribute reduction
length, this experiment introduces gene coding weight
function, in order to verify the effect of gene coding weight
function on fitness function and the final recognition ac-
curacy. +e algorithm are run 5 times according to this
group weights, the results of the 5 groups are given in
Table 7, including the reduction of the conditional attributes,
the length of reduction, the optimal fitness value, the at-
tribute dependency, and the time. +e convergence of
VPRS-GA under the variation for fitness function value in
one time is shown in Figure 7.

Each reduction is classified by SVM classifier, using the
method of 5-fold cross validation, through changing the
training samples and test samples; the results of the five
groups were obtained, including accuracy, sensitivity,
specificity, and time (training samples are constructed by
800 malignant samples and 800 benign samples; testing
samples are constructed by 200 malignant samples and 200
benign samples; the experiment is repeated 5 times by
changing training samples and testing samples). Finally, the
average values of these five groups are obtained as the final
result of the reduction and shown in Table 8.

+e experimental weight of this group is ϖ1,{ ω2,ω3}=
{1, 1, 1}; attribute dependency degree, the length of re-
duction, and gene coding weight value are regarded as fitness
function. However, the premature phenomena are shown in
Figure 7, and evolution progress is terminated early. From
Table 7, we can see that the attribute dependency decreases
gradually and even the attribute dependency of Reduction 1
is reduced to 0.759. +e average recognition accuracy of the
experimental group was 96.85%.+e accuracy of recognition
was decreased compared with the second groups, and hence,
using gene encoding weight function in the fitness function
to improve recognition accuracy is useless, only for the
samples with different results, to analyze specific issues. +e
3 experiment runs of experiment 1 verified the necessity of
the fitness function, by continuously introducing fitness
objective function, such as target1, target2, and target3, the
conclusion is that the fitness function is better when it is not
bigger, but after the introduction of target3, the accuracy
declines; therefore, the introduction of target1 and target2 in
this algorithm can get better results.

Table 5: Results of VPRS-GA running 5 times when 1 − β � 0.6, ω1 � 1,ω2 � 1,ω3 � 0{ }.

Experiment times C_ reduction Reduction
length

Optimal
fitness value

Attribute
dependency

degree
Time (s)

1 {5 9 14 20 26 41 43 46 48 54 55 57 64 66 74 79 86 90} 18 − 4.6487 0.9965 1072.4072
2 {1 4 11 12 14 24 34 40 42 43 56 60 61 65 67 68 71 72 85} 19 − 4.0109 1 632.8122
3 {2 13 27 29 39 42 45 56 59 63 68 70 75} 13 − 4.6512 0.9990 1102.3967
4 {1 3 4 7 9 11 12 15 30 34 38 42 46 48 55 62 65 77 79} 19 − 4.9674 1 879.4670
5 {3 9 11 13 29 39 41 42 43 46 50 55 65 c77 85 86} 16 − 4.4114 0.9815 1507.5539

Average value 17 − 4.5379 0.9954 1038.9274

–1

–2

–3

–4

–5

Fi
tn

es
s v

al
ue

Best: –4.96739 Mean: –4.92312

0 50 100 150
Generation stopping criteria

Best fitness
Mean fitness

Figure 6: +e variation of fitness function value in a running process for experiment 1-second group.
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3.4.2. Experiment 2—Research on Different Classification
Error Rates under the Condition in the Same Weight
Coefficient. According to experiment 1, we can see that
when ω1 � 1, ω2 � 1, ω3 � 0, the experimental results are
the best, so in experiment 2, the case of the weight value of
was unchanged, ω1 � 1, ω2 � 1, ω3 � 0, and the β value was
changed, and they are shown in Table 9.

(1) 1st Group Experiment. 1 − β� 0.6: +e algorithm is run 5
times according to this group weights; the results of the 5
groups are shown in Table 5, including the reduction of the

conditional attributes, the length of reduction, the optimal
fitness value, the attribute dependency, and the time. +e
convergence of VPRS-GA under the variation for fitness
function value for one time is shown in Figure 6 (i.e., not
repeated in the second group of experiment 1).

(2) 2nd Group Experiment. 1 − β� 0.8: +e algorithm are is 5
times according to this group weights, the results of the 5
groups are given in Table 10, including the reduction of the
conditional attributes, the length of reduction, the optimal
fitness value, the attribute dependency, and the time. +e

Table 6: +e statistical results of the second group for experiment 1 with the SVM classifier.

Experiment times Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

Reduction 1

1 93.00 86.00 100.00 11.6488
2 96.25 96.00 96.50 12.5511
3 98.50 99.00 98.00 13.1509
4 97.25 98.50 96.00 13.4468
5 99.25 100.00 98.50 14.4839

Average value 96.85 95.90 97.80 13.0563

Reduction 2

1 94.25 89.00 99.50 12.1096
2 97.25 97.00 97.50 12.8636
3 98.00 98.00 98.00 13.5677
4 97.50 98.00 97.00 13.8196
5 98.75 99.00 98.50 13.6691

Average value 97.15 96.20 98.10 13.2059

Reduction 3

1 93.00 87.50 98.50 8.7757
2 97.25 97.50 97.00 10.3424
3 97.75 98.00 97.50 10.7411
4 97.75 98.50 97.00 11.2344
5 99.00 100.00 98.00 11.3006

Average value 96.95 96.30 97.60 10.4788

Reduction 4

1 93.75 87.50 100.00 14.6417
2 96.50 97.50 95.50 15.4736
3 97.50 97.00 98.00 15.7621
4 98.00 99.00 97.00 16.1355
5 99.25 100.00 98.50 16.3381

Average value 97.00 96.20 97.80 15.6702

Reduction 5

1 92.50 86.50 98.50 12.4933
2 96.75 98.00 95.50 14.0057
3 98.00 98.00 98.00 14.5194
4 98.00 99.00 97.00 14.5792
5 99.50 99.50 99.50 15.0400

Average value 96.95 96.20 97.70 14.1275

Table 7: Results of VPRS-GA running 5 times when 1 − β � 0.6, ω1 � 1,ω2 � 1,ω3 � 1{ }.

Experiment
times C_ reduction Reduction

length
Optimal

fitness value
Attribute

dependency degree Time (s)

1 {4 5 7 26 27 34 35 41 47 54 55 71 74 75 78 80 83 90} 18 − 1.4192 0.7590 688.8635

2 {4 15 16 19 22 27 28 29 30 35 38 42 45 50 52 53 59 61 62
64 65 70 71 72 77 87 88} 27 − 1.5232 0.8640 812.4857

3 {6 17 19 24 28 31 33 34 38 39 43 45 47 48 49 51 55 56 66
67 69 70 71 72 76 77 78 80 81 84 87 89 91 92} 34 − 1.3545 0.7950 952.1511

4 {3 6 8 91617 19 20 24 25 28 35 37 39 41 42 46 49 51 52 54
59 63 65 66 74 83 86} 28 − 1.4703 0.8365 871.4839

5 {1 7 8 15 17 19 20 23 29 37 45 48 54 60 62 70 73 75 77 78
79 86} 22 − 1.4990 0.7995 779.7617

Average value 25.8 − 1.4532 0.8108 820.9492

10 Mathematical Problems in Engineering



convergence of VPRS-GA under the variation for fitness
function value for one time is shown in Figure 8.

Each reduction is classified by SVM classifier, using the
method of 5-fold cross validation, through changing the
training samples and test samples; the results of the five

groups were obtained, including accuracy, sensitivity,
specificity, and time (training samples are constructed by
800 malignant samples and 800 benign samples; testing
samples are constructed by 200 malignant samples and 200
benign samples; the experiment is repeated 5 times by
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Figure 7: +e variation of fitness function value in a running process for experiment 1-third group.

Table 8: +e statistical results of the third group for experiment 1 with the SVM classifier.

Experiment times Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

Reduction 1

1 92.75 86.00 99.50 9.2492
2 97.25 97.50 97.00 10.7461
3 98.50 98.50 98.50 11.3811
4 97.75 99.00 96.50 11.5560
5 98.75 100.00 97.50 11.7022

Average value 97.00 96.20 97.80 10.9269

Reduction 2

1 93.50 87.50 99.50 14.8245
2 97.00 96.50 97.50 16.1535
3 97.75 98.50 97.00 16.6452
4 98.00 98.50 97.50 17.5450
5 98.75 99.50 98.00 17.2348

Average value 97.00 96.10 97.90 16.4806

Reduction 3

1 91.25 83.00 99.50 20.1904
2 96.50 97.00 96.00 21.8535
3 98.00 98.00 98.00 21.9605
4 96.25 99.00 93.50 22.3091
5 98.25 100.00 96.50 23.6896

Average value 96.05 95.40 96.70 22.0006

Reduction 4

1 93.00 87.00 99.00 16.5454
2 96.75 96.00 97.50 17.2432
3 98.75 98.50 99.00 17.9301
4 98.00 99.00 97.00 18.9560
5 99.00 99.50 98.50 18.5249

Average value 97.10 96.00 98.20 17.8399

Reduction 5

1 92.75 86.00 99.50 14.1173
2 97.25 98.00 96.50 16.1295
3 99.00 99.50 98.50 15.8992
4 97.75 99.50 96.00 16.4876
5 98.75 100.00 97.50 16.6070

Average value 97.10 96.60 97.60 15.8481

Table 9: Fitness function weight proportion and β value.

Experiment times
ω1 � 1, ω2 � 1, ω3 � 0

1 − β � 0.6 1 − β � 0.8 1 − β � 1
First group experiment ○
Second group experiment ○
+ird group experiment ○
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changing training samples and testing samples). Finally, the
average values of these five groups are obtained as the final
result of the reduction and shown in Table 11.

In the case of constant weight ϖ and classification error
rate of β� 0.2 (which contains 1 − β� 0.8), the classification
error rate is changed on the basis of the attribute dependency
and the length of control reduction. +e premature phe-
nomena are shown in Figure 8, and evolution progress is
terminated early, such that the attribute dependency of
reduction 5 was 0.8405, appeared in attribute dependency on
less than 0.9, compared with first groups of experiment 2
attribute dependency declined. +e average recognition
accuracy of the experimental group was 96.74%. Compared
with the classification error rate of 0.4 and inclusion degree
of 0.6, the accuracy was decreased by 0.24%.

(3) 3rd Group Experiment. 1 − β�1: +e algorithm is run 5
times according to the group weights, and the results of the 5
groups are shown in Table 12, including the reduction of the
conditional attributes, the length of reduction, the optimal
fitness value, the attribute dependency, and the time. +e
convergence of VPRS-GA under the variation for fitness
function value for one time is shown in Figure 9.

Each reduction is classified by SVM classifier, using the
method of 5-fold cross validation, through changing the
training samples and test samples, the results of the five
groups were obtained, including accuracy, sensitivity,
specificity, and time (training samples are constructed by
800 malignant samples and 800 benign samples; testing
samples are constructed by 200 malignant samples and 200

benign samples; the experiment is repeated 5 times by
changing training samples and testing samples). Finally, the
average values of these five groups are obtained as the final
result of the reduction and shown in Table 13.

In the case of constant weight ϖ and classification error
rate of β= 0 (which contains 1 − β= 1), the classification
error rate is reduced and the inclusion degree is improved on
the basis of the attribute dependency and the length of
control reduction. +e premature phenomena are shown in
Figure 9, and evolution progress is terminated early. +e
average recognition accuracy of the experimental group was
95.73%, which was decreased by 0.06% compared with that
in the second group. In experiment 2, the effect of changing
the classification error rate on the recognition accuracy was
verified by the 3 groups of experiments. By continually
reducing the classification error rate, the final recognition
accuracy has been declining, when inclusion degree is 1,
β= 0; variable precision rough set becomes Pawlak rough set,
the recognition accuracy of the recognition accuracy of is
minimum, which was verified the advantages of variable
precision rough set.

3.4.3. Experiment 3—Research on Increasing the Weight
Coefficient under the Condition in the Same Classification
Error Rate. According to experiment 1 and experiment 2,
we can know that when β� 0.6, ω1 � 1, ω2 � 1, ω3 � 0, the
recognition accuracy is the best; therefore, in the third
experiment, by increasing the weight of ω, 3 groups of
experiments are performed, fitness goals: target 1 (attribute

Table 10: Results of VPRS-GA running 5 times when 1 − β � 0.8, ω1 � 1,ω2 � 1,ω3 � 0{ }.

Experiment
times C_ reduction Reduction

length
Optimal fitness

value
Attribute

dependency degree Time (s)

1 {8 9 11 12 15 16 17 18 25 26 29 31 35 39 40 41 42 48 58
65 67 68 70 83 84 91} 26 − 6.7816 0.9490 1000.2827

2 {1 6 8 9 11 12 15 17 21 23 26 28 30 31 34 44 50 56 58 59
62 63 64 68 71 75 77 82 89 92} 30 − 6.7797 0.9615 947.7387

3 {6 8 12 14 15 16 17 21 28 35 38 39 45 49 55 58 61 62 64
65 77 82 85} 23 − 6.8694 0.9070 1286.6181

4 {4 6 7 8 11 12 13 16 17 20 25 26 31 32 34 35 41 42 44 49
50 55 58 68 72 74 76 78 79 85 89 92} 32 − 6.7225 0.9540 1051.0220

5 {3 6 8 9 10 16 17 26 27 34 36 37 38 40 42 44 46 51 52 62
66 67 84 86 87} 25 − 6.5892 0.8405 846.9324

Average value 27.2 − 6.7484 0.9224 1026.5188
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Figure 8: +e variation of fitness function value in a running process for experiment 2-second group.
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Table 11: +e statistical results of the second group for experiment 2 with the SVM classifier.

Experiment times Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

Reduction 1

1 93.00 86.50 99.50 22.8007
2 95.75 97.00 94.50 23.7646
3 97.00 96.00 98.00 23.3250
4 97.50 98.50 96.50 24.4491
5 99.25 100.00 98.50 24.4816

Average value 96.50 95.60 97.40 23.7642

Reduction 2

1 93.75 88.00 99.50 25.2403
2 96.25 97.50 95.00 26.5289
3 98.00 97.00 99.00 26.5523
4 98.00 99.00 97.00 26.8212
5 99.50 100.00 99.00 27.5880

Average value 97.10 96.30 97.90 26.5461

Reduction 3

1 92.75 87.50 98.00 18.0780
2 96.75 97.50 96.00 19.2992
3 97.00 96.00 98.00 18.7243
4 97.75 99.50 96.00 20.8482
5 98.75 100.00 97.50 20.3507

Average value 96.60 96.10 97.10 19.4601

Reduction 4

1 92.00 86.50 97.50 25.7260
2 97.00 97.50 96.50 27.3024
3 97.75 96.50 99.00 27.2316
4 97.50 99.00 96.00 28.1554
5 99.00 100.00 98.00 29.1471

Average value 96.65 95.90 97.40 27.5125

Reduction 5

1 92.75 87.50 98.00 14.3715
2 96.75 96.00 97.50 15.2637
3 97.50 98.00 97.00 15.8929
4 97.75 99.00 96.50 16.2997
5 99.50 100.00 99.00 16.6792

Average value 96.85 96.10 97.60 15.7014

Table 12: Results of VPRS-GA running 5 times when 1 − β � 1, ω1 � 1,ω2 � 1,ω3 � 0{ }.

Experiment
times C_ reduction Reduction

length
Optimal fitness

value
Attribute dependency

degree Time (s)

1 {15 44 68 73 79 84} 6 − 2.7313 0.7965 1144.9901
2 {34 51 54 75 80 90} 6 − 2.7047 0.8460 969.9391
3 {2 34 49 70 71 72 76 81} 8 − 3.4057 0.7535 1123.3489
4 {12 25 78 85} 4 − 2.2872 0.9285 1166.8133

5 {6 7 12 13 42 44 55 57 65 66 69 77 81 86
87} 15 − 3.3230 0.8665 1323.6077

Average value 7.8 − 2.8903 0.8382 1145.7398
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Figure 9: +e variation of fitness function value in a running process for experiment 2-third group.
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dependency), target 2 (the minimum number of attributes
reduction), and target 3 (gene encoding weight function),
the three objective functions play an important role in the
evaluation of fitness function. However, the importance of
fitness function is reduced in these three objectives.
+erefore, in this experiment, when the other conditions are
unchanged, the weight coefficient of the target 1 is increased,
to verify the influence of the change in the weight coefficient
on the experimental results, and they are shown in Table 14.

(1) 1st Group Experiment. ω1 � 1, ω2 � 1, ω3 � 0: +e al-
gorithm are run 5 times according to this group weights, the
results of the 5 groups are given in Table 5, including the
reduction of the conditional attributes, the length of reduc-
tion, the optimal fitness value, the attribute dependency and
the time. +e convergence of VPRS-GA under the variation
for fitness function value in one time is shown in Figure 6 (i.e.,
not repeated for the second group of experiment 1).

(2) 2nd Group Experiment. ω1 � 2, ω2 � 1, ω3 � 0: +e
algorithm is run 5 times according to this group weights, the
results of the 5 groups are given in Table 15, including the
reduction of the conditional attributes, the length of re-
duction, the optimal fitness value, the attribute dependency,
and the time. +e convergence of VPRS-GA under the
variation for fitness function value in one time is shown in
Figure 10.

Each reduction is classified by SVM classifier, using the
method of 5-fold cross validation, through changing the
training samples and test samples, the results of the five
groups were obtained, including accuracy, sensitivity,
specificity, and time (training samples are constructed by
800 malignant samples and 800 benign samples; testing
samples are constructed by 200 malignant samples and 200
benign samples; the experiment is repeated 5 times by
changing training samples and testing samples). Finally, the
average values of these five groups are obtained as the final
result of the reduction and shown in Table 16.

+e experimental group in the case of 1 − β= 0.6 un-
changed, the weight of ω1 was increased. +e attribute
dependency and the optimal fitness function are relatively
high; the average precision of reduction 1, reduction 2, and
reduction 3 in Table 16 is more than 97% and that of re-
duction 2 is even up to 97.25%. +e average recognition
accuracy of the experimental group is 97.03%, which is
higher than that of the first group.

Table 13: +e statistical results of the third group for experiment 2 with the SVM classifier.

Experiment times Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

Reduction 1

1 92.25 84.50 100.00 8.1271
2 95.50 97.00 94.00 9.4583
3 95.75 94.00 97.50 8.8198
4 96.00 98.00 94.00 9.3754
5 97.25 99.00 95.50 9.8691

Average value 95.35 94.50 96.20 9.1299

Reduction 2

1 92.00 84.50 99.50 6.4894
2 96.25 95.50 97.00 8.0198
3 95.25 93.00 97.50 7.7337
4 96.00 97.50 94.50 7.6012
5 98.00 100.00 96.00 8.2763

Average value 95.50 94.10 96.90 7.6241

Reduction 3

1 92.00 84.50 99.50 6.4894
2 96.25 95.50 97.00 8.0198
3 95.25 93.00 97.50 7.7337
4 96.00 97.50 94.50 7.6012
5 98.00 100.00 96.00 8.2763

Average value 95.50 94.10 96.90 7.6241

Reduction 4

1 92.75 85.50 100.00 6.7264
2 96.75 96.00 97.50 7.8467
3 96.00 94.50 97.50 7.3022
4 95.75 97.50 94.00 7.9460
5 98.00 100.00 96.00 8.4184

Average value 95.85 94.70 97.00 7.6479

Reduction 5

1 92.00 84.50 99.50 11.4719
2 96.25 97.50 95.00 12.8705
3 98.50 99.00 98.00 13.2049
4 97.75 99.50 96.00 13.3513
5 98.50 100.00 97.00 13.3144

Average value 96.60 96.10 97.10 12.8426

Table 14: Fitness function weight proportion and β value.

Experiment times
1 − β � 0.6

ω1 ω2 ω3
First group experiment 1 1 0
Second group experiment 2 1 0
+ird group experiment 3 1 0
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Figure 10: +e variation of fitness function value in a running process for experiment 3-second group.

Table 15: Results of VPRS-GA running 5 times when 1 − β � 0.6, ω1 � 2,ω2 � 1,ω3 � 0{ }.

Experiment
times C_ reduction Reduction

length
Optimal fitness

value
Attribute dependency

degree Time (s)

1 {2 3 4 5 11 13 16 18 24 30 34 37 39 41 42 51 55 64 70
77 78 82} 22 − 3.4859 0.9060 2151.5464

2 {8 9 11 12 14 15 23 25 26 29 30 33 37 42 43 45 46 50
60 61 69 74 80 87 89} 25 − 3.0845 0.9390 4276.1634

3 {8 11 12 13 16 18 19 24 29 36 37 43 64 65 68 71 86 91
92} 19 − 3.5039 0.9150 2619.7164

4 {2 3 4 8 10 11 12 13 15 16 19 23 25 30 48 55 64 65 68
74 77 80 81 83 84 86 89} 27 − 2.9150 0.9575 4427.1631

5 {5 8 911 121517 23 25 29 31 36 39 41 48 54 59 63 80
83 86 89} 22 − 2.9920 0.9525 4316.1464

Average value 23 − 3.1962 0.9340 3558.1471

Table 16: +e statistical results of the second group for experiment 3 with the SVM classifier.

Experiment times Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

Reduction 1

1 92.75 86.00 99.50 18.8497
2 97.25 98.00 96.50 15.7162
3 98.50 99.00 98.00 15.8691
4 98.00 99.00 97.00 16.4603
5 99.50 100.00 99.00 16.1914

Average value 97.20 96.40 98.00 16.6173

Reduction 2

1 94.50 89.50 99.50 19.0813
2 96.75 98.00 95.50 20.0251
3 97.75 98.00 97.50 19.7008
4 98.50 99.00 98.00 20.0924
5 98.75 99.00 98.50 20.9245

Average value 97.25 96.70 97.80 19.9648

Reduction 3

1 94.00 88.00 100.00 13.1369
2 97.25 98.00 96.50 14.4797
3 98.00 98.00 98.00 14.2662
4 97.25 98.50 96.00 14.7190
5 99.25 100.00 98.50 14.8799

Average value 97.15 96.50 97.80 14.2963

Reduction 4

1 93.50 87.50 99.50 24.0456
2 97.00 97.50 96.50 25.2082
3 98.00 98.00 98.00 25.1175
4 97.75 99.50 96.00 27.0188
5 98.25 100.00 96.50 26.7471

Average value 96.90 96.50 97.30 25.6274

Reduction 5

1 93.25 88.00 98.50 18.0959
2 96.00 98.00 94.00 19.6563
3 97.50 97.50 97.50 19.6723
4 98.00 99.00 97.00 20.7829
5 98.50 99.50 97.50 21.9703

Average value 96.65 96.40 96.90 20.0355
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Table 17: Results of VPRS-GA running 5 times when 1 − β � 1, ω1 � 1,ω2 � 1,ω3 � 0{ }.

Experiment
times C_ reduction Reduction

length
Optimal fitness

value
Attribute

dependency degree Time (s)

1 {3 4 5 8 9 11 12 17 19 29 34 35 38 46 52 53 55 59 63 66
72 75 77 78 79 87 92} 27 − 3.8867 0.9550 2898.1789

2 {4 8 9 11 12 15 17 29 33 37 38 39 42 43 48 55 67 73 78
81 83 84 88 89 90} 25 − 3.8167 0.9715 5578.3772

3 {2 3 4 8 9 10 11 12 13 15 16 19 24 25 30 36 49 54 55 60
64 67 68 70 74 77 83 85 86 91} 30 − 3.8807 0.9530 3483.1096

4 {4 5 7 11 12 14 15 17 25 29 33 36 39 41 42 47 48 50 55
56 58 62 67 69 72 74 77 84 86 90 91} 31 − 3.9430 0.9665 3574.2822

5 {3 4 5 8 9 11 12 17 19 29 34 35 38 46 52 53 55 59 63 66
72 75 77 78 79 87 92} 27 − 3.8867 0.9550 2791.9582

Average value 28 − 3.8827 0.9602 3665.1812
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Figure 11: +e variation of fitness function value in a running process for experiment 3-third group.

Table 18: +e statistical results of the Second group for experiment 3 with the SVM classifier.

Experiment times Accuracy (%) Sensitivity (%) Specificity (%) Time (s)

Reduction 1

1 92.00 87.00 97.00 21.8717
2 97.50 97.50 97.50 21.0550
3 98.50 98.50 98.50 20.3206
4 98.00 99.00 97.00 22.1164
5 99.25 100.00 98.50 27.2536

Average value 97.05 96.40 97.70 22.5235

Reduction 2

1 94.00 88.50 99.50 23.3123
2 95.75 97.50 94.00 24.3349
3 97.50 97.00 98.00 24.4202
4 97.75 99.00 96.50 25.6607
5 99.00 99.50 98.50 25.9071

Average value 96.80 96.30 97.30 24.7270

Reduction 3

1 92.75 86.50 99.00 25.2584
2 96.25 97.50 95.00 26.2412
3 97.75 98.00 97.50 26.0127
4 97.75 99.00 96.50 26.8670
5 98.75 100.00 97.50 26.5387

Average value 96.65 96.20 97.10 26.1836

Reduction 4

1 91.50 85.50 97.50 25.3231
2 96.25 97.50 95.00 26.4943
3 97.50 97.00 98.00 27.5283
4 98.00 99.50 96.50 32.2954
5 98.25 99.50 97.00 27.7432

Average value 96.30 95.80 96.80 27.8769

Reduction 5

1 92.00 88.00 96.00 19.5196
2 97.00 97.00 97.00 21.4889
3 98.25 98.00 98.50 20.3612
4 98.50 100.00 97.00 21.3361
5 99.00 99.00 99.00 22.5526

Average value 96.95 96.40 97.50 21.0517
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(3) 3rd Group Experiment. ω1 � 3, ω2 � 1, ω3 � 0: +e al-
gorithm is run 5 times according to the group weights, and
the results of the 5 groups are given in Table 17, including the
reduction of the conditional attributes, the length of re-
duction, the optimal fitness value, the attribute dependency,
and the time. +e convergence of VPRS-GA under the
variation for fitness function value for one time is shown in
Figure 11.

Each reduction is classified by SVM classifier, using the
method of 5-fold cross validation, through changing the
training samples and test samples; the results of the five
groups were obtained, including accuracy, sensitivity,
specificity, and time (training samples are constructed by
800 malignant samples and 800 benign samples; testing
samples are constructed by 200 malignant samples and 200
benign samples; the experiment is repeated 5 times by
changing training samples and testing samples). Finally, the
average values of these five groups are obtained as the final
result of the reduction and shown in Table 18.

+e experiment in the case of 1 − β� 0.6 unchanged,
increase the weight of the ω1. ω1 � 3, ω2 � 1, ω3 � 0. In
Table 18, the recognition accuracy of reduction 1 is over 97%
only. +e average recognition accuracy of the experimental
group is 96.75%, and the accuracy is decreased by 0.28%
compared with that in the other second groups. +e three
groups of experiment 3, the purpose is to verify whether the
experimental accuracy is influenced by increasing the
weight. +e experimental results show that the accuracy of
second group for experimental weight {2, 1, 0} compared
with first group experiment when {1, 1, 0} is high, but the
third groups of experimental weight was {3, 1, 0}, and the
accuracy declined; therefore, the weight of {2, 1, 0} is the best
choice for this experiment.

4. Conclusions

Aiming at the deficiency of the traditional rough set model,
this paper proposes a new feature selection model based on
genetic algorithm and variable precision rough set; by in-
troducing the β value, the rigid inclusion of the approxi-
mation for the traditional rough set is relaxed, and then we
design the 3 kinds of experiments by constructing the de-
cision information table of the PET/CT feature for lung
tumor ROI. +e first type of experiment is the inclusion of
1 − β � 0.6, and different values of ω made a total of three
groups of experiments; the experimental results show that
the better recognition accuracy can be obtained when the
weight is {1, 1, 0}, and the results show that the gene coding
weight function has no effect on the fitness function. For the
second type of experiments, ϖ1 � 1,ω2 � 1, ω3 � 0,
according to the different values of β to do three groups of
experiments, the results show that the recognition accuracy
of 1 − β � 0.6 is the best, which shows that the larger the β
value is, the lower approximate cardinality will be larger,
then the relative accuracy will increase. For the third type of
experiments, 1 − β � 0.6, ω value is increased to achieve the
best fitness function, in order to achieve the best results. +e
experimental results show that the recognition accuracy is
better than the others when the weight value is {2, 1, 0}, so it

is better to solve the problem by increasing the proportion of
attribute dependency. +rough the above experiments, it is
shown that the high-dimensional feature selection algorithm
based on genetic algorithm and variable precision rough set
can solve the multiobjective optimization problem well.
However, when the fitness function and its parameters are
applied in the specific application, it is necessary to analyze
the specific problems.
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