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Genomic signal processing (GSP) is based on the use of digital signal processing methods for the analysis of genomic data.
Convolutional neural networks (CNN) are the state-of-the-art machine learning classifiers that have been widely applied to solve
complex problems successfully. In this paper, we present a deep learning architecture and a method for the classification of three
different functional genome types: coding regions (CDS), long noncoding regions (LNC), and pseudogenes (PSD) in genomic
data, based on the use of GSP methods to convert the nucleotide sequence into a graphical representation of the information
contained in it. +e obtained accuracy scores of 83% and 84% when classifying between CDS vs. LNC and CDS vs. PSD, re-
spectively, indicate the feasibility of employing this methodology for the classification of these types of sequences. +e model was
not able to differentiate from PSD and LNC. Our results indicate the feasibility of employing CNN with GSP for the classification
of these types of DNA data.

1. Introduction

In molecular biology, the genome is the complete genetic
information of an organism. +e genome, in the form of
DNA, is a relatively large molecule strung by a series of
nucleotides arranged in particular manners for every or-
ganism, granting the sense that such arrangements and
patterns are the information that determines it. A genome is
capable of defining an organism due to numerous processes
that involve reading small DNA fragments of the genome to
enable the cells to compile new molecules, such as RNA or
proteins.+e resultingmolecules will exert various functions
in the cell, from transforming their surroundings into energy
and more cells, sensing the environment, moving, and self-
regulating all of the abovementioned procedures. +is last
function holds particular relevance, for it gives the system
flexibility, adaptability, and robustness while approaching
near-optimal performance at steady state. At the same time,

regulation complexity is directly related to the organization
state of an organism. For example, mammals have greater
regulation complexity than insects, and both, than bacteria.

+e organisms display a myriad of genomic functions.
+e most widely known genomic function is the coding
regions (CDS). +ese are sequences that, after transcription
and maturation into mRNA, will encode for proteins and
therefore share very few characteristics: codon modulus and
some motifs for particular protein families.

A couple of decades ago, it was still believed that mRNAs
were the only transcription products worth studying.
However, recent studies have proven the opposite, uncov-
ering several regulatory transcription functions. Some of
these functions are performed by long noncoding RNAs
(LNC) and pseudogenes (PSD). Long noncoding regions are
highly heterogeneous [1] transcribed regions >200 bp that
exhibit similar characteristics as mRNA (e.g., poly-
adenilation and splicing [2]), yet they have mainly been
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shown to influence transcription rate by cis- and trans-acting
over different genes [3]. Furthermore, nuclear structural
functions have been attributed, with the ability of LNC to
scaffold [4] and guide DNA localization [5], and in the
cytoplasm, LNC interacts with other RNAs to regulate their
decay, CDS translation rate, and protein signaling [6]. Many
of these functions require that (at least) part of the LNC
region to be homologous or complementary to its CDS
target.

Other DNA regions similar to LNC are PSD. +ese are
regions with high homology to CDS that have lost their
capacity to translate and code for proteins [7]. Some of them
may transcribe, and such regions will usually interfere with
their homologous CDS in the RNA regulation network,
altering the latter’s decay or translation rate [8].

Given the fact that this is a complex, self-encoded, self-
regulating system, a great deal of effort has been put in
understanding whether there exist information patterns
governing each functional type, and if so, whether can we
identify them and differentiate from other functional types.
To answer these questions, several tools have been used;
among them, digital signal processing (DSP) provides a set
of novel and useful tools for solving highly relevant
problems.

Genomic signal processing (GSP) is a field of bio-
informatics that is based on the use of digital signal pro-
cessing methods for the analysis of genomic data [9]. GSP
provides a set of novel and useful tools for processing and
understanding of the vast information that is currently
available in sequenced genomes frommany living organisms
[10]. GSP methods rely on a procedure that consists of
mapping the data originally in the form of a string of
characters (e.g., A, T, C, and G, for DNA) to a numeric
representation that can be processed using numeric algo-
rithms deployed on digital systems such as computers or
digital signal processors. Many mapping methods have been
proposed [11–13] for different applications that include the
classification of exon and intron sequences [14], the com-
parison of alignment-free genetic distances [15], the clus-
tering analysis of species [16], the classification of viruses
[17], the classification of gene sequences as diseased or
nondiseased state [18], and fast genome classification at
different taxonomic levels [19]. +rough the use of GSP, it is
possible to generate alternative representations for the in-
formation contained in the DNA sequences. However, due
to the high complexity of this data, the analysis of such
information is a challenging task.

Deep learning is an area of computer science that at-
tempts to replicate the way that human brains learn by
creating and training artificial neural networks. Deep
learning has rapidly become the most successful of the
machine learning methodologies for solving classification
tasks. +e success of deep learning in comparison with other
approaches is because deep learning allows the generation of
computational models that are composed of multiple pro-
cessing layers that are capable of learning representations of
data with multiple levels of abstraction [20].

In particular, the convolutional neural networks (CNN)
have become the leading deep learning architecture for most
image recognition, classification, and detection tasks [21].
While there exist many variants of CNN, in general, they
consist of many convolutional and pooling layers stacked on
top of each other followed by dense fully connected layers.
+e convolutional layers accomplish the function of
extracting relevant feature representations from the input
image data. On the other hand, the pooling layers reduce the
spatial resolution of the convoluted images to achieve spatial
invariance and reducing the complexity of the network.
Finally, the fully connected layers perform the classification
of those features extracted by the convolution modules.
CNN have been widely applied to successfully solve many
problems including the classification of objects in images
[22], human actions recognition [23], large-scale video
classification [24], face detection [25], image style transfer
[26], volumetric image segmentation [27], and several
medical image analysis applications [28]. Moreover, CNN
have been successfully applied to detect faulty components
based on the use of signal processing techniques to feed the
network [29–31].

In this paper, we present a methodology based on GSP
and deep learning for the classification of three distinct
functional genome types: coding regions, long noncoding
regions, and pseudogenes. +e proposed methodology con-
sists of converting the DNA nucleotide sequence into a
graphical representation of the information contained in it
(i.e., spectrogram) and the implementation of a CNN to create
a model capable of discriminating between coding and long
noncoding regions and coding regions and pseudogenes. We
obtained an accuracy scores of 83% and 84% when classifying
between CDS vs. LNC and CDS vs. PSD, respectively. Our
results indicate the feasibility of employing this methodology
for the classification of these types of sequences.

2. Materials and Methods

Given a DNA sequence S of length L, where
S[j] � A,T,C,G, this is mapped into a numeric represen-
tation 􏽢S using the Voss representation [32] which consists of
generating four vectors 􏽢Si with i ∈ [A,T,G,C], where

􏽢SA[j] �
1, if S[j] � A,

0, otherwise,
􏼨

􏽢SG[j] �
1, if S[j] � G,

0, otherwise,
􏼨

􏽢SC[j] �
1, if S[j] � C,

0, otherwise,
􏼨

􏽢ST[j] �
1, if S[j] � T,

0, otherwise.
􏼨

(1)

For example, for the sequence S � AACTGT the cor-
responding Voss vectors are 􏽢SA � [110000], 􏽢SC � [001000],
􏽢ST � [000101], and 􏽢SG � [000010].
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Since each of the vectors 􏽢Si can be seen as a digital signal
that represents the patterns of occurrence of its corre-
sponding nucleotide type, it is possible to perform a fre-
quency analysis of each of those signals by estimating the
power spectra of the signal by using a short-time Fourier
transform (STFT) analysis [33].

STFT consists of dividing the input signal into shorter
segments of equal length and then computing the Fourier
transform on each of the short segments. +e resulting data
is concatenated to generate a matrix with the frequency
component’s strength with respect to the length of the
original signal. +is matrix is commonly converted into a
color image by applying a color palette which represents the
intensity of each frequency component.

In this work, we generated a single signal vector 􏽢Z by
concatenating the four signals 􏽢Si. +en, we performed STFT
analysis on 􏽢Z using a sliding window of size W with O

overlapping points between consecutive sliding windows. As
a result, we obtained the matrix M which is converted to an
image that represents the repetition patterns of the nucle-
otides (i.e., spectrogram) by performing a normalization of
the values of M which then are converted to indexes of a
“Jet” color palette (e.g., Figure 1).

To classify the generated spectrograms, we created a
18-layer CNN with an architecture based on the use of
four stacked inception type A modules with a structure
similar to the one proposed in the Inception V3 model
[34].

+is model allowed us to capture the power of the
original inception architecture without its high complexity,
which is unnecessary considering that we are dealing with a
binary classification problem instead of the 1,000 categories
of the ImageNet database [35] for what this model was
created. Figure 2 depicts a diagram of the proposed CNN
architecture. In the first layers, we employed seven con-
volutional layers with max pooling that allowed to extract
features from the spectrograms while reducing the size of
the data to analyze. +en, we stacked four Inception V3
modules that allowed the network to learn the complex
patterns in the spectrogram features at different levels of
depth. +e two first inception layers have a depth of 256
convolution filters while the second two reduce the di-
mensionality of the features to 128 filters. Finally, we
employed three layers of fully-connected neurons to
classify the features extracted in previous layers. Finally, we
added an output layer with two neurons. In total, the
proposed network consists of 22,179,500 trainable pa-
rameters. Table 1 lists the details of the proposed network
architecture.

+e network was trained using a stochastic gradient
descent optimizer with a learning rate of 1 × 10− 5, support
for the momentum of 0.9, and a learning rate decay of
(01/100).+e loss function used for training the model is the
binary cross entropy. Additionally, we employed a reduction
of the learning rate on a plateau whenever the reduction in
the validation loss was less than 1 × 10− 4 for more than five
consecutive epochs.

3. Results

We collected DNA sequences from the NCBI FTP database
(ftp.ncbi.nlm.nih.gov/genomes/refseq/assembly_summary_r-
efseq.txt) corresponding to CDS, LNC, and PSD of not closely
related species with a very high frequency of fragments of at
least 1,000 bp. From these, we randomly selected 15,000
fragments of 1,000 bp for each type, including all species
listed.

We generated a set A consisting of 10,000 spectro-
grams of CDS and LNC sequences (5,000 for each type)
employing Python’s Matplotlib library using windows of
size W � 512 with an overlap of O � 500 samples. +en,
the spectrogram images were resized to 224 × 224
through bilinear interpolation. +e CNN model was
trained during 50 epochs with a batch size of 50 images.
Eighty percent of the set A was used for training the
model on each epoch, and the rest was used for validation
during the training.

Figure 3 depicts the loss function value and the model’s
accuracy with respect to the epoch. Note that the model
learns rapidly the image spectrogram patterns during the
first epochs for each class, obtaining an accuracy score of
around 80 percent. However, the model performance on the
validation set oscillates during more than twenty-five epochs
to finally converge to a stable value. A set of 20,000 never
seen DNA spectrograms were generated for testing the
model (10,000 for each class). +e weights that obtained the
best loss function value during the training were employed
for the classification of this dataset. +e accuracy obtained
using the proposed model was 0.83 with a F1 score of 0.84.
Table 2 lists the confusion matrix scores for each classifi-
cation result type.

Next, we generated a second set B consisting of the
previously employed 5,000 CDS samples and 5,000 more
samples of PSD sequences using the same parameters
employed for the previous CDS vs. LNC model. Figure 4
depicts the loss function value and the model’s accuracy with
respect to the epoch. Note that the model reached a high
score in the validation during the first epochs, which is
maintained during the whole training process with a con-
vergence after the 50 epochs. One more time, we tested the
model with a set of 20,000 never seen DNA spectrograms
(10,000 for each class). In this experiment, we obtained an
accuracy score of 0.84 with an F1 score of 0.85. Table 3 lists
the confusion matrix scores. Note that the proposed model
was able to correctly classify the majority of the sequences in
the set, with a slightly higher score than in the case of CDS
vs. LNC.

Finally, we generated a third set C consisting of the 5,000
LNC and the 5,000 PSD sequences previously employed in
sets A and B, respectively. Figure 5 depicts the loss function
value and the model’s accuracy with respect to the epoch.
Note that the model was not able to make the validation
curve to converge after the 50 epochs. We can note that the
model is overfitting since it has high accuracy on the training
set.
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4. Discussion

In recent years, the study of LNC has grown in number and
detail. Previous studies have shown that as far as 68% of the

human transcriptome is classified as LNC [36]. Ever since it
has been revealed that around 94% of human DNA tran-
scribes into RNA [37], these functions have been extensively
studied, specially LNC sequences in humans with useful

ATGGCGTTAGCTTCGGATTCGAATCGGATCGGATTCGATCGT

SA = [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 ]
SG = [0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 ]
SC = [0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0]
ST = [0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1]

Overlap

Sample

Fr
eq
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nc

y

Z = [1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1]

Figure 1: Diagram of the DNA sequence for spectrogram conversion procedure.
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Figure 2: Diagram of the proposed CNN architecture.

Table 1: Description of the layers for the proposed CNN architecture.

Type of layer Patch size Output size Number of Parameters
Input 3 × 3 224 × 224 × 3 0
Convolution 3 × 3 222 × 222 × 32 896
Convolution 3 × 3 220 × 220 × 64 18, 496
Max pooling 3 × 3 109 × 109 × 64 0
Convolution 1 × 1 109 × 109 × 80 5, 200
Convolution 3 × 3 107 × 107 × 192 138, 432
Max pooling 3 × 3 53 × 53 × 192 0
Convolution 3 × 3 51 × 51 × 64 110, 656
Convolution 3 × 3 49 × 49 × 90 51, 930
Convolution 3 × 3 47 × 47 × 192 155, 712
Max pooling 3 × 3 23 × 23 × 192 1
Inception 3 × 3 23 × 23 × 768 1′918, 464
Inception 3 × 3 23 × 23 × 768 2′360, 832
Inception 3 × 3 23 × 23 × 384 590, 464
Inception 3 × 3 23 × 23 × 128 443, 008
Average pooling 3 × 3 9 × 9 × 48 0
Fully connected 1 × 1 × 512 15′925, 760
Fully connected 1 × 1 × 256 131, 328
Fully connected 1 × 1 × 128 32, 896
Softmax 1 × 1 × 2 258
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Figure 3: Training curves for datasets CDS and LNC during 50 epochs. (a) Model loss. (b) Model accuracy.
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applications. For example, the presence, frequency, and
types of LNC and PSD in various human tissues are being
developed as markers for cancer diagnosis and prognostics
[8, 38].

According to Kopp and Mendell [3], LNC sequences do
not perform sequence-specific functions which would

explain their high heterogeneity. However, many of the
several functions that have been attributed to LNC-cis-trans-
regulation, miRNA sponge, seem related, partially at least, to
sequences. +e same observation could also explain PSD
variability as they are currently considered as subfunctions
of LNC. In this work, we attempted to distinguish between

Table 3: Confusion matrix obtained on the test dataset for testing CDS and PSD sequences.

Predicted CDS Predicted PSD
True CDS 8,804 1,196
True PSD 1,835 8,165

Table 2: Confusion matrix obtained on the test dataset for testing CDS and LNC sequences.

Predicted CDS Predicted LNC
True CDS 9,058 942
True LNC 2,358 7,642
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Figure 4: Training curves for datasets CDS and PSD during 50 epochs. (a) Model loss. (b) Model accuracy.
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Figure 5: Training curves for datasets LNC and PSD during 100 epochs. (a) Model loss. (b) Model accuracy.
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these types of sequences by analyzing the frequency patterns
using a deep learning classifier. However, from the obtained
results during model training, we cannot verify that these
differences exist as in the cases of CDS vs. LNC or CDS vs.
PSD, and therefore, it is feasible that the intrinsic sequence
heterogeneity has no particular frequencies.

When comparing CDS vs. PSD, we obtained the highest
accuracy corroborating the spectral and functional diver-
gence between both sequences. +ese sequences are the
result of genomic homology analysis and annotation against
CDS, but with premature stop codons and other typical
regulatory sequences. Further transcriptome analysis cor-
roborates either their low expression profile or differential
expression against its CDS counterparts. Some of the best-
described PSD functions include miRNA sequestering and
antisense effects to regulate mRNA decay and translation
rate. Being part of other biological functions (i.e., CDS
produce proteins while PSD regulates mRNA), even when
many of the PSD depends on their CDS, they are under
different evolutionary pressures, and thus, they will mutate
and diverge at their own rate, resulting in high PSD vari-
ability that the proposed deep learning model was able to
distinguish from CDS.

Other studies have used deep learning methods to
identify LNC.Most of them have focused on human lncRNA
identification [39, 40] and have used full or k-mer sequence
data and other features, such as function annotation and
dimensional representations [41], secondary structure and
ORFs [42, 43], or nuclear location [44]. However, to the best
of our knowledge, this is the first deep learning model that is
capable of identifying LNC using frequency information
solely.

+e main advantage of employing a deep learning ap-
proach in comparison with other machine learning classi-
fiers rely on the ability of the convolutional neural network
to automatically extract the best features that allow achieving
a good performance in the classification of the selected type
of sequences. For this reason, it is very common that re-
searchers employ existing successful architectures such as
Inception V3 or Inception-Resnet V2 to perform classifi-
cation tasks. However, many of these networks were con-
ceived to perform classification on data with a large number
of labels. +erefore, these architectures are very deep (i.e.,
have many layers) which translates into a more considerable
complexity of the network and a more significant number of
parameters to optimize and, therefore, larger training times.
In this work, we built our convolutional deep learning
classifier inspired by the inception modules which have
proved to be very good to extract features from the image
data. In our experiments, the four inception modules, along
with the proposed convolutional and fully connected layers,
allow us to achieve a good performance in the classification
task using the computed sequences spectrograms.

While our results indicate a performance of around 80%
accuracy for both classifiers that may be very useful for many
applications regarding automatic detection of coding re-
gions in DNA or the understanding of the relationships
between LNC, PSD, and CDS sequences, we believe that this
relative low accuracy is due to high similarity in the patterns

of some sequences that are difficult to differentiate for the
proposed network architecture. We believe that this value
could be increased by others employing other deep learning
architectures; however, that is a subject of future work.
Additionally, it may be possible to generate deep learning
models for the classification of other interesting functional
genome sequences such as miRNA or snRNA. However, the
dataset’s imbalance related to human genome overrepre-
sentation remains an issue that will fade as nonhuman data
becomes available.

5. Conclusion

We have presented a methodology for the classification of
coding regions, long noncoding regions, and pseudogenes
based on the use of GSP for converting the DNA nucleotide
sequence into a graphical representation of the information
contained in the DNA sequences which are later classified
using a convolutional deep learning model. +e obtained
accuracy scores of 83% and 84% when classifying between
CDS vs. LNC and CDS vs. PSD, respectively, indicate the
feasibility of employing this methodology for the classifi-
cation of these types of sequences.
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