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We study the local dynamical properties, Neimark-Sacker bifurcation, and hybrid control in a glycolytic oscillator model in the
interior of R2. It is proved that, for all parametric values, Py, (af (B+ o?), ) is the unique positive equilibrium point of the
glycolytic oscillator model. Further local dynamical properties along with different topological classifications about the equi-
librium Py, (a/ (B + o?), ) have been investigated by employing the method of linearization. Existence of prime period and
periodic points of the model under consideration are also investigated. It is proved that, about the fixed point P, (a/ (B + o?), a),
the discrete-time glycolytic oscillator model undergoes no bifurcation, except Neimark-Sacker bifurcation. A further hybrid
control strategy is applied to control Neimark-Sacker bifurcation in the discrete-time model. Finally, theoretical results are

verified numerically.

1. Introduction

In glycolysis, glucose decomposes in the presence of
various enzymes including ten steps in which five are
termed the preparatory phase or phosphorylation, while
the remaining steps are called the pay-off phase. Phos-
phofructokinase is one of the enzymes which is responsible
for the occurrence of glycolytic oscillation [1-4]. This step
is considered the control unit of glycolysis due to the
presence of enzyme phosphofructokinase. A biochemical
reaction that occurs in metabolic systems has the following
sequence of steps [5]:

Glucose GGP FGP PFK FDP

N
ATP  ADP

Products

(1)

where the quantities involved in the above biochemical
reaction are depicted in Table 1.

Generally, it is assumed that the enzyme PFK consists of
two steps as given below. Among these, in one step,

adenosine diphosphate simulates the allosteric regulatory
enzyme and yields a more active form. Therefore, the
product formed during the reaction mediated by phos-
phofructokinase increases the rate of reaction. The sys-
tematic description of the kinetics is as follows:

+
Glucose GGP FGP ADP + Products
(2)
and we have
dx 2
—=a-Px—-xy’,
& Bx —xy
(3)
dy

5 By -y,

where x,, and y, denote FGP and ADP, respectively, and
aand f are positive constants. Using the nonstandard finite
difference scheme, the discrete analogue of the glycolytic
oscillator model, which is depicted in (3), is
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TaBLE 1: Quantities along their chemical interpretation.
Quantities Corresponding chemical interpretation
GGP Glucose-6-phosphate
FGP Fructose-6-phosphate
FDP Fructose-1,6-diphosphate
PFK Phosphofructokinase
ATP Adenosine triphosphate
ADP Adenosine diphosphate

_ ah+x,
M T hB+ hy?
(4)
_ Yut hpx, + hx,y;
Ynr1 = 1+h .

Here, our purpose is to explore the local dynamics, N-S
bifurcation, and hybrid control in a glycolytic oscillator
model (4) in the interior of R%. Specifically, our key findings
are as follows:

(1) About the unique +ve fixed point PJr (af (B +a?), ),
we explored the dynamical propertles along with
different topological classifications.

(2) We explored the existence of bifurcation about
Py, (o (B+ a?), ).

(3) Prime period and periodic points of the glycolytic
oscillator model (4) are investigated.

(4) To prove, the glycolytic oscillator model (4) un-
dergoes an N-S bifurcation when parameters vary in
a small neighborhood of PJr (a/ (B + &*), &), and no
other bifurcation occurs except the N-S bifurcation.

(5) The N-S bifurcation is controlled by the hybrid
control strategy.

(6) Theoretical results are verified numerically.

The flow pattern of the remaining of this paper is as
follows: Section 2 is about the existence of the unique +ve
equilibrium point and corresponding linearized form of the
glycolytic oscillator model (4). In Section 3, we study the
local dynamical properties with topological classification
about P+ (af (B + a?), &) of the glycolytic oscillator model
(4), whereas existence of prime period and periodic points of
model (4) is explored in Section 4. The comprehensive N-S
bifurcation analysis about P} (oc/ (B+a?),a) is given in
Section 5. In Section 6, 51mulat10ns are presented to verify
theoretical results. In Section 7, a hybrid control strategy is
applied to control N-S§ bifurcation. Concluding remarks are
given in Section 8.

2. Existence of the Unique +ve Equilibrium
Point and Corresponding Linearized Form of
the Glycolytic Oscillator Model (4)

The existence of the +ve fixed point in the interior of R? and
corresponding linearized form of the glycolytic oscillator
model (4) are explored in this section. More specifically, the
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existence result about the equilibrium point can be sum-
marized as follows.

Lemma 1. V parametric values aand f3, the discrete-time
glycolytic oscillator model (4) has a unique +ve equilibrium
point P} (a/ (B + o?), ).

Now, the linearized form of the glycolytic oscillator
model (4) about P, (x,y) under the map (¥,¥,) —
(X,41> Yns1) becomes

An+1 =]|ny (x,y)An’ (5)

where
1 —2yh(x + ah)
L+h(B+)?) (1+h(B+y?)
]|Pw(x,y) = ’
h(B+ y*) 1+ 2hxy
1+h 1+h (6)

v ah + x,
YU+ B+ hy?
Y+ hPx,, + hx,y,

\Il:
2 1+h

3. Local Dynamical Properties of Model
(4) about P} (a/ (B+ a?), &)

The local dynamics about Py, (af (B + a?),a) of the glyco-
Iytic oscillator model (4) is explored in this section.
]IP;y(a, (Brat)a) abOUL PT (af (B + a?), &) is

1 - 20%h
1+h(B+a?) (2+B)(1+h(B+a?))
Tlp:, (ot (Bra2)) =
h(B+a?) o + B+ 2ha?
1+h (B+a*)(1+h)
(7)
The auxiliary equation of ]| P (al (B+a2)0) about

(oc/ (B+a?),a) is

o
/\ —p(m, (x)l+q<m,oc) =0, (8)
where

b (/5+ > -
q(/ﬁwl’“) )

(1+h)(B+a?)+(a* +p+2ha*) (1 +h(a? +[3))
(T+h(a®+p)(1+h)(B+0a?)

o + B+ 2ha? + 2h%a* (a* + fB)

(L+h)(a2+B)(L+h(f+a?))

9)
And eigenvalues of ]| P (af (B+a2),0) about P} y (af (B+ o?), a)
are
2
AIZ_P(“/(ﬂJr‘XZ) a) + \/_ (10)



Mathematical Problems in Engineering
where
o : o
A=(p(+—, ~4q( —,
(t(5re)) ~lsere)

:((1 +h)(ﬁ+¢x2)+(a2+ﬂ+2h(x2)(1+h(a2+/3))>2
(I+h(a®+p)(1L+h)(B+a?)

. o + f+ 2ha* + 2h*a* (o? + B)
(1+h)(a>+B)(L+h(B+0a?)))
(11)
Hereafter in the following, we will explore the necessary
and sufficient condition under which P;y (af (B + &%), @) of

the glycolytic oscillator model (4) is a sink, a repeller, a
saddle, and nonhyperbolic.

Lemma 2. For Py (a/ (B + a?), a) of the glycolytic oscillator
model (4), the following holds:

(i) Py, (a/ (B + a?),q) is a sink iff

[(1+h)(B+a?) +(a? + B +2ha?) (1 +h(a +p))]
| (1+h(a? +B)) (1 +h)(B+a?) |

(12)
1o o + + 2ha’ + 2h%a? (o* + B) p
(L+h)(a?+B)(L+h(f+a?))

(ii) P}, (a/ (B + a?),q) is a repeller iff

o + B+ 2ha? + 2h*a? (o? +ﬂ)|>
(L+h)(a?+p)(1 +h(ﬁ+oc2))|

1

(1+h)([3+¢x2)+(¢x2+ﬁ+2ha2)(1+h(oc2+[5))| (13)
(1+h(a2+B))(1+h) (B +a?) |

‘ B o? +ﬁ+2hrx2+2h2a2(o¢2+ﬂ)|
(1+h)(a®+B)(1+h(B+a?))|

(iii) Py, (a/ (B + o?),a) is a saddle iff

<(1+h)([3+oc2)+(oc2+ﬁ+2hoc2)(1+h(¢x2+[3))>2
(1+h(a®+p))(1+h)(B+a?)

o + B+ 2ha? + 2k (o* + B)
+4<1‘ (1+h)(a2+[3)(1+h(/3+a2))>>0’

(1 +h)(B+a?)+(a® + B +2ha?) (1 +h(a? +ﬁ))|
| (T+h(a2+p)A+h)(B+a?) |

- o + B+ 2ha’ + 2h*a? (o +8)|
(1+h)(a?+pB)(1 +h(/3+oc2))|'

> |1

(14)

(iv) P;y (a/ (B + a?), a) is nonhyperbolic iff

[(1+h)(B+o?) +(a® + B +2ha®) (1 +h(a® +B))|
(1+h(a2 +B))(1+h)(B+a?) |
i a2+ﬁ+2ha2+2h2a2(o¢2+[3’)|
- (1+h)(a2+B)(1+h(B+a2))

(15)

Proof. Follows from Theorem 1.1.1 of [6].

Hereafter in the next lemma, we will explore local dy-
namics along with topological classification about P! («f
(B+a®),a) if A= (((1+h)(B+a®)+ (a®+p+2ha®)(1+
h(a? + BN/ (1 +h(a?+B)(1+h)(B+a2)* —4((a® +p +
2ha? +2h2a? (o + P/ ((1+h) (& + f) (1 + h(B + a?)))) <0,
of the glycolytic oscillator model (4). O

Lemma 3. IfA= ((1+h) (B+a*) + (a® + B +2ha®) (1 +
h(a? +B))/ (1 +h(a?+B)(1+h)(B+a2))* —4((a® + B+
2ha? + 2h%a? (o + )/ (L + h) (o + B) (L + k(B +a?)))) <
0, then for P, (a/ (B + o), a), the following holds:

(i) P;y((x/ (B+a?),a) is a locally asymptotically stable
focus if
o + f+ 2ha* + 2h*a* (o® + B)

(1+h)((x2+ﬁ)(1+h(ﬁ+az))<1- (16)

(ii) P;y(oc/(/} +a?), ) is an unstable focus if

o’ + B+ 2ha’ + 2h*a* (o® + B)
(1+h)(a®+B)(1+h(B+a?))

> 1. (17)

(iii) P, (a/ (B + a?), a) is nonhyperbolic if

o + B+ 2ha’ + 212’ (o + )
A+h)(e2+pf)(1+h(B+a?))

Hereafter, we will establish that P (a/ (8 + a?), a) of (4)
is the periodic point of prime period —1. Moreover, equi-
librium P, (a/ (B + a®),a) is the periodic point having
period -2,3,...,n.

1. (18)

4. Existence of Prime Period and Periodic
Points of (4)

Theorem 1. P;y (a/ (B + a?), &) of the model (4) is a periodic
point of prime period —1.

Proof. From (4), we define

F(x) )’) = (f(x> y)’g(xs }’))> (19)
where
(x.y) = ah + x
T =gy
(20)
h hxy?
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(22)

o + B+ 2ha* + 2h*a? (o + )

4
After manipulation, from (19), one gets Theorem 2. P, (a/ (B + a?),a) of the glycolytic oscillator
o model (4) is a periodic point of period =2,3,...,n.
Fpe (o (B+a2).) :P;y(—z,tx). (21)
xy ’ f+a
Proof. From (19), one has
From (21), one can conclude that P;y (af (B + a?), @) of
(4) is a periodic point of prime period —1. |
F(x, y) = ah+ flxy) gy +hpf(xy) h(f (x,3)g(x, )
’ 1+hB+h(g(x,y)* 1+h 1+h
2 _ pt a
= Fpt (a(prar)a) = Py B+ 2%)
Fxy) = ah+ f2(xy) g luy) +hBfP(xy) h(f*(x ) (g (x, )’
’ 1+hB+h(g*(x, y)*) 1+h 1+h
F} =P (2
= Pt (of (Bra2)x) ~ T xy B+ az’“ >
F(x,y) = aht+ f7l(xy) g ) +hBfT () h(f= (x 9)g " (%, 9))
Y L+hB+h(g" (x, ) L+h 1+h
i _ pt a
= FP;y (af (B+a?).a) — ny B+ “2’“ :
From (22), P}, (a/ (B + o?), @) of (4) is a periodic pointof 5, Bifurcation Analysis about
period -2,3,...,n. |

P} y (af (B +a?), a) of the Glycolytic Oscillator
Model (4)
Recall that if (18) holds, then [, ,| ;5 = 1, which implies that

the glycolytic oscillator model (4) undergoes N-S bifurcation
if parameters h, a, and 8 go through the curve:

N=SBpy (a (prac)a) = {(’1’ B T m (o + B (L+ h(B+ad))

Hereafter, we will give detailed N-S bifurcation about
Py, (ol (B + a?), &) when parameters h, a, and 8 go through
the curve, which is depicted in (23), by using bifurcation
theory [7, 8]. For given parameters /i, o, and 3, let

F(hap) = o’ + B +2ha’ + 207’ (o + B)
—(1+ (o +B)(1+h(B+a)).

After simplifying (24), one gets

(24)

F(hyap) = +ha'* =g -2 -p-fh-a'. (25

=1, h,(x,ﬁ>0}. (23)

From (25), one gets OF (h, a, 5)/0f <0. So, by implicit
function theorem, one can obtain 5= f(h,«a) such that
F(h,a,B(h,a)) =0 and hence choose 3 as a bifurcation
parameter. Now, consider 8 in a small neighborhood of *,
ie, f=p" +¢ where e <1 and hence the glycolytic oscil-
lator model (4) becomes

N ah + x,,
LT+ h(BF +e) + hy?

(26)
_ Yut+h(B +e)x, +hx,y;
mel 1+h ’
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where P’r (af (B* + e+ a?),a) be its unique positive fixed
pomt Moreover ]|P+ (a/ (B +erat)e) aDoOUL the fixed point
(@l (B +e+ o?), ) of (26) is

1 - 2a*h
1+h(f"+e+a?) (@2+p +e)(1+h(B" +e+a?))
]lP;y (ar (B +e+a?)a) = . (27)
h(B" +e+a?) o’ + " + e+ 2ha?
1+h (B +e+a?)(1+h)
A= p(er+q(e) =0, (28)
The auxiliary equation of ]| P (ol (B'+erad)a) about Pl +q(
((x/ (B" +e+a?),a) is where

a C(L+h) (B e+ a?)+ (o + B +e+2ha’) (1+h(a® + B +¢))
p(ﬁ +e+a? >_ (1+h(a?+B" +e)(1+h) (B +e+a?) ’
(29)

a &+ " +e+2ha’ + 20 (o + BT +¢)
N vera” ) " Uen)(@+p +e)(1+h(f +e+ad))

The zeroes of (28) are

N CET . ICRy A0
1,2 —

2

_ (T+h) (B +e+a®)+(a®+p" +e+2ha®)(1+h(a®+ B +¢))/ (L+h(a*+B +€)(1+h) (" +e+0a?)) (30)
2

ié\/E,

where

A" =4 o + B + e+ 2ha? + 2k (o + 7 +¢) (L+h)(B* +e+a?) + (a2 + B +e+2ha?) (1+h(a®+ B +¢)\
B ((1+h)(¢x2+ﬂ*+s)(1+h(ﬁ*+e+¢x2))>_< (1+h(a2+p* +&)(1+h) (B +e+a?) >

(31)
Mool = (g(en™,

djA (32)
dlhod| #0.

d£ e=0

Additionally, it is required that AT, #1,m=1,...,4, B ah +u, +x* o
which is equivalent to p(0)# —-2,0,1,2, and hence by n+l 1+h(B* +¢) +h(vn+y*)2 >
manlpulatlon it is true. If u, = x, — x*,v, = y, — y*, then (33)

(@ (B +e+ a?),a) of the glycolytlc oscillator model Vot y* +h(u, + x*)(ﬁ* +e+ (v, + y*)z) .

(26) transforms into Py, (0, 0). So Vil = 1+h A



where x* = a/(f+a?)and y* = a. Hereafter, the normal
form of (33) is studied if ¢ = 0. By Taylor series expansion
about (u,,v,) = (0,0), from (33), one gets

2 2
U, = ani, +apv, +apu,v, +ayv, + 0<(|un| +|Vn|) );

2 2
Vel = Qo Uy, + AxV, + aysU,V, + dyyV, + O(('Mn| +|Vn|) ),

(34)
where
L 1
R EVICSES)
_ —2hy* (x* + ha)
alZ - 1 +h(ﬁ* +y*2))
—2hy*
413 = . 2
(L+h(B"+y))
h(x* +ha)(=(1+hp* + hy*") + 4y*'h)
G4 = . > »
(1+h(ﬁ +y* ))3 (35)
h(B* +y*)
R T
1+ 2hx* y*
A
2hy*
hx*
0124 = m

Hereafter, one contracts the following invertible matrix
T that puts the linear part of (34) into the canonical form:

T::( G2 0 > (36)
n—ay; —C

where
_(L+h)(B+a?)+(a® + f+2ha?) (1 +h(a® + )
- 2(1+h(a?+pB))(1+h)(B+a?) ’
(=5 VA,
(37)
and A" is depicted in (31). Hence, (34) then implies
X, =nX,-(Y, +P,
n+l ’7 n { n + (38)

Yn+1 = CXn + 17Yn + 6’
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where
P(X,.Y,) =1, X2+ 1,X,Y, + 1,y + o<(|X,,| +|Yn|)2>,

Q(X,.Y,) = 121X721 +1p XY, + 123)/;21 + 0((|Xn| +|Yn|)2)’

(39)
in which
-a
L= 1= [ana15 + a4 (n—ay)l,
12
liy = = [apa; +2a1, (1 - ayy)],
ai
a
l = icz)
I,
n—a
by = [(’7 = an) (a1 (a13 = ay) — A140) - aTZaB]’
(a,
n-a
Ly, = - . 1 [2(114 (1 =ay;) +ap(a; +2a,) + “23“%2]’
12

¢
by = . [a1C (17— a11) — a1285)
12

(40)

u, a, 0 X,
(-0 )
Vi 1 —=ayp _C Yn

From (39), one gets

by

PXan POO (0,0) = 2111,
Py.y, Py (0,0) has
PYnYn Py (0,0) =213,
(42)
QXan Py, (0,0) = 2121’
QX,,‘Y”P (0,0) 122’
QYnYn P0+0 (0,0) = 2123'

In order to ensure the N-S bifurcation for (38), it is
required that the following discriminatory quantity should
be nonzero ([7-14]):

1-201 1 _
QO =-Re {% 511520:| - 5”511“2 _||£()2”2 + Re(/lle),

(43)
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where

1,—
0 :g [Pxnxﬂ -

- B _ _
& ~2 [Pxx, + Pry, +(Qx.x, + Qry, )]

1,— — _ _
2 =3 [Pxnxn —Pyy +2Qxy + ’(QX,,X

1

521 :1_6

After manipulation, one gets

1
Epp = 3 (21 = Ly + 20, + 20(Ly + 115 = 13)],
1
&L= 3 [l + 1y + (D + 1))
(45)
1
§20 = 4 [y =l + Ly +0(ly = by = 1)),
£ =0.

From the analysis, one can conclude the following.

Theorem 3. If Q+0, then the glycolytic oscillator model (4)
undergoes N-S bifurcation about the fixed point:
Py (a/ (B+ a?),«) as parameters h, a, and B go through the
curve which is depicted in (23). Additionally, attracting
(resp., repelling) closed curve bifurcates appear from
Py, (a/ (B+ a?),a) if Q<0 (resp., Q>0).

According to bifurcation theory, the bifurcation is su-
percritical (resp., subcritical) N-S bifurcation if Q <0 (resp.,
Q> 0). In the subsequent section, simulations guarantee that
the glycolytic oscillator model (4) undergoes the supercritical
N-S§ bifurcation if h, o, and 3 go through (23).

Remark. The discrete-time glycolytic oscillator model (4)
cannot undergo any bifurcation, except N-S bifurcation,
about the positive fixed point P;y (af (B + a?), ).

6. Numerical Simulations

Theoretical results are verified numerically in this section.
For instance, if &« = 0.6, h = 0.7, then from (18), one gets f§ =
0.16105922820694768. Theoretically, equilibrium Py (a/ (B
+a?),a) of the glycolytic oscillator model (4) is a locally
asymptotically stable focus if f>0.16105922820694768,
ie, condition (16) holds. To see this, if f=0.4>

Py, +2Quy, +(Qx,x, = Quy, + 2Py, )]

bl
Pyy (0,0)

QYY

[PXYLXVIXVI + PXVIYHYYI + QXYIXYIYVI + QYVLYYIYYL + I(QXVIXHXYI + QXVIYYIYVI -

b
Py (0,0)

(44)

2Px,y,)]

bl
Py (0,0)

PXVIXVIYYL - PYVIYVIYYL)]

P4y (0,0)

0.16105922820694768, then the unique positive equilibrium
point P! (0.7894736842105263,0.6) of (4) is a locally as-
ymptotically stable focus (see Figure 1(a)). Similarly for
other values of f, if [>0.16105922820694768, then
P+ (af (B + a?), &) of (4) is a locally asymptotically stable focus
(see Figures 1(b)-1(1)). But if f< 0.16105922820694768,
then positive equilibrium P+ (a/ (B+a*),a) becomes an
unstable focus, i.e., condltlon (17) holds. Precisely, if
P <0.16105922820694768, then positive equilibrium Py (a/
(B+a?), ) loses its stability and meanwhile an attractmg
closed curve appears. The appearance of this closed
curve indicates that the glycolytic oscillator model (4)
undergoes a supercritical N-S bifurcation if «,f3, andh
vary in a neighborhood of P;y (a/ (B + &%), @). To see this, if
B =0.16<0.16105922820694768, then eigenvalues of
Tlps (isssasisssasissroe) about (1.1538461538461537, 0.6)
are

A, =0.615799684186781 + 0.32701963502171141.  (46)

After some manipulation, from (43), one gets
&y, = —0.007611881686547611 + 0.0242036871455765661,
&1 = 0.03740896019401933 — 0.1966375637334364,
&0 = 0.009013748156314753 — 0.05935131699406781,

& =0.

(47)
In view of (46) and (47), from (43), one gets
Q) =-0.029495873864781315<0. Hence, if S=0.16<

0.16105922820694768, then model (4) undergoes a super-
critical N-S bifurcation and so a stable curve appears, which
is depicted in Figure 2(a). Also for different choices of the
bifurcation parameter, if $<0.16105922820694768, then
one gets () < 0 (see Table 2), and corresponding closed curves
are depicted in Figures 2(b)-2(l). Moreover, the bifurcation
diagrams along with the maximum Lyapunov exponent are
plotted and drawn in Figure 3. Finally, 3D bifurcation di-
agrams are plotted and drawn in Figure 4.
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FIGURE 1: Trajectories of the discrete-time glycolytic oscillator model (4) about P¥ (af (B + a?), a): (a) B= 0.4 with (0.35, 0.39); (b) f=0.37

with (0.99, 0.80); (c) f=0.35 with (0.56, 0.49); (d) f=0.2965 with (0.1, 0.2); (e§

B=0.27 with (0.9, 0.8); (f) f=0.24 with (0.66, 0.67);

(g) B=0.22 with (0.5, 0.4); (h) B=0.2 with (0.4, 0.3); (i) B=0.19 with (0.59, 0.39); (j) f= 0199w1th (0.9, 0.7); (k) B=0.18 with (0.9, 0.7);

1) f=0.17 with (0.8, 0.7).

7. Control of N-S Bifurcation about
Py, (af (B+ a?), «) of the Glycolytic Oscillator
Model (4)

The hybrid control strategy is applied to control N-S bi-
furcation about Py, (a/ (B + a?), a) of the glycolytic oscillator
model (4) motivated from the work of [15-18]. The control
system corresponding to the glycolytic oscillator model (4) is

B ah + x,
Yl TN T hB + hy?

) +(1-o0)x,,

+ hBx, + hx, y>
Yur1 = C(yn ﬁl:h nyn) +(l _C)yn'

(48)

]|P+ (of (Bra?)) about Py, (a/ (B + a?), a) of the controlled
system " which is deplcted 1n (48), is
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1.4
1.2
1.0
Y, 0.8¢F
0.6+1 "
0.4
0.2

1.0 1.5 2.0 1.0 1.2 14 1.6 1.0

n

1.5 2.0

0) (k) M

FIGURE 2: Supercritical N-S bifurcation of the discrete-time glycolytic oscillator model (4) about P;y (af (B + 0?), a): (a) B=0.16 with (0.64,
0.62); (b) f=0.15 with (0.64, 0.62); (c) f=0.14 with (0.69, 0.6); (d) f=0.149 with (0.081, 0.072); (e) h = 0.1495 with (0.9, 0.8); (f) B =0.13 with
(0.98, 0.19); (g) f=0.139 with (0.99, 0.67); (h) B=0.12 with (0.91, 0.72); (i) f=0.1239 with (0.59, 0.35); (j) f=0.11 with (0.7, 0.5);

(k) B=0.1135 with (1.5, 0.5); (1) #=0.114 with (0.02, 0.03).

c 1e —2hca?
1+hp + ha? (@2 +B)(1+h(B+ )
]|P;y (oc/(ﬁ+u2),tx) = (49)
he (o + ) c(oc2+[3+2hoc2)+1_c
1+h (1+h)(B+a?)
The rest of this section deals with the study of N-S bi- [ 1-0.2669¢  -0.710407¢ 0
furcation of the controlled system (48) at h=0.7, ]IP;y(1'15362’0‘6) “\ 0.214159¢ 1+ 0.158261¢ (50)

B =0.1601 <0.16105922820694768, and @ = 0.6. In this
case, (49) becomes whose auxiliary equation is
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TABLE 2: Numerical values of Q if $<0.16105922820694768.

Value of fif g>1 Numerical value of Q

Mathematical Problems in Engineering

where p =2 - 0.108492c and g = 1 — 1.150755¢ + 1.152135¢7.
In view of Lemma 1 of [15], one gets

0.16 ~0.029495873864781315 < 0 2
015 0.024558009135300485 < 0 1 -(2-0.108492c) + 1 — 1.150755¢ + 1.152135¢” > 0,
0.14 ~0.025661100529415302 < 0 )
0.149 —0.02516944528172212 <0 1 - 1.150755¢ + 1.152135¢" = 1,
0.1495 ~0.02461170028243595 < 0
0.13 ~0.026828812841863014 < 0 (2 - 0.108492¢)” - 4(1 - 1.150755¢ + 1.152135¢” ) < 0.
0.139 ~0.025774885406930285 < 0
0.12 ~0.028066167307452507 < 0 (52)
0.1239 ~0.027574969477341914 < 0
0.11 —0.029378827673349428 < 0 Let ¢ = 0.998, then from (52), one gets
0.1135 ~0.028910444972707013 < 0
0.114 ~0.028844333111783357 < 0
M —pl+qg=0, (51)
1—(2-0.108492c) + 1 — 1.150755¢ + 1.152135¢* = 0.107354 > 0,
1 - (1.150755)c + (1.152135)c* = 1, (53)
(2 - (0.108492)c)* - 4(1 - (1.150755)c + (1.152135)c) = ~0.417687 < 0,
which hold true. Also, Jlp: (11536206 = (1.15362,0.6) in
terms of the bifurcation parameter  becomes
0.002 + 0.998 0.83832 (0.6 + 0.42(0.36 + f3))
' 0.252+0.78  (1.252 +0.78)*(0.36 + B)
Tley, (o (prat)a) = > (54)
0.587059 (0.864 +
0.410941(0.36 + ) 0.002 + ( P
0.36 + 3
(0.41916 + 0.998x,,)

whose roots are

A1, = 1.69341 + 3.559918 + 0.703363*
N (55)
2(0.766224 + 2.5568p + 1.198%)’

where

A" =(~1.69341 - 3.559916 — 0.703366%)"
— 4(0.224208 - 1.2023p — 1.1886f°) (56)
+(0.766224 + 2.55688 + 1.196°).

If 5 =0.1601, then from (32), one gets
djA,,|

= 3.82461 > 0. (57)
de

=0

From (57), the nondegenerate condition holds, and hence,
(48) undergoes N-S bifurcation at = 0.1601. In terms of
above chosen parametric values: f = 0.1601, a = 0.6, = 0.7,
and ¢ = 0.998, the controlled system (48) becomes

= 0.002x, + ,
e T 111207 + 0.72)

Vo1 = 0.002y,, +0.588235(0.6986x,, + 0.998y, + 0.7x,,y,),
(58)

whose fixed point is P;y (1.15362,0.6). Now, we transform
Py, (1.15362,0.6) into Py, (0,0) using the following
transformation:

u, = x, — 1.15362, (59)
v, =y, 0.6,

n
where (58) becomes
U, = 0.733634u,, — 0.967106v, — 0.450543u, v, — 0.154225v>
(R
Voo = 0.213731u,, + 1.15794v, + 0.493129u, v, + 0.474072v"

+ol (Ji] +[w)’)

(60)
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Maximum Lyapunov exponent

F1GURE 3: Bifurcation diagram and its corresponding maximum Lyapunov exponent of the model (4) about P;y (a/ (B + &%), @). (a, b) Bifurcation
diagram of the model if § € [0.1,0.29] and initial condition (0.74,0.62). (c) Maximum Lyapunov exponent corresponding to (a) and (b).

FiGure 4: Continued.
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F1iGure 5: Control results of N-S bifurcation of the glycolytic oscillator model (4) about P;y (af (B+0?),a)ifa =0.6,h =0.7,c = 0.998, and
B € [0.1,0.29].
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T=((P+Du+1)g+ 2)Y+1))/((J+ 2)0MHT+ oYz + g+ ,0)) Jt (san[eauadio xaidwod 10]) drjoqiadAyuoN
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Since the linear part of (60) is just as ]|P+ (of (B+a?)a) =
(1.15362,0.6) with eigenvalues,

A1, = 0.6185299315830337 + 0.4140823777730747t.  (61)

Now, (61) takes the following form:
X, 0.6185299315830337 —0.4140823777730747
Y - 0.4140823777730747 —0.6185299315830337

G)(as )

n+l

(62)
where
P(X,,Y,) = 0.0539722X> + 0.201764X,Y,,
+0.0273435y” + o<(|Xn| +|Yn|)2),
Q(X,,Y,) = ~0.17732X,, - 0.00184395X,Y,,

- 0.203906y, + o((anl +|Yn|)2)’

< u, ) ( —-0.9671063257065947 0 )
v, "~ \ -0.11510407546939039 —0.4140823777730747

(+,)
Y, )
In view of (63), from (45), one gets
foz =-0.012188390118933261 + 0.05708718392199485!,
&, =0.04065784974095253 — 0.1906129599260661,

&, =0.006196180814291302 — 0.04379461343161802,
521 =0.

(64)

(65)

In view of (61) and (65), from (43), one gets
Q =-0.028844333111783357 < 0. Finally, the controlled
results of N-S bifurcation are plotted and drawn in Figure 5.
For more interesting results for solving nonlinear equations
using the multipoint iterative method, we refer the reader to
[19] and references cited therein.

8. Conclusion

In the proposed work, we have explored the local dynamics,
N-S bifurcation, and hybrid control in a discrete-time
glycolytic oscillator model, which is depicted in (4), in the
interior of R2. It is proved that V aandf, the glycolytic
oscillator model (4) has a unique +ve equilibrium point
P+ (a/ (B + &%), &). By the method of linearization, we have
explored the local dynamics along with topological classi-
fication about Py, (a/ (B + a®),a) of the discrete-time gly-
colytic oscillator model (4), and conclusions are presented in
Table 3. We have also investigated the prime period and
periodic points for the model (4). Furthermore, we have
explored the existence of bifurcation about P;y((x/ B+

Mathematical Problems in Engineering

a*),a) and proved that the glycolytic oscillator model (4)
undergoes no bifurcation, except N-S bifurcation, when h a,
andf go through the curve N—SBy.  (a/(f+ a?)

{(h,a, B): (a* + B+ 2ha* + 2h* o (o +/3))/((1 +h)(0c +ﬁ)
(1 +h(B+a?))) = 1}. We have performed the N-S bifurcation
about P} y (a/ (B + &%), &) by bifurcation theory. Moreover, the
hybrid control strategy is applied to control the N-S bifurcation
in the glycolytic oscillator model (4). Finally, theoretical results
are verified numerically.
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