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Due to the improvement of the quality of industrial products, zero-failure data often occurs during the reliability life test or in the
service environment, and such problems cannot be handled using traditional reliability estimation methods. Regarding the
processing and analysis of zero-failure data, the confidence limit assessment methods were proposed by some researchers. Based
on the existing research, a confidence limit method set (CLMS) is established in the Weibull distribution for reliability estimation
of zero-failure data. &e method set includes the unilateral confidence limit method and optimal confidence limit method, so that
almost all existing grouping types of zero-failure data can be quickly evaluated, and multiple methods can be used in parallel to
deal with the same problem. &e effectiveness and high efficiency of the CLMS combined with numerical simulation examples
have been verified, and the possibility of analyzing multiple groups of zero-failure data with a confidence limit method suitable for
processing single group of zero-failure data is expanded. Finally, the actual effect of the method set is verified by the single group of
zero-failure data of rolling bearings and the multiple groups of zero-failure data of torque motors. &e results of the example
evaluation show that the CLMS has obvious advantages in practical engineering applications.

1. Introduction

For high-reliability industrial products, it takes quite a long
time to test their samples failure data. Some of the industrial
products with complicated structure and expensive cost are
difficult to carry out damage tests because of economic
reasons [1]. Research on reliability evaluation and life
prediction methods of such products can often only rely on
zero-failure data with limited capacity. &e traditional re-
liability assessment method involves less processing of zero-
failure data. &erefore, the theory of reliability evaluation
under the condition of zero-failure data has been developed
[2].

Estimating accurate sample reliability based on zero-
failure data is challenging [3].&e reliability analysis of zero-
failure data is a new question encountered in recent years
with the improvement of product quality. &e research work
is not only of theoretical significance, but also of practical
application value. Since the publication of research results by

Martz and Waller [4], the research on zero-failure data has
been studied for more than 40 years, which has gradually
attracted the attention of related researchers [5]. Chen
proposed the reliability assessment confidence limit method
under the condition of zero-failure data in the 1990s and
then proposed that the lower confidence limits of the reli-
ability and reliable life are under the exponential distribu-
tion, Weibull distribution, and normal distribution [6]. Two
years later, Chen et al. [7] proposed the optimal lower
confidence limit method for average life, reliability, and
reliable life using the product under several different life
distribution conditions. Based on the previously mentioned
results, Sun and Chen [8] used the confidence limit method
for reliability assessment studies under the condition that the
product lifetime obeys the Weibull distribution and the
lognormal distribution.

&e confidence limit evaluation method is an efficient
way to deal with the reliability evaluation of zero-failure
data. It is often used for reliability estimation in the case of
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zero-failure data. Although the related research on reliability
evaluation methods based on zero-failure data started late,
the development in the past decade has also made some
progress. Fu and Zhang [9] proposed a zero-failure data
reliability analysis method with a known lower bound of
shape parameters under the condition that the product life is
subject to the Weibull distribution and gave a concrete
expression of the one-side confidence lower limit of service
life and reliability. After Monte Carlo simulation and
simulation analysis, it is verified that the proposed method
canmake full use of zero-failure data and can accumulate the
nonfailure data whose product life is subject to the distri-
bution and increase the credibility of the information vol-
ume to improve the results. Jiang et al. [3, 10] extended the
research on the product failure rate estimation method and
proposed the least squares estimation and Bayesian esti-
mation of the failure rate under the different life distribu-
tions. &e estimation method combined with an example
verifies the effectiveness and robustness of the method.
Chambal and Bertkeats [11] proposed to use triangle dis-
tribution instead of Weibull distribution to describe the
failure rate of components. &e zero-failure data confidence
limit evaluation method is widely used due to its strong
generalization ability. Kayis [12] took the parameters related
to product reliability as random variables and estimated the
reliability under the unilateral confidence limit by using the
parameters of different confidence intervals. Based on a class
of nonlinear tunnel diode circuits with parameter pertur-
bation, Chang et al. established the Takagi-Sugeno fuzzy
model for the uncertainty of parameters, which effectively
achieved the purpose of failure filtering errors [13]. In the
process of expression of reliability uncertainty, the nonlinear
functions are identified via neural networks can be effec-
tively described, and the neural networks-based switched
observer is constructed to approximate all unmeasurable
states [14]. &e uncertainty research in the reliability re-
search process often used the neural network method to
estimate the function, which would effectively solve the
problem of considering the saturation nonlinearity [15]. Han
[16] and Jiang and Jiang [17] put forward the optimal
confidence limit method and applied it in different life
distribution types and the single confidence limit of reli-
ability was obtained according to the definite reliability
analysis requirements.

Based on the existing research, a confidence limit method
set (CLMS) is established in the Weibull distribution for reli-
ability estimation of zero-failure data. &e method set includes
the unilateral confidence limit method and optimal confidence
limit method, so that almost all existing grouping types of zero-
failure data can be quickly evaluated, andmultiple methods can
be used in parallel to deal with the same problem. In this study,
the grouping types of zero-failure data involved in the research
object are combed in detail. Based on different zero-failure data
grouping forms and related usage conditions, the confidence
limit analysismethods used are different.&emethod set can be
used to quickly and accurately select the appropriate confidence
limit evaluation method for reliability estimation. &e effec-
tiveness and high efficiency of the CLMS combined with nu-
merical simulation examples have been verified, and the

possibility of analyzingmultiple groups of zero-failure data with
a confidence limit method suitable for processing single group
of zero-failure data is expanded. Finally, in order to verify the
effect of this method set in practical engineering, the actual case
analysis of the single group of zero-failure data of rolling
bearings and the multiple groups of zero-failure data of torque
motors was conducted. &is method set will facilitate future
research, so that we can quickly find a way to solve the problem
when encountering similar problems.

In this paper, the reliability estimation for zero-failure
data based on confidence limit analysis method for industrial
products is discussed. First of all, we introduce the charac-
teristics of the Weibull distribution model and the physical
properties of the product life distribution that each parameter
can reflect. &en, we elaborate on the reasons and classifi-
cation of zero-failure data. &ird, in the section about the
application and conditions of use of the confidence limit
assessment method, the specific technical route and appli-
cation scenarios of the method are described in detail. Finally,
we use the representative rolling bearing and torque motor
examples of industrial products to carry out verification re-
search with the method proposed in this paper to further
verify the effectiveness of the CLMS proposed in this paper.

2. Weibull Distribution

&e Weibull distribution is widely used in the research of
reliability assessment and product life prediction due to its
own properties and good applicability in industrial product
life statistics [18]. Most electronic, mechanical, and electrical
products (such as bearings, generators, hydraulic pumps,
and materials) are subjected to this distribution [19]. &e
probability density function (PDF) of the three-parameter
Weibull distribution is defined as

f(t) �
β
ϑ

t − c

ϑ
 

β− 1
exp −

t − c

ϑ
 

β
 , t≥ c, (1)

where β indicates shape parameters, ϑ indicates scale pa-
rameters, and cindicates position parameters.

When the value of position parameter c is 0, the three-
parameter Weibull distribution degenerates into two-pa-
rameter Weibull distribution. After nearly 80 years of re-
search and application, the statistical analysis of a large
number of engineering test data samples proves thatWeibull
distribution model plays an important role in the research of
product life distribution type and reliability assessment [20].
&e cumulative distribution function (CDF) is defined as

F(t) � P(T≤ t) � 1 − exp −
t − c

ϑ
 

β
 , t≥ c, (2)

where T ∼ W(β, η, c), forR(t) � 1 − F(t), and the reliability
function is

R(t) � exp −
t − c

ϑ
 

β
 , t≥ c. (3)

&e failure rate of industrial products such as bearings
and motors usually has the characteristics of gradually
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increasing and decreasing with time. With regard to the
geometric meaning of the position parameter, the position
parameter c can determine the starting position of the dis-
tribution curve in the coordinate system, and its value change
causes the curve to move in parallel on the coordinates. With
regard to the physical meaning of the position parameter,
when the position parameter c< 0 , this indicates that the
product fails before use; when the position parameter c> 0,
this indicates that the product starts to fail, and when the
mission time is greater than c, the probability of failure before
this time is 0.&erefore, the value of the position parameter in
the process of actual engineering application is also called the
minimum life or the safe life. &e change of the position
parameter causes the probability density function of the
distribution to change as shown in Figure 1.

3. The Grouping Type of Zero-Failure Data

Currently, there are mainly two kinds of zero-failure data
grouping type, one is test data of a single group, and the
other is test data of multiple groups [21]. Among them, the
multipacket-type zero-failure data can be further subdivided
into pretest grouping and posttest grouping. &e censoring
time is generally set in advance in the reliability life test,
which has great subjectivity and dependence on expert
experience. &e preset value of the censoring time is further
divided into regular and random settings. &e grouping type
of zero-failure data is shown in Figure 2.

3.1. Single Group of Zero-Failure Data. When n samples
participate in the censoring test, it ends at time t, and all
samples do not fail. At this time, a set of zero-failure data is
obtained, which can be expressed as Z � (n, t). &e value of
time t can be set before or after the censored test.

3.2. Multiple Groups of Zero-Failure Data. A batch of
samples is randomly selected from the products of the study
subjects for life test, and the sample capacity is represented
by N. &e batch of samples is divided intom groups, and the
number of samples included in each group is represented by
ni, and the corresponding end time is t1, t2,. . ., tm
(t1 < t2 < · · · < tm). At this time, the corresponding zero-
failure data obtained according to the timing censored test
can be expressed as Z � (ni, ti). &e value of m can be set
before or after the start of the test, and the setting of the
parameter ni can be random or a regular value.

After the previously mentioned analysis, it is found that
the single-group type of zero-failure data belongs to the
special case of the multiple groups’ type.

4. The Confidence Limit Assessment Method

4.1. Unilateral Confidence Limit Assessment Method

4.1.1. /e Assessment for Single Group of Zero-Failure Data.
If the premise of the life of the product obeying the two-
parameter Weibull distribution after the statistical analysis of
the previous empirical data is established, it is often difficult to

directly estimate the shape parameters in the life distribution
by using the zero-failure data. However, when the range of the
shape parameters can be determined, the theoretical logic
deduction can be used to derive the unilateral confidence limit
of the reliability parameter of the samples.

&ere is such a set of zero-failure data, the sample size is
n, and the censoring time is t0. &e value of time t0 can be set
before or after the censored test. According to the expo-
nential distribution characteristics [9], the reliability Rl of the
sample under the condition that the confidence level is 1 − α
can be expressed as

Rl(t) � exp
t ln(α)

N
 , (4)

where t indicates mission time, and N � (n + 1) t0. Using
formula (4), the lower confidence interval of the mean time
between failures (MTBF) in the case of a single group zero-
failure data can be obtained as

θl � −
(n + 1)t0

ln α
. (5)

If the shape parameter of Weibull distribution is known,
let X � tβ, θ � ηβ, and then it can be considered that X obeys
the exponential distribution. After transformation, the
Weibull distribution is transformed into an exponential
distribution, and the following can be obtained as

θu1 � ηβu1 � −
(n + 1)t

β
0

ln α
. (6)

&e reliability unilateral confidence limit under the
Weibull distribution is obtained by (6), and the Ru1 of under
the condition that the confidence level is 1 − α can be
expressed as

Ru1(t) � exp
ln α

n + 1
t

t0
 

β
⎡⎣ ⎤⎦, (7)

where t indicates mission time, β indicates shape parameters,
and ϑ indicates scale parameters.

At the same time, under the condition that the confi-
dence level is 1 − α, it is also possible to obtain the unilateral
confidence limit of the reliability when the lower limit of the
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Figure 1: Probability density function curves with different po-
sition parameters.
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value range of the shape parameter in the Weibull distri-
bution is known. &e unilateral confidence limit of the
reliability Ru1′ can be expressed as

Ru1′ (t) � exp
ln α

n + 1
t

t0
 

β0
⎡⎣ ⎤⎦, (t> 0), (8)

where t indicates the mission time and β0 indicates the lower
limit of the shape parameter.

4.1.2. /e Assessment for Multiple Groups of Zero-Failure
Data. &ere is such a batch of multiple groups of zero-
failure data, and the sample size is n. &e number of groups
is m, each group contains the sample number
ni, (i � 1, 2, . . . , m), and the corresponding censoring time is
t1, t2, . . ., tmand the condition is t1 < t2 < · · · < tm. In this
case, zero-failure data can be represented as Z � (ti, ni), and
the reliability Ru2 of products under the condition that the
confidence level is 1 − α can be expressed as [10]

Ru2(t) � exp
t
β ln α 


m
i�1 nit

β
i

⎡⎢⎣ ⎤⎥⎦, t> 0. (9)

&e derivation process of this reliability evaluation ex-
pression is also combined with the idea of exponential
distribution parameter estimation, and the specific process is
omitted here.

4.2. Optimal Confidence Limit Assessment Method

4.2.1. /e Assessment for Single Group of Zero-Failure Data.
According to the characteristics of zero-failure data of the
single group, there is such a set of zero-failure data, the
sample size is n, and the censoring time is t0. &e optimal
confidence limit analysis method for single group of zero-

failure data is a simplified result of multiple groups of
forms.

Under the condition that the shape parameterβ in the
two-parameter Weibull distribution is unknown [7], the
reliability Ro1 under the condition that the confidence level is
1 − α can be expressed as

Ro1(t) �
0, t> t0,

α1/n, 0< t≤ t0,
 (10)

where t indicates the mission time.
If the shape parameter β has a value range of [β1, β2], the

reliability Ro1′ under the condition that the confidence level
is 1 − α can be expressed as

Ro1′ (t) �
α1/ n t0/t( )

β1 
, 0< t< t0,

α1/ n t0/t( )
β2 

, t≥ t0,

⎧⎪⎨

⎪⎩
(11)

where t indicates the mission time.
&e range of shape parameters in the two-parameter

Weibull distribution often comes from the statistical results
of product life data in engineering practice. &e optimal
confidence limit analysis method under zero-failure data is
more reliable because of the introduction of product life
distribution parameter information.

4.2.2. /e Assessment for Multiple Groups of Zero-Failure
Data. According to the characteristics of zero-failure data of
the multiple groups, the number of groups is m, each group
contains the sample number ni, (i � 1, 2, . . . , m), and the
corresponding censored time is t1, t2, . . ., tmand the con-
dition ist1 < t2 < · · · < tm. In this case, zero-failure data can
be represented as Z � (ti, ni).

According to [7], when the confidence level is 1 − α, the
lower confidence limit Ro2 can be expressed as

The zero-failure
data

Multiple groups

Single group

Grouped before the censored test

Grouped after the censored test

Groups that have been randomly
grouped before the censored test starts

Groups that have been randomly
grouped after the censored test starts

Groups that have been regularly
grouped before the censored test starts

Groups that have been regularly
grouped after the censored test starts

Figure 2: &e grouping type chart of zero-failure data.
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Ro2(t) � inf exp −
t

ϑ
 

β
  : 

m

i�1
exp −

ti

ϑ
 

β
> α, η> 0, β> 0  � e

− a
,

(12)

where a � sup[(t/ϑ)β: 
m
i�1 t

β
i /−lnα< ϑ

β, ϑ> 0, β> 0] �

−lnα/inf f(β): β> 0}; at this time there is the equation-
f(β) � 

m
i�1 (ti/t)

β.We can get the inequality f′(β)≥ 0when
the condition is t≤ (

m
i�1 ti)

1/m. So,
inf f(β): β> 0 � limβ⟶0f(β) � m. &e lower confidence
limit for reliability at this mission time is

Ro2(t) � α1/m. (13)

&e inequality is f′(β)≤ 0 when the condition is t≥ t(m),
where, t(m) � max(t1, t2, . . . , tm); therefore,

inf f(β): β> 0  � lim
β⟶∞

f(β) �
0, when t> t(m),

P, when t � t(m),

⎧⎨

⎩

(14)

where the parameter P is an element in the set
i: 1≤ i≤m, ti � t(m) , and the lower confidence limit for
reliability at this time is

Ro2(t) �
0, when t> t(m),

α1/P, when t � t(m).

⎧⎨

⎩ (15)

&e parameter β∗ is the only solution of the equation


m
i�1 (ti/t)

βln(ti/t) � 0, when(
m
i�1 ti)

1/m < t< t(m), and
theninf f(β): β> 0  � limf(β∗). &e lower confidence
limit for reliability at this time is Ro2 � α1/f(β∗). Under the
condition that the shape parameter β in the two-parameter
Weibull distribution is unknown, the reliability Ro2 under
the condition that the confidence level is 1 − α can be
expressed as

Ro2(t) �

0, t> t(m),

α1/P, t � t(m),

α1/f β∗( ), c< t< t(m),

α1/m, 0< t≤ c,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(16)

where t indicates the mission time; c � (
m
i�1 ti)

1/m.
If the shape parameter β has a value range of [β1, β2], the

reliability Ro2′ under the condition that the confidence level is
1 − α can be expressed as follows:

Ro2′(t) �

α1/f β1( ), 0< t≤ c,

α1/f β2( ), t≥ t(m),

α1/f β1( ), c< t< t(m), β
∗ ≤ β1,

α1/f β2( ), c< t< t(m), β
∗ ≥ β2,

α1/f β∗( ), c< t< t(m), β1 ≤ β
∗ ≤ β2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where t indicates the mission time t(m) � max(t1, t2, . . . , tm),
the parameter β∗ is the only solution of the equation


m
i�1 (ti/t)

βln(ti/t) � 0, andf(β) � 
m
i�1 (ti/t)

β, c � (i�

1mti)
1/m.

5. Establishing theConfidenceLimitMethodSet

In the Weibull distribution, all the current commonly used
confidence limit analysis methods are collected into one
framework to establish a method set, and we name it the
confidence limit method set (CLMS). &e purpose of the
method set is to meet the random engineering characteristics
of practical engineering cases in the application process of
reliability evaluation based on zero-failure data. In order to
use the single group optimal confidence limit method to
process multiple groups of zero-failure data, a method to
extend the application of optimal confidence limits is pro-
posed in this method set. &e basic structure of the CLMS is
shown in Figure 3.

It can be seen from the schematic diagram that one side
of the method set is the existing confidence limit analysis
method, and the other side is the form of the zero-failure
data case in actual engineering. &e direction indicated by
the arrow in the middle represents which cases the method
can be used to evaluate. &is makes it possible to apply
multiple methods at the same time to solve a problem, and
then select the optimal reliability evaluation result. &e
establishment of this method set belongs to a kind of
ideological practice.With the deepening and development of
research in this field, this method set can continue to expand
to more methods and more types of life distribution. It can
be seen from the source of zero-failure data that this type of
life data does not contain the dispersive information of the
actual life of the product, so it is difficult to estimate accurate
shape parameters based on the zero-failure data. However,
in the actual engineering application process, through past
experience and actual product life statistics, we can often get
the value range of the shape parameter in the Weibull
distribution. It is feasible to conduct reliability assessment by
introducing empirical life distribution parameter informa-
tion into the confidence limit evaluation method of zero-
failure data.

6. Simulation Verification and Discussion

According to previous research experience and results, it is
assumed that the bearing life of the research object follows
the three-parameters Weibull distribution. Yang [22] ana-
lyzed the fatigue life test data of 135 groups, 6 types, 52
models, and a total of 2031 sets of bearings from the National
Bearing Quality Monitoring Center of Luoyang Bearing
Research Institute and various bearing companies for a long
time and obtained the shape parameter of ball bearings.
Possible values are 1.5 and rolling bearings are 1.7. &ere-
fore, under the condition that the bearing products are
subject to Weibull distribution, assuming that the shape
parameter value is 2.0, it can meet the analysis requirements
of conventional reliability problems.

Mathematical Problems in Engineering 5



&e zero-failure data of the numerical simulation of
bearings are listed in Table 1. &e data are generated based
on the method of generating zero-failure data samples [23]
and the results of previous statistical studies on the life of
rolling bearings of this type. &en, a set of pseudorandom
numbers is generated under the conditions of specifying
shape parameters and scale parameters based on the method
of generating zero-failure data samples. Finally, a set of
random numbers that follow the Weibull distribution (the
number of random numbers should be much greater than
the number in the bearing reliability test set) is generated by
using the Monte Carlo method. &e number of random
numbers generated is 600. &e values of relevant parameters
in the zero-failure data of a group of bearings generated by
simulation include the following: shape parameter is β � 2.0,
scale parameter is ϑ � 2000, and position parameter is
c � 1000. &e mission time t in the two-parameter Weibull
distribution is equivalent to the t − c in the three-parameter
Weibull distribution.

&ere are 55 samples of zero-failure data for this group of
bearings, as shown in Table 1. In order to use the single
group optimal confidence limit method to process multiple
groups of zero-failure data, a method to extend the appli-
cation of optimal confidence limits is proposed in this part.
&e feasible solution is to average-equivalently process the
total time T � 

m
i�1 niti, and then the single censoring time

t0 � 
m
i�1 niti/n, where n � 55. Using the optimal confidence

limit method for single group of zero-failure data to calculate
the reliability estimation results of this simulation example is
shown in Figure 4; the confidence level is1 − α � 0.95. It can
be known that the life of the batch of bearings is subject to
Weibull distribution, and the shape parameter values range
from 1.8 to 2.3 [23]. Based on the current assumptions and
the CMLS, we can use three methods to estimate the reli-
ability of this group of bearings. &e following analysis

content is the lower confidence limit of product reliability in
three cases, where the shape parameter is unknown (Method
3) and the shape parameter range is known (Method 1 and
Method 4).

Although using the data set can quickly find the eval-
uation method, it can be seen from the evaluation results in
Figure 4 that the evaluation effect after simplified processing
is not ideal. &e reason why the curve of the reliability
estimate value in this figure is not smooth is that the value
points of the reliability estimate are too scattered, but this
does not affect the comparative analysis between different
evaluation methods. Compared with the true value of the
reliability change trend, the reliability estimates of the three
methods are either too high or too low. &e estimate of the
lower limit of reliability inMethod 3 is 0 under the condition
that the task time is greater than the maximum censoring
time t0, and it has nothing to do with the confidence level.
&erefore, Method 3 has certain limitations. According to
the analysis of the results of this simulation example, the
reliability estimation has always been on the high side by
Methods 1 and 4. &is will lead to underestimation of the
probability of bearing risk in actual engineering applications.

Based on the data in Table 1, the lower confidence limit
of product reliability is analyzed in the case where the shape
parameter is unknown and the shape parameter range is
known. In the following analysis, the confidence level pa-
rameter is 1 − α � 0.95, and the shape parameter assumption
is still unknown or known to have a range of 1.8–2.3. After
calculation, the parameter of critical time node is
c� 2375.8 h. Based on the current assumptions and CMLS,
three methods are used to estimate the reliability through
this set of zero-failure data samples. &e following analysis
content is the lower confidence limit of product reliability in
two cases, where the shape parameter is unknown (Method
5) and the shape parameter range is known (Method 2 and

Unilateral confidence
limit method

Unilateral confidence limit method for
single-group zero-failure data

Unilateral confidence limit method for
multiple-group zero-failure data

Method 1

Method 2

The method for single-group zero-failure
data with unknown shape parameters

The method for multiple-group zero-failure
data with unknown shape parameters

Method 3

The method for single-group zero-failure
data with shape parameter range

Method 4

The method for multiple-group zero-failure
data with shape parameter range

Method 6

Method 5

The confidence
limit method set

Open confidence
limit method

Grouped before the censored test

Grouped a�er the censored test

Groups that have been randomly
grouped before the censored test starts

Groups that have been randomly
grouped a�er the censored test starts

Groups that have been regularly
grouped before the censored test starts

Groups that have been regularly
grouped a�er the censored test starts

�e zero-failure
data case

Multiple groups

Single group

Figure 3: &e CMLS for reliability evaluation based on zero-failure data.
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Method 6), and the results of the optimal confidence limit
evaluation are shown in Figure 5.

From the results in Figure 5, the type of zero-failure data
grouping has a direct impact on the reliability evaluation
during the application of the optimal confidence limit analysis
method. &e reliability estimated by the unilateral confidence
limit assessment method (Method 2) is significantly higher
than the true value. &e reliability estimates obtained by the
two methods (Methods 5 and 6 are closest to the true value
when the mission time is near critical time node c). &e
estimates of the lower confidence limits of reliability obtained
by the twomethods are conservative when the task time is less
than 2000 hours. However, the estimates of the lower con-
fidence limits of the reliability obtained by the two methods
are biased when the task time is greater than 2000 hours.
Although Method 6 considers more time stages to estimate
the reliability, Method 5 is generally better. &e optimal
confidence limit evaluation method plays a role in dealing
with rare events in failure analysis (reliability evaluation based
on zero-failure data) and the estimates near critical time
nodes are still very close to the true value of reliability, which
can provide a reference for practical engineering applications.

7. Case Study

7.1. Single Group of Zero-Failure Data for Bearings.
According to the rolling bearings used at the joints of a
certain type of robot in the laboratory environment, we get

such a set of zero-failure data. &e sample size of this set of
zero-failure data is 3, the censoring time is 1200 hours, and
the zero-failure data of the bearing is expressed as
Z � (t0, n) � (1200, 3). &e photograph of the rolling
bearing before it is not installed at the joint is shown in
Figure 6. &erefore, for simplicity and without loss of
generalization ability, it is assumed that the life of this group
of bearings follows the two-parameter Weibull distribution,
and the shape parameter ranges from 1.5 to 2.3. In the
following analysis, the confidence level parameter is
1 − α � 0.95.

Based on the current assumptions and CMLS, we can use
two methods (Methods 1 and 4) to estimate the reliability of
this group of bearings. &e reliability evaluation results of
the bearings are shown in Figure 7.

Combined with the results of the numerical simulation
study, it can be known that the reliability estimated by the
optimal confidence limit method is closer to the true value,
and it can be seen that Method 4 estimates the reliability of
the bearing better. At the same time, it can also be found that
the effects of the twomethods when processing a single set of
zero-failure data are very close. In order to analyze the
influence of the sample size on the evaluation results; on the
basis of this example, it is assumed that the sample size
increases, and the results of the reliability evaluation
according to the optimal confidence limit analysis method
are shown in Figure 8.

From the results in Figure 8, it can be seen that the larger
the sample size, the higher the final reliability estimate, and
the change rate of the reliability estimate gradually decreases
as the task time increases. Such conclusions are in accor-
dance with the objective law of reliability evaluation through
zero-failure data.

7.2. Multiple Groups of Zero-Failure Data for Torque Motor.
&e zero-failure data of this study came from the field
operation data of the torquemotors. Recording the time data
of a product from start to failure (or failure-free) is an
important data source for reliability evaluation. &e reli-
ability data of the actual work scene is extremely valuable. It
reflects the operation of the product in the actual envi-
ronment and maintenance conditions and is more repre-
sentative of the product characteristics than the simulated
data in the laboratory environment. &e figure of the torque
motor sample is obtained from [24] as shown in Figure 9.

In order to analyze the reliability of the torque motors,
the operation records of 52 torque motors used in CNC
machine tools are reviewed. After analysis and arrangement,

Table 1: Zero-failure data sample of bearing based on three-parameter Weibull distribution.

Censoring time/h &e number of samples ni Censoring time (h) &e number of samples ni

1030 10 2632 5
1617 9 2871 4
1915 8 3195 3
2180 7 3581 2
2379 6 4006 1

Total number 55
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Figure 4: Reliability lower confidence limit estimate for single set
of zero-failure data.
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it is found that 52 torque motors have no fault in the mission
time. As the starting time of the type-I censoring experi-
ment, the time of the last recording of themotors in the CNC

machine tool is used as the censoring time of the experiment,
and then the running time ti corresponding to the torque
motors is given. &e sample data of the torque motor is
obtained from [24] as shown in Table 2.

According to the previous research results [21], the
batch of torque motors follows the two-parameter Weibull
distribution, and the shape parameter range is between 1.5
and 1.8. Based on the previously mentioned analysis results
and the confidence limit method set, for the reliability
evaluation of the torque motor example, it is advisable to
adopt multiple sets of zero-failure data evaluation methods
in the unilateral confidence limit method and the optimal
confidence limit method. Since the estimated value of the
shape parameter is within a range, the interval estimation
result of the reliability obtained by the unilateral confidence
limit analysis method is evaluated. Although this example
can refer to the range of the shape parameter interval,
according to the results of numerical simulation analysis,
Method 3 should be used when using the optimal confi-
dence limit analysis. In the following analysis, the confi-
dence level parameter is 1 − α � 0.95. Based on the current
assumptions and the CMLS, we can use two methods
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Figure 7: &e comparison of reliability estimation results of two
methods.
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Figure 8: Changes in reliability estimates are based on different
sample size.
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Figure 5: Reliability lower confidence limit estimate for multiple
groups of zero-failure data.
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Figure 6: &e rolling bearing sample.

Figure 9: A torque motor sample of this set [24].
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(Methods 2 and 5) to estimate the reliability of this group of
torque motors.

As can be seen from Figure 10, the reliability evalu-
ation results using Method 2 are not sensitive to the shape
parameter values; that is to say, when the shape parameter
values change a little, the reliability estimate value in-
creases and the task time increase is almost negligible.
According to the analysis of the evaluation results of
Method 5, if the life distribution assumption of the torque
motor is accurate, then the estimated value of the reli-
ability of the accessory C at the critical time is about 0.85.
It can be seen that the estimation results of Method 2 are
biased. &e result of the reliability estimation value using
Method 5 has a fluctuation phenomenon when the task
time is the maximum censoring time. &is is because the
expression of the reliability estimation value is
Ro2(t) � α1/p. &e relationship between the estimated
reliability at this moment and the change in sample size is
shown in Figure 11.

It can be seen that the number of samples corresponding
to the maximum censoring time directly affects the size of

the reliability estimate under the task time. In this case study,
the occurrence of the final reliability estimate value fluc-
tuating at the maximum truncation time point is the phe-
nomenon caused by this reason.

8. Conclusion

&is paper gives a unilateral confidence limit analysis
method and an optimal confidence limit analysis method for
product life that follow the Weibull distribution. According
to past engineering experience, the shape parameter value
information of the product life distribution is introduced to
obtain a more accurate evaluation effect. By establishing a set
of confidence limit methods for analyzing zero-failure data, a
quick search method is realized, and the optimal reliability
estimation result is selected using the comparative analysis
results. &e currently established method set is only appli-
cable to the evaluation of various types of zero-failure data
under the condition of Weibull distribution. Combining
numerical simulation examples and case studies, the fol-
lowing conclusions are obtained.

(1) &rough the method set established in this paper, the
reliability evaluation of zero-failure data can be used
to quickly select the methods that need to be adopted

Table 2: &e zero-failure data sample of torque motor [24].

Censoring time/h &e number of samples ni Censoring time/h &e number of samples ni

256 2 2960 2
720 2 3600 2
960 2 4240 4
1200 2 4320 10
1360 2 4960 2
1440 6 5440 3
2400 2 5520 1
2560 2 5760 2
2640 2 7200 4

Total number 52
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Figure 10: &e comparison of reliability estimation results of two
methods.
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Figure 11: &e increase in the number of samples leads to changes
in reliability estimates value.
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in the case of the Weibull distribution, and the
optimal evaluation results are selected through lat-
eral comparison analysis.

(2) &rough the analysis of examples and numerical
simulation examples, it can be seen that the reli-
ability estimate obtained by the confidence limit
analysis method is closer to the real situation when
the task time is shorter.

(3) &e shape parameter of the life distribution of the
research object is a crucial factor, which directly
affects the accuracy of the reliability estimation
under the condition of Weibull distribution.

In the future, the research object industrial products will
adopt a variety of different distribution types of confidence
limit analysis methods to establish a more comprehensive
method set, which will be able to meet a wider range of
practical engineering applications.
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