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In this paper, we discuss the global dynamics of a general susceptible-infected-recovered-susceptible (SIRS) epidemic model. By
using LaSalle’s invariance principle and Lyapunov direct method, the global stability of equilibria is completely established. If
there is no input of infectious individuals, the dynamical behaviors completely depend on the basic reproduction number. If there
exists input of infectious individuals, the unique equilibrium of model is endemic equilibrium and is globally asymptotically
stable. Once one place has imported a disease case, then it may become outbreak after that. Numerical simulations are presented to
expound and complement our theoretical conclusions.

1. Introduction

In 1927, Kermack and McKendrick [1] proposed the
compartment dynamic model, which uses differential
equations research the dissemination rule of the infectious
diseases. Since then, infectious disease dynamics has been
developing vigorously and produced some important the-
oretical and practical valuable results. In classical Kermack-
Mckendrick model, the whole population is divided into
three subclasses: susceptible, infected, and recovered, which
is also called SIR-type model. ,is type of model always
assumed that the recovered individuals have permanent
immunity. In fact, a plenty of diseases just have only a short
period of acquired immunity, such as flu, tuberculosis,
Hepatitis B, schistosomiasis, and the common cold. When
acquired immunity disappears after some time, the recov-
ered individuals become susceptible again [2]. To incor-
porate this phenomenon, SIRS epidemic models have
emerged.

According to the total population, the SIRS epidemic
model can be divided into two kinds: one kind is with
constant total population, and the other kind is with varying
total population. ,eoretically, the analysis on basic prop-
erties and global asymptotic stability of SIRS model with
varying total population size is more difficult. A large

portion of works focus on some special cases of this type of
SIRS epidemic model (see [3–5] and the references therein).
Mena-Lorca and Hethcote [2] discussed an SIRS epidemic
model with simple mass action incidence and constant
immigration. ,ey proposed the following open question:
when the basic reproduction number is greater than one, the
unique endemic equilibrium is globally asymptotically sta-
ble. Ma et al. also proposed the same open question in [6].

Nowadays, these open questions were gradually being
solved. Li et al. [7] tried to study the global dynamical
behaviors of SIRS model with incidence rate β(N)SI and
constant immigration.,ey did obtain the global asymptotic
stability of endemic equilibrium; however, this conclusion is
valid only in the cases satisfying certain conditions but is not
generally true. It is worth celebrating that the global as-
ymptotic stabilities for classical SIRS model with general
incidence rate are completely derived in [3, 8]. ,e method
they used is LaSalle’s invariance principle and Lyapunov
direct method. ,is is the most common method to study
the local and global asymptotic stability of epidemic models.
By using this method, Ma et al. [9] studied the local and
global asymptotic stability of a SIQR model. Cui et al. [10]
investigated the transmission dynamics of an epidemic
model with vaccination, treatment, and isolation. ,erefore,
we wonder whether the global stability of SIRS model with
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general incidence rate and constant immigration can be
obtained through this method or not.

Motivated by these studies, in this paper, we con-
sidered an SIRS epidemic model with constant immi-
gration, especially with immigration of infected
individuals. Notice that transmission of infection occurs
after adequate contacts between the susceptible and the
infectious. To better simulate this phenomenon, we
considered a general incidence rate g(I)S. Like in [8],
function g(I) is assumed as a real locally Lipschitz
function on [0, +∞) and satisfied:

(i) g(0) � 0 and g(I)> 0 for I> 0
(ii) limI⟶0g(I)/I � β> 0, and g(I)/I is continuous and

monotonously nonincreasing for I> 0

,e same hypotheses on function g(I) can be found in
[11]. ,is type of incidence rate was first proposed by
Capasso and Serio [12] to model the cholera epidemic spread
in Bari in 1973. Since then, many authors studied the dif-
ferent special case of g(I); for more details, one can see
literature [11, 13–15].

Due to the fact that the infectious individuals or the
recovery individuals may move from one place to another,
in this paper, we assume that the rate constant of input to
the total population is A, of which fractions a, b, and c

(a + b + c � 1 and a, b, c≥ 0) attribute to susceptible, in-
fected, and recovered compartments. ,at is, the infec-
tious individuals immigrate to infectious class at time t at
rate bA, and the recovery individuals immigrate to re-
covery class at time t at rate cA. ,e rate constant for
nature death is d; thus, 1/d is the average lifetime. ,e
disease-related death rate for infected individuals is α.
After a period, the infected individuals might be declared
cured of the disease and enter to the recovered class R at
rate c; thus, 1/c is the average recovery time. Due to the
fact that the recovered individuals can only have tem-
porary immunity, thus, the recovered individuals might
lose their immunity and move to the infected class I at rate
δ. ,erefore, the objective model in this paper can be given
as

dS

dt
� aA − g(I)S + δR − dS,

dI

dt
� bA + g(I)S − (c + d + α)I,

dR

dt
� cA + cI − (δ + d)R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

In this paper, we mainly use LaSalle’s invariance prin-
ciple and Lyapunov direct method to investigate the global
dynamics of model (1). ,e whole paper is organized as
follows. In section 2, the existence and local stability of each
equilibrium will be stated. ,e globally asymptotically stable
state of equilibria will be given in the next section. Numerical
simulations and conclusion will be listed in the last two
sections.

2. Basic Properties

,e total population number N � S + I + R and satisfies

dN

dt
� A − dN − αI≤A − dN, (2)

which implies that limsupt⟶∞N(t)≤ (A/d). ,erefore, the
following domain

Γ � (S, I, R) ∈ R3
+ ∣ S + I + R≤

A

d
􏼚 􏼛. (3)

is the positively invariant set with respect to model (1).
From the locally sign-preserving property of limit, we

know that limI⟶0g(I)/I � β> 0 implies g(I)/I � β in the
small domain of zero. ,en, the assumption g(I)/I is
continuous and monotonously nonincreasing for I> 0 im-
plies that g(I)/I≤ β for I> 0, that is, g(I)≤ βI for I≥ 0. As
the assumption g(I)/I is continuous and monotonously
nonincreasing and also implies that (g(I)/I)′ ≤ 0, a direct
calculation derived that g′(I)≤ (g(I)/I). ,en, it follows
from g(0) � 0 and limI⟶0(g(I)/I) � β that
g′(0+) � limI⟶0+ ((g(I) − g(0))/(I − 0)) � limI⟶0+

(g(I)/I) � β. ,erefore, from the assumptions (a) and (b)
on g(I), we have

g(I)≤ βI,

g′(I)≤g(I)/I,

β � g′ 0+
( 􏼁.

(4)

To obtain the expressions of equilibria, we shall consider
model (1) in two cases: one is b � 0 and the other is b> 0,
which, respectively, imply model (1) without input of in-
fectious individuals and with constant input of infectious
individuals.

Case 1. b � 0.
Any equilibrium of model (1) must satisfy

aA − g(I)S + δR − dS � 0,

g(I)S − (c + d + α)I � 0,

cA + cI − (δ + d)R � 0.

⎧⎪⎪⎨

⎪⎪⎩
(5)

One can easily derive that model (1) always has a
disease-free equilibrium E0 � (A(δ + a d)/d(δ + d), 0,

cA/δ + d). From van den Driessche and Watmough
[16], we can derive that the basic reproduction number
is

R0 �
βA(δ + a d)

d(δ + d)(c + d + α)
. (6)

Biologically, the basic reproduction number R0 pres-
ents the average number of secondary infectious pro-
duced by single infective individuals, which are
introduced into an entirely susceptible population.
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Except disease-free equilibrium (i.e., the solution of (5)
with I � 0), equations (5) may have one positive so-
lution, which can be denoted by E∗ � (S∗, I∗, R∗).
,en, a simple calculation derives the following:

S
∗

�
(c + d + α)I

∗

g I
∗

( 􏼁
,

R
∗

�
cA + cI

∗

δ + d
.

(7)

And I∗ is the nonzero solution of the function Φ

Φ(I) � d(c + d + α)
I

g(I)
+ d + α +

dc

δ + d
􏼠 􏼡I −

A(δ + a d)

δ + d
. (8)

It follows from assumption (ii) that

Φ′(I) � d(c + α + d)
I

g(I)
􏼠 􏼡

′
+ d + α +

dc

d + δ
􏼠 􏼡

> 0, and if ,

lim
I⟶0+
Φ(I) �

d(c + α + d)

β
−

A(δ + a d)

δ + d

�
d(c + α + d)

β
1 − R0( 􏼁< 0.

(9)

Moreover,

Φ
A

d
􏼒 􏼓 � d(c + d + α)

A/d
g(A/d)

+ d + α +
dc

δ + d
􏼠 􏼡

A

d

−
A(δ + a d)

δ + d
≥d(c + d + α)

A/d
g(A/d)

+ α +
dc

δ + d
􏼠 􏼡

A

d
> 0.

(10)

,erefore,Φ(I) has a unique positive root in (0, A/d) if
R0 > 1.
In sum, we have the following result.

Theorem 1. When b � 0, we have the following:

(i) Model (1) always has a disease-free equilibrium E0

(ii) If R0 > 1, besides E0, model (1) also has a unique
endemic equilibrium E∗(S∗, I∗, R∗), where S∗ andR∗

are given in (7) and the expression of I∗ is the unique
positive root of Φ(I) given in (8)

By analyzing the Jacobian matrix, the local stability of
equilibria can be given as follows.

Theorem 2. For model (1) with b � 0, the disease-free
equilibrium E0 is locally asymptotically stable when R0 < 1,
and it is unstable when R0 > 1, while the unique endemic
equilibrium E∗(S∗, I∗, R∗) is locally asymptotically stable
when R0 > 1.

Proof. Based on g(0) � 0 and g′(0+) � β, the Jacobian
matrix at equilibrium E0 of model (1) can be given as

J E
0

􏼐 􏼑 �

− d −
βA(δ + a d)

d(δ + d)
δ

0
βA(δ + a d)

d(δ + d)
− (c + d + α) 0

0 c − (δ + d)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

One can easily obtain that the eigenvalues of the matrix
J(E0) are all less than zero whenR0 < 1. ,is implies that E0

is locally asymptotically stable. If R0 > 1, the matrix J(E0)

has a positive eigenvalue, which implies that E0 is unstable.
For the endemic equilibrium E∗, the Jacobian matrix is

given by

J E
∗

( 􏼁 �

− g I
∗

( 􏼁 − d − S
∗
g′ I
∗

( 􏼁 δ

g I
∗

( 􏼁 a22 0

0 c − (δ + d)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (12)

where a22 � S∗g′(I∗) − (c + d + α). ,e characteristic
equation of J(E∗) is

λ3 + a1λ
2

+ a2λ + a3 � 0, (13)

where

a1 � g I
∗

( 􏼁 + δ + 2 d − a22,

a2 � (c + α + d)g I
∗

( 􏼁 +(c + d) g I
∗

( 􏼁 + d( 􏼁 − (δ + 2d)a22,

a3 � (δ + d)(c + α + d)g I
∗

( 􏼁 − δcg I
∗

( 􏼁 − (δ + d)da22.

(14)

It follows from the expression of S∗ and the conditions
(4) of g(I) that a22 ≤ 0 ifR0 > 1. Hence, ai > 0, i � 1, 2, 3 and

a1a2 − a3 � g I
∗

( 􏼁 − a22( 􏼁a2

+(δ + 2 d)a2 − a3 > g I
∗

( 􏼁 − a22( 􏼁a2 > 0.
(15)

By Routh–Hurwitz criterion, we obtain that the endemic
equilibrium E∗ is locally asymptotically stable if R0 > 1.

Case 2. b> 0.
In this case, the existence and local stability of
equilibrium for model (1) are stated as
follows. □

Theorem 3. When b> 0, model (1) has only one equilibrium,
which is the endemic equilibrium 􏽢E � (􏽢S, 􏽢I, 􏽢R), where
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􏽢S � 􏽢N − 􏽢I − 􏽢R,

􏽢I �
A − d 􏽢N

α
,

􏽢R �
(cα + c)A − cd 􏽢N

α(δ + d)
and 􏽢N is the unique solution of ,

g(􏽢I)

􏽢I
[((δ + d)(α + d) + c d)N − (δ + cα + c + d)A]

� α(δ + d) c + d + α −
bαA

A − dN
􏼠 􏼡.

(16)

in the domain (0, A/d).

Proof. Due to N � S + I + R, any equilibrium of model (1)
can be given as

bA + g(I)(N − I − R) − (c + d + α)I � 0,

cA + cI − (δ + d)R � 0,

A − dN − αI � 0.

⎧⎪⎪⎨

⎪⎪⎩
(17)

One can easily verify that all the solutions of equation
(17) can not contain I � 0, which means that model (1) does
not have disease-free equilibrium. Denote one solution of
(17) by (I, R, N) � (􏽢I, 􏽢R, 􏽢N). ,en, one can derive that

􏽢I �
A − d 􏽢N

α
,

􏽢R �
(cα + c)A − cd 􏽢N

α(d + δ)
,

(18)

Substituting (18) into the first equation of (17), we have
that 􏽢N is the solution of

g(􏽢I)

􏽢I
[((δ + d)(α + d) + c d)N − (δ + cα + c + d)A]

� α(δ + d) c + d + α −
bαA

A − dN
􏼠 􏼡,

(19)

Next, we prove that equation (19) has only one solution
in domain (0, (A/d)). Denote

ϕ(N) �
g(􏽢I)

􏽢I
[((δ + d)(α + d) + c d)N − (δ + d + cα + c)A],

ψ(N) � α(δ + d) c + d + α −
bαA

A − dN
􏼠 􏼡.

(20)

Notice that g(I)/I is continuous and monotone non-
increasing for I> 0, that is, d/dI(g(I)/I)≤ 0. It follows from
the expression of 􏽢I in (18) that

d

dN

g(I)

I
􏼠 􏼡 �

d

dI

g(I)

I
􏼠 􏼡

dI

dN
� −

d

α
d

dI

g(I)

I
􏼠 􏼡≥ 0. (21)

,erefore, ϕ′(N)≥ 0, which means that ϕ(N) is a
nondecreasing function of N in (0, A/d). Furthermore, it
follows from the expression of I and limI⟶0+ g(I)/I � β> 0
that

lim
N⟶A− /d

ϕ(N) � lim
I⟶0+

g(I)

I
[α(A/d)((1 − c)d + δ)]

� αβ(A/d)[(1 − c)d + δ]> 0,

lim
N⟶0+

ϕ(N) � −
g(A/d)

(A/d)
(δ + d + cα + c)A< 0.

(22)

Meanwhile, one can verify that ψ′(N)< 0 in (0, A/d),
limN⟶0+ψ(N)> 0, and limN⟶A/dψ(N) � − ∞. ,erefore,
there exists only one solution in domain (0, A/d) for
equation (19). ,is completes the proof.

Similar to the proof of ,eorem 2, the eigenvalues of
Jacobian matrix J(􏽢E) are all negative, which implies the
following theorem. □

Theorem 4. When b> 0, the unique endemic equilibrium 􏽢E

of model (1) is locally asymptotically stable.

3. Global Dynamics of Model (1)

For the global dynamical behaviors of model (1), we study
them in two cases: b � 0 and b> 0, as discussed in section 2.
To obtain the globally asymptotic stability of equilibria, we
can rewrite model (1) as the following equivalent model:

dI

dt
� bA + g(I)(N − I − R) − (c + d + α)I,

dR

dt
� cA + cI − (δ + d)R,

dN

dt
� A − dN − αI.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

,e dynamical behaviors of model (1) and model (23) are
consistent.

We first discuss the global dynamics of model (1) in the
case of b � 0.

Case 1. b � 0.

In this case, by considering Lyapunov function V � I

and using LaSalle’s invariance principle [17], the global
stability of the disease-free equilibrium E0 can be derived.
We can conclude this with following theorem.

Theorem 5. When b � 0 and R0 < 1, then the disease-free
equilibrium E0 of model (1) is globally asymptotic stability in
Γ.

For the global stability of endemic equilibrium E∗, we
have the following theorem.
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Theorem 6. When b � 0 and R0 > 1, the endemic equilib-
rium E∗ for model (1) is globally asymptotically stable in Γ.

Proof. Notice that (I∗, R∗, N∗) is the unique solution of (17)
when R0 > 1. When b � 0, it follows from the first equation
of (17) that (I∗, R∗, N∗) satisfies

N
∗

− I
∗

− R
∗

− (c + d + α)
I
∗

g I
∗

( 􏼁
� 0. (24)

,en, we can rewrite dI/dt in (23) as

dI

dt
� g(I) N − I − R − (c + d + α)

I

g(I)
􏼢 􏼣

� g(I) N − I − R − (c + d + α)
I

g(I)
􏼢 − N

∗
(

− I
∗

− R
∗

− (c + d + α)
I
∗

g I
∗

( 􏼁
􏼡􏼣.

(25)

Hence, the following model

dI

dt
� g(I) N − N

∗
( 􏼁 − I − I

∗
( 􏼁 − R − R

∗
( 􏼁􏼂 􏼃 − g(I)(c + d + α)

I

g(I)
−

I
∗

g I
∗

( 􏼁
􏼠 􏼡,

dR

dt
� c I − I

∗
( 􏼁 − (δ + d) R − R

∗
( 􏼁,

dN

dt
� − d N − N

∗
( 􏼁 − α I − I

∗
( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

is the equivalent model of (23).
Define a Lyapunov function

V �
1
2α

N − N
∗

( 􏼁
2

+ 􏽚
I

I∗

u − I
∗

g(u)
du +

1
2c

R − R
∗

( 􏼁
2
. (27)

One can testify that V(I, R, N)> 0 except at
I � I∗, R � R∗, N � S∗ + I∗ + R∗. ,e derivative of V along
solutions of (26) is

dV

dt
|(3.2) �

1
2α

N − N
∗

( 􏼁
dN

dt
+

I − I
∗

g(I)

dI

dt
+

1
2c

R − R
∗

( 􏼁
dR

dt

−
d

α
N − N

∗
( 􏼁

2
− I − I

∗
( 􏼁 N − N

∗
( 􏼁 − I − I

∗
( 􏼁

2

+ I − I
∗

( 􏼁 N − N
∗

( 􏼁 − I − I
∗

( 􏼁 R − R
∗

( 􏼁

− (c + d + α) I − I
∗

( 􏼁
I

g(I)
−

I
∗

g I
∗

( 􏼁
􏼠 􏼡

+ I − I
∗

( 􏼁 R − R
∗

( 􏼁 −
δ + d

c
R − R

∗
( 􏼁

2

−
d

α
N − N

∗
( 􏼁

2
− I − I

∗
( 􏼁

2
−
δ + d

c
R − R

∗
( 􏼁

2

− (c + d + α) I − I
∗

( 􏼁
I

g(I)
−

I
∗

g I
∗

( 􏼁
􏼠 􏼡.

(28)

,e assumption that g(I)/I is a continuous and monoto-
nously nonincreasing function for I≥ 0, which means that

I − I
∗

( 􏼁
I

g(I)
−

I
∗

g I
∗

( 􏼁
􏼠 􏼡≥ 0. (29)

,erefore, dV/dt is a negative definite in Γ. Using the
Lyapunov stability theorem in [18], we know that (I, R, N) �

(I∗, R∗, N∗) of (23) is globally asymptotically stable. ,is
completes the proof. □

Remark 1. If c � 0, then a � 1, and model (1) becomes

dS

dt
� A − g(I)S + δR − dS,

dI

dt
� g(I)S − (c + d + α)I,

dR

dt
� cI − (δ + d)R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

From ,eorems 5 and 6, one can directly obtain that
disease-free equilibrium and endemic equilibrium for this
model are both globally asymptotically stable. In fact, model
(30) is also a special case of literature [8].

Case 2. b> 0
For g(I), except assumptions (i) and (ii), we add
one assumption (iii). ,at is, for this case, function
g(I) satisfies.

(i) g(0) � 0 and g(I)> 0 for I> 0
(ii) limI⟶0g(I)/I � β> 0, where g(I)/I is continuous

and monotonously nonincreasing for I> 0
(iii) g(I) as a nondecreasing function of I> 0

,ere are many incidence rates that satisfy assumptions
(i)-(iii), such as bilinear incidence g(I)S � βIS stated in [1],
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saturated incidence rate g(I)S � (βIS/1) + αI discussed in
[12].

Similar to the proof of the case b � 0, the following
theorem holds.

Theorem 7. When b> 0, the endemic equilibrium 􏽢E of model
(1) is globally asymptotically stable in Γ.

Proof. Similarly, we can rewrite model (23) as the following
model:

dI

dt
� g(I)[(N − 􏽢N) − (I − 􏽢I) − (R − 􏽢R)] − g(I) (c + d + α)

I

g(I)
−

􏽢I

g(􏽢I)
􏼠 􏼡 + bA

1
g(I)

−
1

g(􏽢I)
􏼠 􏼡􏼢 􏼣,

dR

dt
� c(I − 􏽢I) − (δ + d)(R − 􏽢R),

dN

dt
� − d(N − 􏽢N) − α(I − 􏽢I).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

Define the Lyapunov function by

W �
1
2α

(N − 􏽢N)
2

+ 􏽚
I

􏽢I

u − 􏽢I

g(u)
du +

1
2c

(R − 􏽢R)
2
. (32)

which is the same as given in the case of b � 0.
Taking the derivative along (31) derives that

dW

dt
|(3.5) � −

d

α
(N − 􏽢N)

2
− (I − 􏽢I)

2
−
δ + d

c
(R − 􏽢R)

2
− (c + d + α)(I − 􏽢I)

I

g(I)
−

􏽢I

g(􏽢I)
􏼠 􏼡 + bA(I − 􏽢I)

1
g(I)

−
1

g(􏽢I)
􏼠 􏼡. (33)

,e assumption g(I) as a nondecreasing function of I> 0
implies that (I − 􏽢I)(1/g(I) − 1/g(􏽢I))≤ 0. ,erefore,
dW/dt|(3.5) is a negative definite. By the Lyapunov stability
theorem [18], the globally asymptotic stability of endemic
equilibrium is proved. □

4. Numerical Example

,eorems 5 and 6 show that when b � 0, the global dy-
namical behavior of SIRS models completely relies on the
basic reproduction numberR0. ,eorems 4 and 7 show that
when b> 0, the SIRS model has only one endemic model,
which is globally asymptotically stable. In this section, some
numerical simulations are run to demonstrate our theo-
retical results. To do this, we choose g(I) � βI and fix the
parameters at A � 1, α � 0.032, c � 0.1, δ � 0.009,

and d � 0.026.

Case 1. a � 1, b � c � 0. If β � 0.0037, we have R0 �

0.9< 1 and E0 � (38.46, 0, 0). ,en, it follows
from Figure 1(a) that the numerical solutions
of model (1) converge to E0, which is con-
sistent with ,eorem 1. Furthermore, we
choose β � 0.005. It follows that R0 � 1.22> 1
and the unique endemic equilibrium
E∗ � (31.6, 1.356, 3.85). Figure 1(b) shows
that the numerical solutions of model (1)
converge to E∗, which is also consistent with
,eorem 5.

Case 2. a � 0.8, b � 0, and c � 0.2. When taking
β � 0.0046, then R0 � 0.95< 1 and
E0 � (34.35, 0, 5.71). It follows from Figure 2(a)
that all of the numerical solutions of model (1)
converge to E0, which is consistent with ,e-
orem 6. By choosing β � 0.006, then
R0 � 1.24> 1 and the unique endemic equi-
librium E∗ � (26.33, 1.26, 9.32). It follows from
Figure 2(b) that all the numerical solutions
converge to E∗, which is also consistent with
,eorem 6.

Case 3. a � 0.6, b � 0.1, and c � 0.3. In this case, model
(1) only owns the endemic equilibrium. If we
choose β � 0.001, Figure 3 shows that all so-
lutions of model (1) converge to the unique
equilibrium E∗ � (26.03, 0.76, 10.74), while if
we choose β � 0.005, all the solutions of model
(1) converge to E∗ � (20.62, 1.82, 13.78), which
is consistent with ,eorem 7.

Case 4. ,e constant immigration is a � 0.8, b � 0, c �

0.2 for the first 100 days, and then it becomes
a � 0.8, b � 0, c � 0.2. For this case, we choose
β � 0.0046, and Figure 4(a) is one scenario of
Case 2 whenR0 � 0.95. In this case, the disease
dies out before 100 days. However, if there is an
imported disease case at 100 days, this disease
will become outbreak again and become an
endemic disease if no control measures are
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Figure 1: Time plots of populations for the case a � 1, b � 0, and c � 0 with different initial conditions. (a) β � 0.0037. (b) β � 0.005.
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Figure 2: Time plots of populations for the case a � 0.8, b � 0, c � 0.2 with different initial conditions. (a) β � 0.0046. (b) β � 0.006.
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Figure 3: Time plots of populations for the case a � 0.6, b � 0.1, c � 0.3 with different initial conditions. (a) β � 0.001. (b) β � 0.005.
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taken. As the results showed in our former work
[19, 20], the 2019 novel coronavirus (COVID-
19) will quickly become outbreak in all China in
some sense due to the fact that the exposed or
infected individuals move from Wuhan (the
source of COVID-19) to their hometown during
the Spring Festival.

5. Conclusion

In this paper, we considered the global properties of SIRS
epidemic models with general incidence rate and constant
immigration. ,e results show that when b � 0, the stability
of the model entirely depends on the reproduction number
R0. We should point out that our conclusion is a general
result, and it holds for different SIRS models once its in-
cidence rate satisfies our assumptions. In fact, many inci-
dence rates satisfy these assumptions, such as nonmonotone
incidence rate with psychological effect g(I)S � βIS/1 + αI2

and g(I)S � βIS/1 + kI + αI2, respectively, investigated in
[21, 22], which satisfy assumptions (i)-(ii), and the bilinear
incidence g(I)S � βIS stated in [1], the Hattaf-Yousfi
functional response βIS/α0 + α1S + α2I + α3IS [23] with
α0 � 1, α1 � α3 � 0 discussed in [12], which satisfy as-
sumptions (i)–(iii).

Biologically, the global asymptotic stability of disease-
free equilibrium means that the disease will die out in the
whole population, while the globally asymptotic stability of
endemic equilibrium means that the disease will persist in
the whole population. ,erefore, ,eorem 6 implies that the
disease will extinct if R0 < 1 and ,eorem 6 reveals that the
disease will persist if R0 > 1. When b> 0, the infection
cannot be eliminated due to the constant input of new
infections. In this case, model (1) always has only one
equilibrium 􏽢E. ,eorem 7 shows that the unique endemic
equilibrium 􏽢E is globally asymptotically stable, which means
that the disease always exists if the input of infectious in-
dividuals size is not zero. ,erefore, to control the transmit

of infectious disease, we should first shrink the input of
infected individuals to zero and then keep the basic re-
production number less than one. For example, COVID-19
has become a widespread outbreak in China, which in part is
due to the massive population shift in China during the
Spring Festival. Fortunately, the daily new confirmed
COVID-19 cases are declining, and we are confident that the
disease will soon become extinct under the Chinese gov-
ernment and people’s efforts.
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