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All the previous authors discussed the quadratic equation only with continuous kernels by different methods. In this paper, we
introduce a mixed nonlinear quadratic integral equation (MQNLIE) with singular kernel in a logarithmic form and Carleman
type. An existence and uniqueness of MQNLIE are discussed. A quadrature method is applied to obtain a system of nonlinear
integral equation (NLIE), and then the Toeplitz matrix method (TMM) and Nystrom method are used to have a nonlinear
algebraic system (NLAS). 'e Newton–Raphson method is applied to solve the obtained NLAS. Some numerical examples are
considered, and its estimated errors are computed, in each method, by using Maple 18 software.

1. Introduction

Integral equations of various types and kinds play an im-
portant role in several mathematical problems modelling.
Analytical solutions of integral equations, however, neither
exist nor simple to find, so several numerical methods have
been developed for finding the solutions of integral equa-
tions. 'e quadratic equation provides an important tool for

modelling many numerical phenomena, bio-mathematical
problems, and process engineering. In genetics, it represents
the reproduction equation, through which events affecting
the cells can be predicted. Gripenberg [1] studied the ex-
istence and the uniqueness of a bounded continuous so-
lution to the following integral equation of product type:

x(t) � k p(t) + 􏽚
t

0
A(t − s)x(s)ds􏼢 􏼣 g(t) + 􏽚

t

0
B(t − s)x(s)ds􏼢 􏼣, (1)

which arises in the study of the spread of an infectious
disease that does not induce permanent immunity.

Abdou and Basseem [2] used Chebyshev polynomial in
solving mixed integral equation in position and time using
spectral relationships. Javidi and Golbabai [3] solved NLFIE
by the modified homotopy perturbation method. Alipanah
and Esmaeili [4] used radial basis function to find a solution
of two-dimensional FIE. Bernstein’s method is used to solve

VIE by Maleknejad et al. [5]. 'e Toeplitz matrix method is
used to solve NLIE of Hammerstein by Abdou et al. [6]. Orsi
[7] used the product Nystrom method to get the solution of
NVIE when its kernel takes a logarithmic form and Car-
leman function. 'e degenerate kernel method is discussed
in three-dimensional NLIE by Basseem [8, 9]. Guoqiang
et al. [10] obtained numerically the solution of two-di-
mensional NVIE by collocation and iterated collocation
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methods. Brunner et al. [11] introduced a class of methods to
obtain numerically the solution of Abel integral equation.
Abdou and Raad [12] used the Adomian decomposition
method for solving quadratic NLIE.'e radial basis function
method with collocation scheme for solving quadratic in-
tegral equation of Urysohn’s type is described by Avazzadeh
[13]. Assaria et al. used meshless methods for solving NLIE
(see [14–17]).

In this paper, a new problem in a product type of mixed
integral equation with singular kernel is considered. 'e
existence and uniqueness of its solution are discussed.

'e quadratic method is applied to obtain a NLS of FIE,
and then the Toeplitz matrix method or Nystrom method is
used to obtain a NLAS which is solved numerically by the
Newton–Raphson method.

Consider the QNLE

c(x, t,φ(x, t)) − λ􏽚
t

0
V(t, τ)φ(x, t)dτ 􏽚

1

−1
k(|x − y|)φ(y, t)dy � f(x, t), (2)

where V(|t, τ|) is a continuous function of time, belongs to
the class C([0, T], [0, T]), t, τ ∈ [0, T], T< 1. 'e singular
kernel of position k(|x − y|) takes many different forms.
'e given functionf(x, t) is in the spaceC[0, T]× L2[−1, 1].
c(x, t,φ(x, t))is a given nonlinear function of the un-
known function φ(x, t). 'e constant λ has many physical
meanings.

2. Existence and Uniqueness

In order to guarantee the existence of a unique solution of
equation (2), assume

(1) 'e discontinuous kernel of equation (2) verifies

􏽚
1

−1
􏽚
1

−1
k
2
(x − y)dxdy􏼨 􏼩

(1/2)

� C. (3)

(2) 'e positive kernel of time is continuous and satisfies

max
0≤t,τ≤T

V(|t − τ|)≤M, ∀t, τ ∈ [0, T]. (4)

(3) 'e given continuous function f(x, t) ∈ L2
[−1, 1] × C[0, T]and its norm is defined as

‖f(x, t)‖ � max
0≤t≤T

􏽚
t

0
f(x, τ)dτ 􏽚

1

−1
f
2
(x, t)dx􏼢 􏼣

(1/2)

≤H.

(5)

(4) 'e function c(x, t,φ(x, t))satisfies

(i) ‖c(x, t,φ(x, t))‖ � max
0≤t≤T

􏽚
t

0
c(x, τ,φ(x, τ))dτ

[􏽚
1

−1
c
2
(x, t,φ(x, t))dx]

1/2 ≤E and ‖φ‖ � D,

where D and E are constants.
(ii) For any two functions φ1 and φ2, c(x, t,φ(x, t))

satisfies Lipchitz condition which is

c x, t,φ1(x, t)( 􏼁 − c x, t,φ2(x, t)( 􏼁
����

����≤N φ1(x, t) − φ2(x, t)
����

����.

(6)

3. Integral Operator of MQNIE

Eq. (2) can be written in the operator form as

Γ � Υφ + F, (7)

where

Υφ � λ􏽚
t

0
V(t, τ)φ(x, t)dτ 􏽚

1

−1
k(|x − y|)φ(y, t)dy. (8)

Γ and F are the Nemytskii operator generated by the
functions c(x, t,φ2(x, t)) and f(x, t), respectively.

Theorem 1. �e solution of equation (2) exists and is unique
under the condition |λ|< (1/MC).

The proof of this theorem can be deduced after the
following discussion.

Lemma 1. �e operator Y is bounded.

Proof. Since

‖Υφ‖≤ |λ| 􏽚
t

0
|V(t, τ)φ(x, τ)|dτ 􏽚

1

−1
|k(|x − y|)φ(y, t)|dy,

(9)

applying Cauchy–Schwarz inequality, we have

‖Υφ‖≤ |λ|MC D. (10)
□

Lemma 2. �e operator Υis continuous.

Proof. We assume two functions φn and φmsatisfy equation
(2), and then we get

Υφn − Υφm

����
����≤ |λ| 􏽚

t

0
|V(t, τ)| φn(x, t) − φm(x, t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dτ

· 􏽚
1

−1
|k(|x − y|)| φn(x, t) − φm(x, t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dy.

(11)
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Applying Cauchy–Schwarz inequality, we have

Υφn − Υφm

����
����≤ |λ|MC φn(x, t) − φm(x, t)

����
����, (12)

whenever ‖φn(x, t) − φm(x, t)‖⟶ 0, one can deduce
‖Υφn − Υφm‖⟶ 0, which proves the continuity of the
operator.

Moreover, under the condition |λ|< (1/MC), the op-
erator Υ is a contraction mapping, and by fixed point

theorem, equation (2) has a unique solution in the space L2
[−1, 1] × C[0, T]. □

4. Quadratic Numerical Method (See [18])

To obtain a system of NLIE, divide the time interval [0, T]as

0 � t0 < t1 < t2 < . . . < tl � T. (13)

Let t � ti, then equation (2) becomes

c x, ti,φ x, ti( 􏼁( 􏼁 − λ􏽚
ti

0
V ti, τ( 􏼁φ(x, t)dτ 􏽚

1

−1
k(|x − y|)φ y, ti( 􏼁dy � f x, ti( 􏼁. (14)

Applying the quadrature rule, equation (14) reduces to

c x, ti,φ x, ti( 􏼁( 􏼁 − λ􏽘
i

j�0
ωjVi,jφj(x) 􏽚

1

−1
k(|x − y|)φi(y)dy � fi(x), (15)

where

ωj �

h

2
, j � 0, i,

h, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

Using the notation

φi(x) � φ x, ti( 􏼁,

Vi,j � V ti, tj􏼐 􏼑,

ci x,φi(x)( 􏼁 � c x, ti,φi(x)( 􏼁,

(17)

we get

ci x,φi(x)( 􏼁 − λ􏽚
1

−1
k(|x − y|)φi(y)dy

h

2
Vi,iφi(x) + 􏽘

i−1

j�0
ωjVi,jφj(x)⎡⎢⎢⎣ ⎤⎥⎥⎦ � fi(x), (18)

which is the system of NLIE can be solved by two different
methods, namely, Toeplitz matrix method and Nystrom
method.

4.1. Algebraic System of NLIE. Consider

Γc φi, x( 􏼁 � λUφi(x) · Vφi(x) + fi(x), (19)

where

Uφi(x) � 􏽚
1

−1
k|x − y|φi(y)dy (20)

and

Vφi(x) � 􏽘
i

j�0
ωjVi,jφj(x). (21)

In order to guarantee the existence of a unique solution
of an algebraic system of NIE, we assume the following
conditions:

(i) max
i

fi(x)≤H∗

(ii) 􏽐
i
j�0 max

j
|ωjVi,j|≤M∗

(iii) max
i

|c(x, φi(x))|≤E∗

Hence, formula (19) has a unique solution under con-
dition λ< (1/CM∗).

Definition 1. 'e estimate local errorR(1)is determined by
the following relation:

R
(1)

� 􏽚
1

−1
k(|x − y|)φ(y, t)dy 􏽚

t

0
V(t, τ)φ(x, τ)dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

− 􏽚
1

−1
k(|x − y|)φi(y)dy 􏽘

i

j�0
ωjVi,jφj(x)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(22)

5. Toeplitz Matrix Method (See [6])

We apply the TMM to have a nonlinear algebraic equation.
For this, consider h � (1/N); therefore,
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􏽚
1

−1
k(|x − y|)φi(y)dy � 􏽘

N−1

n�−N

􏽚
nh+h

nh
k(|x − y|)φi(y)dy

(23)

and

􏽚
nh+h

nh
k(|x − y|)φi(y)dy ≈ An(x)φ(nh) + Bn(x)φ(nh + h) + R.

(24)

'e functions An(x) and Bn(x) are arbitrary functions to
be determined, and R is the error term. In order to obtain the
values of two functions, assume φ(y) � 1, y􏼈 􏼉. 'is yields a
set of two equations in terms of two unknown functions.
After ignoring the error term, equation (18) becomes

ci x,φi(x)( 􏼁 −
h|λ|

2
􏽘

N

n�−N

ξn(x)φi(nh)Vi,iφi(x)

� |λ| 􏽘
N

n�−N

ξn(x)φi(nh) 􏽘
i−1

j�0
ωjVi,jφj(x) + fi(x).

(25)

Let x � mh, then using the following notation:

φi(x) � φi(mh) � φim,

ξn(x) � ξnm,

fi(x) � fim,

ci x,φi(x)( 􏼁 � cim φim( 􏼁,

(26)

equation (25) becomes

cim φim( 􏼁 −
h|λ|Vii

2
􏽘

N

n�−N

ξnmφinφim

� |λ| 􏽘
N

n�−N

ξnmφin 􏽘

i−1

j�0
ωjVi,jφjm + fim,

(27)

where

ξnm �

A−n(mh), n � −N,

An(mh) + Bn−1(mh), −N< n<N,

Bn−1(mh), n � N.

⎧⎪⎪⎨

⎪⎪⎩
(28)

Equation (27) represents that the NLAS can be solved
using the Newton–Raphson method.

Definition 2. 'e Toeplitz matrix method is said to be
convergent of order r in the interval [−1, 1], if and only if,
for sufficient large N, there exists a constant D > 0 inde-
pendent of N such that

φ(x) − φN(x)
����

����≤DN
− r

. (29)

Definition 3. 'e estimate local error R(2) is determined by
the following relation:

R
(2)

� 􏽚
1

−1
k(|x − y|)φi(y)dy 􏽘

i

j�0
ωjVi,jφj(x) − 􏽘

N

n�−N

ξnmφin 􏽘

i

j�0
ωjVi,jφjm

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (30)

5.1. Existence andUniqueness ofNLAS. In order to guarantee
the existence of a unique solution of a NLAS, we assume the
following conditions:

(i) sup
n,m

| 􏽐
N
n�−N ξnm|≤C∗

(ii) sup
i,m

|fim|≤H∗∗

(iii) sup
i,n

|ci(nh, φ(nh))|≤E∗∗

Definition 4. 'e estimate local error R(T) is determined by
the following relation:

R
(T)

� 􏽚
1

−1
k(|x − y|)φ(y, t)dy 􏽚

t

0
V(t, τ)φ(x, t)dτ − 􏽘

N

n�−N

ξnmφin 􏽘

i

j�0
ωjVi,jφjm

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (31)

where R(T) ≤R(1) + R(2).

6. Nystrom Method (See [7])

Here, by using the product integration, we approximate the
integral part of equation (18) by a suitable Lagrange

interpolation polynomial. For this, let x � xm, and the in-
tegral part can be written as

􏽚
1

−1
k xm, y( 􏼁φi(y)dy � 􏽘

N

n�0
Im,nφi yn( 􏼁 � 􏽘

((N−2)/2)

n�0
􏽚

y2n+2

y2n

k xm, y( 􏼁φi(y)dy, (32)
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where xm � ym � −1 + mh, m � 1, 2, 3, . . . , Nwith h � 2/N
and N is even number.

Approximate the nonsingular part of the integral φ(y)

over each interval [y2n, y2n+2] by the Lagrange interpolation

polynomial at the points 2n, 2n+1, and 2n+2. 'erefore,
equation (32) becomes

􏽚
1

−1
k xm, y( 􏼁φi(y)dy � 􏽘

N−2/2

n�0
􏽚

y2n+2

y2n

k xm, y( 􏼁
y2n+1 − y( 􏼁 y2n+2 − y( 􏼁

y2n+1 − y2n( 􏼁 y2n+2 − y2n( 􏼁
φi y2n( 􏼁 +

y2n − y( 􏼁 y2n+2 − y( 􏼁

y2n − y2n+1( 􏼁 y2n − y2n+1( 􏼁
φi y2n+1( 􏼁􏼢

+
y2n − y( 􏼁 y2n+1 − y( 􏼁

y2n − y2n+2( 􏼁 y2n+1 − y2n+2( 􏼁
φi y2n+2( 􏼁􏼣dy.

(33)

Comparing equations (32) and (33), we deduce

Im,0 �
1
2h

2 􏽚
y2

y0

k xm, y( 􏼁 y1 − y( 􏼁 y2 − y( 􏼁dy,

Im,2n+1 �
1
h
2 􏽚

y2n+2

y2n

k xm, y( 􏼁 y − y2n( 􏼁 y2n+2 − y( 􏼁dy,

Im,2n �
1
2h

2 􏽚
y2n+2

y2n

k xm, y( 􏼁 y2n+1 − y( 􏼁 y2n+2 − y( 􏼁dy + 􏽚
y2n

y2n−2

k xm, y( 􏼁 y − y2n−1( 􏼁 y − y2n−2( 􏼁dy􏼢 􏼣,

Im,N �
1
2h

2 􏽚
yN

yN−2

k xm, y( 􏼁 y − yN−2( 􏼁 y − yN−1( 􏼁dy.

(34)

Introduce the following notations:

αn ym( 􏼁 �
1
2h

2 􏽚
y2n

y2n−2

k xm, y( 􏼁 y − y2n−2( 􏼁 y − y2n−1( 􏼁dy,

βn ym( 􏼁 �
1
2h

2 􏽚
y2n

y2n−2

k xm, y( 􏼁 y2n−1 − y( 􏼁 y2n − y( 􏼁dy,

(35)

and

ζn ym( 􏼁 �
1
2h

2 􏽚
y2n

y2n−2

k xm, y( 􏼁 y − y2n−2( 􏼁 y2n − y( 􏼁dy.

(36)

'en,

Im,0 � β1 xm( 􏼁,

Im,2n+1 � 2ζn+1 xm( 􏼁,

Im,2n � αn xm( 􏼁 + βn+1 xm( 􏼁,

Im,N � α(N/2) xm( 􏼁.

(37)

By substituting in equation (18), we get

cim φim( 􏼁 − λ 􏽘
N

n�0
Im,nφi yn( 􏼁

h

2
Vi,iφim + 􏽘

i−1

j�0
ωjVi,jφjm

⎡⎢⎢⎣ ⎤⎥⎥⎦ � fim,

(38)

where equation (38) represents the NAS in which its exis-
tence and uniqueness can be easily shown as in the previous
section.

Definition 5. 'e Nystrom method is said to be convergent
of order r in the interval [−1, 1], if and only if, for sufficient
large N, there exists a constant K> 0 independent of N such
that

φ(x) − φN(x)
����

����≤KN
− r

. (39)

7. Numerical Examples

7.1. Example 1. Consider the equation

c(φ, x, t) − λ􏽚
t

0
V(t, τ)φ(x, τ)dτ · 􏽚

1

−1
k|x − y|φ(y, t)dydt � f(x, t), (40)

Mathematical Problems in Engineering 5



where f(x, t) is given by putting φ(x, t) � x2t2 as an exact
value with c � φ2,V(t, τ) � (t − τ)2, and

k(|x − y|) �
ln|y − x|,

|x − y|
]
, 0< ]< 1.

􏼨 (41)

(1) 'e following table is selected among a large amount
of data to compare between the exact solution and its
numerical solution in the case of logarithmic kernel
for both of the previous methods in some points in
the region x ∈ [0, 1] and for different values of
timeT � 0.009, 0.02, 0.8{ }.

(2) In the following table, we compare between the
Toeplitz matrix method and Nystrom method for
different ] and fixed time T � 0.3 in Carleman kernel
form.

7.2. Example 2. In the next example, the Nystrom method
and Toeplitz matrix method are used with fixed time T �

0.4 and the position interval is divided with
N � 2, 4, 8, 16, 32 points. 'e rate of errors is evaluated
using the formula

Rate � log2
Error(2N)

Error(N)
. (42)

'e negative sign means that by increasing N, the error
decreases (see Table 3).

e
φ(x,t)

− λ􏽚
t

0
(t − τ)

2φ(x, τ)dτ · 􏽚
1

−1
ln|x − y|φ(y, t)dydt

� f(x, t),

(43)

where f(x, t)is given by setting ϕ(x, t) � xt as an exact
value.

8. General Conclusion

From the above tables and our numerical results, we can
deduce the following:

(1) 'e estimated error increases by time, where its mean
errors by using Toeplitz and Nystrom methods, when
T� 0.02, are 1.876×10−12 and 2.191× 10−12, respec-
tively, while, its mean errors when T� 0.8 are
8.565×10−6 and 3.192×10−5, respectively.

(2) 'e Toeplitz matrix method is comparatively better
than the Nystrom method for different kernels (see
Tables 1 and 2).

(3) By increasing N, the error is extremely stable in both
methods, but in the Toeplitz matrix method, the
error almost decreases by increasing in N, where the
convergence rate with +ve sign means the increasing
of errors, while its −ve sign means the errors de-
creasing (see Table 3).

(4) In Carleman kernel form, the estimated error de-
creases in small values of ], where its mean errors
take 1.816×10−8 when ]� 0.07, while it takes

5.925×10−8 when ]� 0.47 by using the Toeplitz
matrix method (see Table 2).

Data Availability

'e authors confirm that the data supporting the findings of
this study are included within the article.

Table 1: Comparison between the Toeplitz matrix method and
Nystrom method in different time when kernel takes logarithmic
form.

Toeplitz matrix method Nystrom method
T x φ Error φ Error

0.009

–0.87 0.0000613 2.630×10−15 0.0000613 4.950×10−15

–0.37 0.0000111 2.157×10−15 0.0000111 8.298×10−15

0.13 0.0000015 1.637×10−7 0.0000015 1.642×10−7

0.63 0.0000321 1.219×10−14 0.0000321 4.992×10−15

0.9 0.0000656 5.469×10−15 0.0000656 1.139×10−14

0.02

–0.87 0.0003028 1.179×10−13 0.0003028 4.435×10−13

–0.37 0.0000548 5.055×10−14 0.0000548 2.952×10−13

0.13 0.0000068 9.062×10−12 0.0000068 9.582×10−12

0.63 0.0001588 1.417×10−13 0.0001588 3.315×10−13

0.9 0.0003240 6.330×10−15 0.0003240 3.040×10−13

0.8

–0.87 0.4844307 1.468×10−5 0.4844625 4.647×10−5

–0.37 0.0876232 7.192×10−6 0.0876449 2.889×10−5

0.13 0.0108114 4.647×10−6 0.0108321 1.606×10−5

0.63 0.2540051 1.094×10−5 0.2540541 3.807×10−5

0.9 0.5183947 5.367×10−6 0.5184301 3.009×10−5

Table 2: Errors in the Toeplitz matrix method and Nystrom
method in different values of ] in Carleman kernel form.

Toeplitz matrix method Nystrom method
] x Error Error

0.07

–0.87 2.665×10−8 3.198×10−8

–0.37 2.218×10−8 2.205×10−8

0.13 1.439×10−8 1.734×10−8

0.63 1.204×10−8 1.563×10−8

0.9 1.556×10−8 2.184×10−8

0.17

–0.87 4.191× 10−8 5.629×10−8

–0.37 2.924×10−8 2.716×10−8

0.13 9.517×10−9 1.726×10−8

0.63 9.449×10−10 1.125×10−8

0.9 1.209×10−8 3.042×10−8

0.47

–0.87 1.352×10−7 2.110×10−7

–0.37 6.733×10−8 4.547×10−8

0.13 1.876×10−8 1.748×10−8

0.63 6.492×10−8 3.365×10−10

0.9 1.004×10−8 1.268×10−7

Table 3: Convergence rate in bothmethods with fixed time T � 0.4.

Toeplitz matrix method Nystrom method
N Mean error Rate Mean error Rate
2 6.641× 10−6 — 7.144×10−6 —
4 6.298×10−6 −0.0765067 1.079×10−5 0.5956999
8 6.482×10−6 0.0415453 1.110×10−5 0.0408648
16 5.691× 10−6 −0.1877568 1.102×10−5 −0.0104355
32 5.556×10−6 −0.0346356 1.096×10−5 −0.0078764

6 Mathematical Problems in Engineering



Conflicts of Interest

'e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

'e authors expresses their sincere gratitude to Professor
M. A. Abdou for his continuous and constructive interest
during this work.

References

[1] G. Gripenberg, “On some epidemic models,” Quarterly of
Applied Mathematics, vol. 39, no. 3, pp. 317–327, 1981.

[2] M. A. Abdou and M. Basseem, “Solution of mixed integral
equation in position and time using spectral relationships,”
Journal of the Association of Arab Universities for Basic and
Applied Sciences, vol. 23, no. 1, pp. 52–56, 2017.

[3] M. Javidi and A. Golbabai, “Modified homotopy perturbation
method for solving non-linear Fredholm integral equations,”
Chaos, Solitons & Fractals, vol. 40, no. 3, pp. 1408–1412, 2009.

[4] A. Alipanah and S. Esmaeili, “Numerical solution of the two-
dimensional Fredholm integral equations using Gaussian
radial basis function,” Journal of Computational and Applied
Mathematics, vol. 235, no. 18, pp. 5342–5347, 2011.

[5] K. Maleknejad, E. Hashemizadeh, and R. Ezzati, “A new
approach to the numerical solution of Volterra integral
equations by using Bernstein’s approximation,” Communi-
cations in Nonlinear Science and Numerical Simulation,
vol. 16, no. 2, pp. 647–655, 2011.

[6] M. A. Abdou, M. M. El-Borai, and M. M. El-Kojok, “Toeplitz
matrix method and nonlinear integral equation of Ham-
merstein type,” Journal of Computational and Applied
Mathematics, vol. 223, no. 2, pp. 765–776, 2009.

[7] A. P. Orsi, “Product integration for Volterra integral equa-
tions of the second kind with weakly singular kernels,”
Mathematics of Computation, vol. 56, no. 216, pp. 1201–1212,
1996.

[8] M. Basseem, “Degenerate kernel method for three dimension
nonlinear integral equation of the second kind,” Universal
Journal of Integral Equations, vol. 3, pp. 61–66, 2015.

[9] M. Basseem, “Degenerate method in mixed nonlinear three
dimensions integral equation,” Alexandria Engineering
Journal, vol. 58, no. 1, pp. 387–392, 2019.

[10] H. Guoqiang, K. Hayami, K. Sugihara, and W. Jiong, “Ex-
trapolation method of iterated collocation solution for two-
dimensional nonlinear volterra integral equations,” Applied
Mathematics and Computation, vol. 112, no. 1, pp. 49–61,
2000.

[11] H. Brunner, M. R. Crisci, E. Russo, and A. Vecchio, “A family
of methods for Abel integral equations of the second kind,”
Journal of Computational and Applied Mathematics, vol. 34,
no. 2, pp. 211–219, 1991.

[12] M. A. Abdou and S. A. Raad, “New numerical approach for
the nonlinear quadratic integral equations,” Journal of
Computational and �eoretical Nanoscience, vol. 13, no. 10,
pp. 6435–6439, 2016.

[13] Z. Avazzadeh, “A numerical approach for solving quadratic
integral equations of Urysohn’s type using radial basis
function,” Journal of Applied & Computational Mathematics,
vol. 1, no. 4, p. 116, 2012.

[14] P. Assaria and M. Dehghan, “A meshless local discrete
Galerkin (MLDG) scheme for numerically solving two-

dimensional nonlinear Volterra integral equations,” Applied
Mathematics and Computation, vol. 350, pp. 249–265, 2019.

[15] P. Assaria, “'e numerical solution of Fredholm-Hammer-
stein integral equations by combining the collocation method
and radial basis functions,” Filomat, vol. 33, no. 3, 2019.

[16] P. Assaria and M. Dehghan, “Solving a class of nonlinear
boundary integral equations based on the meshless local
discrete Galerkin (MLDG) method,” Applied Numerical
Mathematics, vol. 123, pp. 137–158, 2018.

[17] P. Assaria, “'in plate spline Galerkin scheme for numerically
solving nonlinear weakly singular Fredholm integral equa-
tions,” Journal-Applicable Analysis, vol. 123, no. 11,
pp. 2064–2084, 2019.

[18] L. M. Delves and J. L. Mohamed, Computational Methods for
Integral Equations, Cambridge University Press, Cambridge,
UK, 1985.

Mathematical Problems in Engineering 7


