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In this paper, we considers the separable convex programming problem with linear constraints. Its objective function is the sum of
m individual blocks with nonoverlapping variables and each block consists of two functions: one is smooth convex and the other
one is convex. For the general case m >3, we present a gradient-based alternating direction method of multipliers with a
substitution. For the proposed algorithm, we prove its convergence via the analytic framework of contractive-type methods and
derive a worst-case O (1/t) convergence rate in nonergodic sense. Finally, some preliminary numerical results are reported to

support the efficiency of the proposed algorithm.

1. Introduction

In this paper, we consider the following convex minimization
model with linear constraints and separable objective function:

min{Z[fi(x,-)+gi(xi)] ZAix,» =b,x; € i= 1,...,m},
(1)

where f;: B" — RU{+oo} (i=1,...,m) are closed

proper convex functions and g;: " — X (i=1,...,m)
are smooth convex functions, 2;CR" (i =1,...,m) are
closed convex sets, A; € R (i=1,...,m) are given ma-

trices, and b € %' is a given vector. Furthermore, we assume
that each g; has Lipschitz-continuous gradient, i.e., there
exists L; >0 such that

||Vgi (x)-Vy; (y)” <Ljx - yl, forallx, y € X. (2)

Throughout the paper, the solution set of (1) is assumed
to be nonempty.

A fundamental method for solving (1) in the case of m = 2
is the alternating direction method of multipliers (ADMM),
which was presented originally in [1, 2]. We refer to [3, 4] for
some review papers on ADMM. There are many problems of
form (1) with m1 > 3 in contemporary applications, such as the
robust principal component analysis model [5], the total
variation-based image restoration problem [6], the super-
resolution image reconstruction problem [7, 8], the multi-
stage stochastic programming problem [9], the deblurring
Poissonian images problem [10], the latent variable Gaussian
graphical model selection [11], the quadratic discriminant
analysis model [12], and the electrical engineering [13, 14].
Then, our discussion focuses on (1) in the case of m > 3.

A natural idea for solving (1) is to extend the ADMM
from the special case m = 2 to the general case m > 3. This
straightforward extension can be written as follows:
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( 1= .
: +
x e argminy f;(x) + g; (%)) +5 Zijj + A;x;
x;€X; j=1
1+ X Axh—b-p| b i=12,..,m, (3)
Jj=it+l H

. I

The convergence of (3) is proved in some special cases
(see [15-17]). Unfortunately, without further conditions, the
direct extension of ADMM (3) for the general case m=>3
may fail to converge (see [18]). In [19, 20], the authors
present two convergent semiproximal ADMM for two types
of 3-block problems. Recently, He et al. [21] showed that if a
new iterate is generated by correcting the output of (3) with a
substitution procedure, then the sequence of iterates con-
verges to a solution of (1). Since then, several variants of the
ADMM were proposed for solving (1) (see [21-26]).

In (3), all the x;-related subproblems are in the form of

k+1 _ 1k & k
A=) —H(Zij“—b .

min{fi (x:) + gi () + %"Aixi B a""?f Ixi ¢ '%"}’ @

with a certain known a; € %' and a symmetric positive
definite matrix H. When A; is not the identity matrix,

k
x;€X;

2

S k 11k
< —
+'Z A].xj—b—H A
j=itl

In this paper, imal ADMM with a substitution based
on (8). In Section 2, we provide some preliminaries for
further analysis. Then, we present the gradient-based
alternating direction method of multipliers with a sub-
stitution (G-ADMM-S) for solving (1) and its convergence
is shown in Section 3. In Section 4, we estimate the worst-
case iteration complexity for the proposed algorithm in
nonergodic sense. In Section 5, some preliminary nu-
merical results are reported to support the efficiency of the
proposed algorithm. Finally, some conclusions are given
in Section 6.

X; =argminy f;(x;) +(Vyg; (xf'()’xi - xf-‘) +3
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problem (4) becomes complicated. A popular technique is to
linearize the quadratic term of (4) (see [27, 28]), that is, one
can solve the following problem instead of (4):

min{fi (x;) +g;(x;) + %”T,»xi - Ci|I2 |x; € fl"i} (5)

with a certain known ¢; € %'. In general, one can solve the
following problem instead of (4):

. 1 1 2
mln{fi (x;) + g; (x;) + EHAixi - ai"i{ + E“xi - xf"Gl |x,- € 51”,»},
(6)

where x¥ is the current iteration. If G, = 7,1, - ATHA, > 0,
then (6) becomes the form of (5).
Since g; is smooth, the following problem is easier than

(6):

. 1 1
min{ £, () + (Vi (x). % = x> + 3|4 = o + 3

. "x,- - xf‘"; |xi € Sl"i}.
(7)

Now, we can give the gradient-based ADMM (G-
ADMM) iterative scheme as follows:

1 i—1 %
D A+ AX;
j=1

2

+§||x,,_x;<||;}, =1 ®)
H

2. Preliminaries

In this section, we provide some preliminaries. Let {x, y) =
xTy and |x| = V{x,xy. G>0(>0) denotes that G is a
positive definite (semidefinite) matrix. For any positive
definite matrix G, we denote |-||; as the G-norm. If G is the
product of a positive parameter 8 and the identity matrix I,
ie, G=pI, we use a simpler notation: ||| = ||-||ﬁ. Let
f: R — (-00,+00]. The domain of f denoted
by domf: ={x e R"|f(x)< +oo}. We say that f is
convex if
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flx+Q - <tf(x)+(1-8)f(y), VYx,ye R Vte[01]

(9)

For convex function f, the subdifferential of f is the set-
valued operator defined by

Af (x) ={E e R"| f() 2 f(x)+{y-x,E), Vyedomf}.
(10)

2.1. Variational Characterizations of (1). Let 0;(x;) =
fi(x) + g (x;), i=1,2,...,m, and W: =2 x
XLy x---x L, xR Since all ©,(x;) are convex functions,
by invoking the first-order necessary and sufficient condi-
tion for convex programming, one can easily find out that
problem (1) is characterized by the following variational
inequality: we obtain w* = (x},x5, ...,x;,1") € 7 and

§8eof;(x*)(i=1,2,...,m) such that
(x; =% &+ Vg (x") - AT 20,

m

A=1%) Ax by =0, (H)

i=1

m

i=1

Let x= (X Xge s X)) W= (X5 Xps ..o X

M, 0(x) =37, 0,(x;), and

m>

T
G(w):<—A1T/\,—A§A,...,—A,Tn/\,ZAix,-—b> . (1)

i=1

Then, (14) can be rewritten as the following variational

inequality (VI): we obtain w* = (x},x5,...,x,,A") € W
such that
VI(7,G,0): ©(x) -0 (x") +(w- w*)TG(w*) >0,
Ywe.
(16)

Let 7" be the solution set of VI(Z/, G, ®). Since we have
assumed that the solution set of (1) is nonempty, 7™

' 0, (%) = Oy (x7) +(x, - xT)T (-ATA7) 20,

0, (x,) = 0, (x3) +(x; - x;)T (-A717) 20,

3
for all (x;,x,,...,x,,A) €W
The Lagrange function of (1) is given by
L(xp, %5 .05 X A) = Z 0, (x;) —)LT<ZAixi - b),
i=1 i=1
(X1 X5 .. s X, A) €W
(12)

Let (x},x5,...,x,,A") be a saddle point of the Lagrange
function L(x,,Xy,...,x,,A). That is, for any 1 € %' and
xi € c%‘l (i = 1,2,...,1’}’1),

L(xf,x;,...,x;,A)SL(xf,x;,...,x;l,/l*)SL(xl,xz,...,xm,/\*).

(13)

Finding a saddle point of L(x,,x,,...,x,,,A) is equiv-
alent to finding a w* = (x},x3,...,x,,A") € 7 such that

Vx, € X,

Vx, € X5,

(14)

®m (xm) - ®m (x*) + (xm - xr:;)T (_ALA*) >0, me € ‘%‘m’

- A*)T< T A - b) >0, Vied.

is also nonempty. It follows from the definition of G (w)
that

(w' - w")TG (w)=(w - u)")TG (w"), vw,w"ew.
(17)

2.2. Some Notations. Let xK= (xk,xk ... xk), %=
T T3 L e S S L e
xk,A ), and v= (x,,... ,xm,A)rﬁL. Let H and G;
(i=1,2,...,m) be given positive definite matrices,
A= (ALA, .. A,). Ay () denotes the maximum ei-
genvalue of one matrix, and A;, () denotes the minimum
eigenvalue of one matrix. The following notions will be used

in the later analysis:
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ATHA, 0 0
M- ATHA, ATHA, 0
ATHA, ATHA; ... ATHA
ATHA, 0 0 0
ATHA, ATHA; -~ 0 0
M = : : Lo ,
ATHA, ATHA, --- ATHA,, 0
0 0 0 H!
ATHA, ATHA, ... ATHA, ATl
ATHA, ATHA, --- AJHA, A}
Q= : : L S (18)
A'HA, ATHA, --- ATHA, Al
A, A, A, H!
P = diag(Ay HA), AyHA,, ..., A, HA,,H "),
Gl(xlf )+V91( ) Vg, (xF)
G; (xk - X )+ Vg,( ) Vg; (x¥) + ATH Z A, (x - x’]‘)
Dk = >
m
G(xk —%5)+ Vg, (%) - Vg, (x5)+ ATH Y A.(xk-xk
- 1</1k B Xk>
bk:(wk—w)Dk+( ) ZA(x —x) (19)

It is easy to see that
A%"HI/Z
Ag"Hl/Z
<A§H%, ATEE, . AT EE, H‘%) >0,

A;THHI/Z

H 1/2
(20)

3. Algorithm and Convergence Analysis

In this section, we first describe G-ADMMS-S and then prove
its convergence via the analytic framework of the contrac-
tive-type method [29]. Throughout this section, we assume
that A,,,;,,(G;) > L; (i = 1,2,...,m). We propose the iterative
scheme of G-ADMM-S for solving (1) in Algorithm
G-ADMM-S:

Let y € (0,2)D; and b, be defined in (18) and (19),
respectively. Start with w’. With the given iterate w*, the new
iterate w**! is given as follows:

Step 1 (G-ADMM procedure). Execute scheme (8) to
generate o~

Step 2 (substitution procedure). Generate the new it-
erate w**! via

k+1

W =k - ocka, (21)

where
by

with « k= W
k

o = yoy (22)

Next, we establish the global convergence of Algorithm
G-ADMM-S following the analytic framework of contrac-
tive-type methods. We outline the proof sketch as follows:

(1) Prove that —D, is a descent direction of the function
(1/2)|lw — w*||* at the point w = wk  whenever
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wk + W*, where W is generated by G-ADMM scheme
(8) and w* e ™

(2) Prove that the sequence generated by Algorithm
G-ADMMS-S is contractive with respect to 7"

(3) Establish the convergence

Accordingly, we divide the convergence analysis into
three sections to address the claims listed above.

3.1. Verification of the Descent Direction. In this section, we
show that -D, is a descent direction of the function
(1/2)|w — w*||* at the point w = w* whenever w* #w* and
w* € . For this purpose, we first prove an important
inequality for the output of G-ADMM procedure (8), which
will be used often in our further discussion.

Theorem 1. W* € 7 and

0(x) - O(%) +(w-7") G(@) + P> (w-") Dy,
o Yw e W,
A;T (23)
where Py = (w-o")"| : |H YA (x’]? - E,JC')'
Ay,

0
Proof. By the optimality condition of the x;-related sub-
problem in (8), for i = 1,2,...,m, we have Ef-‘ € Z; and

ocar () vold) - (S e $ asioaor )

+ G,-(Ef - xf) + aé(ff-‘ | &"i),
(24)

where p=Vg; (x )— Vg, (xF)+ ATH(Z AX e Y
A; x —b-H I+ G; (x - xk) From the su{)gradjent
1nequa11ty, one has

0,(%) > (x, - %) (-1-p)

®i(xi)—®i(2f) (x - X ) p> (x —x) n Vx; € X,
(26)

0;(x;) - Vx; € X,

From the definition of 96 (X;) (Ek) one has
0, (x;) - ®i(ff‘) +(x; - % ) p=0, Vx; e, (27)
That is,

0<0;(x;) - Q‘(fll‘c) +(xi - Ef.‘)T{Vg,-(xf)

~Vg,(%) + Al H(iA]x’;

= (28)

j=itl

+ Z Ax -b-H I)Lk> (xf—xf)},

forall x; € 2. SubstltutmgA =\ -H (Z
(8)) in the above inequality, we obtain

020, (x) - O,(%) + (5, - &)’ {vgl( 5 - Vg, (=)

7
X - b) (see

—ATT +AHZ (-7 +G(xF - x) s
J=itl
(29)
for all x; € 2;. Summing the above inequality over

where §(;) is the indicator function of the set ;. Thus, i=12,...,m, we obtain
W~ € W and there exists ne 86(&"4)(?‘) such that 0 (x) - @(yk) +(x _ Ek)T<—AT/Tk>Ck >0, (30)
—n €df (=) + Vg, (=) +p = 00,(x) +p, (25) )
where
Gl(flf - x’f) + Vg, («F) - Vgl( ) +ATH ZZA (x] - x’]‘)
J=
Ci=| Gy(7 - k) + Vg, (xF) - Vg,(x) + ATH 5 A -55) | (31)
j=it+l

G, (%5 = %K) + Vg,, (xk) - Vg, (x5,
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Then, by adding the following term
Gl(xk )+V91( ) Vg, (xl)

(x B xk)T G; (xk -X; ) + ng( ) Vg (xf‘) +A'H Jéz Aj(x];' - yIJC) (32)

G (xk -x )+ng( ) Vg, (xk)+ATH ngj(x’]‘.—Y’]?)
fa

to both sides of (30), we get

m
AH Y 4y - %)

®(x)—®(§k)+(x—Ek)T<(—ATXk>+ A?Hsz,-(x;s—z';) >
2

ATH T A, ok —%k)
2 : (33)

Gl(xk )+V91( ) Vg (xk)

(x_fk)T G(xk—x)+ng( ) Vg (x fﬁ)+AiTH]§Aj(x’]?—%’]?)

G~ ) + Vg, (55) =V, (s4) + AL 5 (% - )

_ N N
Since 1 = Ak — H(Z] . AJEI; b), we have O (x) - ®(xk) +(w B wk) (G(wk) + Hk) 2 (w B wk) Qi
. YA Ywe W,
YAx-b|+H (F-2)=0 @9 (35)
=1

where
Combining the above two formulas, we have

T
Hy = <A{H2Aj(x’; —x’;),AgHiAj(xﬁ ~® ) A;HiAj(x’; —f’;),0> ,
i= j=

Gl(xk )"‘V!]l( ) Vg, (Xl)

G; (xk - X ) + Vg,( ) Vg;(xX) + ATH Z A; (xk —E’;) (36)

Qk:
G (xk -x )+ng( ) Vg, (x~ )+ATHZA(xk—Ek)

H- (Ak—a)
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Using the notations of G@") (see (15)) and D, (see
(18)), assertion (23) is proved. O

Based on assertion (23), we can get the following result.
Corollary 1.

(@ - w') Dz (1) YAk -5, v e
=2

(37)
Proof. It follows from (23) that
(@ -w") D= 0(%) - 0 (x") +(7" - w') G(a")
AT
1
T
+ (w" - w*)T A:Z HiAj(x] - xf)
AT ]
(38)

Using (17) and the optimality of w*, we have
O(%) - 0(x") +(7" - w') G(z*) = (=) - 0 (x")

+ (Ek - w*)TG(w*) >0.
(39)
Thus
T
(@ -w') Dy 2 |:H<Z{ij'; . Z{Aﬂcj) ot
J= J= J=
(40)

Since ZJ 14 b)) =AF -

(@ -w') D (2 —/1) ;Aj(x]._x’;).

The next theorem implies that —D,_ is a descent direction
of the function (1/2)|w — w*|* at the point w = wk when-
ever wk # - O

x —bandH(Z 1(A

(41)

Theorem 2. For all w* € W',

(wk - w*)TDk > by

=3 (b -

=1

I e

(P+Q)

—.

m

R A I e |

”H".

—.

(42)

Proof. It follows from (37) that
(wk -w" )TDk > (wk - Ek)TDk +()\k - Xk>T i Aj(x’; — E’;)
=
(43)

That is, (w* — w*)" Dy > b;.. Now, we treat the first term of
the right-hand side of (43):

+(xf - 58) (Vai(=) - Vo ()]

+(vk - Vk)Tﬁ(vk —7)

>
i=1

where the first inequality follows from the Lipschitz con-
tinuous of Vg;. Then, let us deal with the second term of the
right-hand side of (43):

|x'; —zzfll) (=) B - ) (44’
v - vk)TM(vk - Vk),
0 0 0 O
0 0 0 0
: (v =7). (45)
0 0 0 0
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Thus,
k I\T=5/ k —k K\ o kK —k
(v —v) M(v —v)+</1 —A) ZZAj(xj—xj)
=
T
=(vk—V ) Ml(vk—V )
Lok T k_ —k (46)
=E(V -V ) Mz(v —v)
Lk 2 Lk k)P
=3l =+l -7,
EATY
5=,
2 H-!
where
AlHA, 0 .. 0 0
ATHA, ATHA; -~ 0 0
M, = : : - : o)
ATHA, ATHA, ... ATHA,, 0
A, Ay - A, H!
2ATHA, ATHA, ATHA,, Ak
ATHA, 24THA, --- ATHA,, Ak
M, = : : Lo :
ATHA, AT'HA, --- 2ATHA, Ak
A, A, -~ A, 2H!
(47)
O

The assertion follows from the above three formulas.

Since H>0 and A, (G;) > L; whenever w*—w"#0,
assertion (42) shows the positivity of the term
(w* - w*)'D,, and thus, the direction —D, is a descent
direction of the function (1/2)[lw—w*||* at the point

wzwk.

3.2. Contractive Property. In this section, we show that the
sequence {wk} generated by Algorithm G-ADMM-S is
contractive with respect to the set 7.

Since the direction —D, is a descent direction of the
function (1/2)||w — w*||* at the point w = wF, the new iterate
wk*! can be generated by

W = wf - ab,. (48)

Thus,

2

*

|

H k+1
—|w -w

13 *
w —w

i *
o’ - w

= 20(w* - w*) Dy - | Dy

2
, Yw ew,

(49)

>2ab; — txzuDk]

where the inequality follows from the first inequality of (42).

g |Kwk - w*) - (kauz
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Let g(a) = 2aby - aZIIDkIIZ. Note that right-hand side of
(49), i.e, q(a), is a quadratic function of &, and

2b,
[DW?

gla)>0e=0<a< (50)

In order to obtain the closest proximity to 7", we are in the
desire to maximize this quadratic function and this pro-
motes us to take the optimal value of « as

_ b
I

a = o

(51)

With this choice of step size, it follows from (49) that

2

*

bz
-k Yuwew*. (52)

Il

2 k
s"w -w

k *
v - w

Let
T, = max{)tmax(H_l) A

> Ymax

+ Ay (MTM) >0, (53)

-1
T, = IIlin{)L—min gH )

(G) +Ly1<i<m}

’Amin(Gi)_LialﬁiSm} > 0.

From the definition of D, (see, (18)), one has
[0 <[Gill +|M (v - 7)]
< [max{lmax(H_ I)Jmax (G)+L,1<i< m}

e 0730 | - Y
<1 ot -]
where
G, (xk %) + Vg, (%) - Vg, (xF)
G, (x5 = %5) + Vg, (%) - Vg, ()
G, = . (55)
G, (xk, - %) + Vg, (x5, ) - Vg,, (x£)
H*1<Ak - Xk>

It follows from (19) and (42) that
Ain (H™1
bzminf =00 0 (6) - 11 sismffut -]
e
(56)
It is easy to see that a; > (T,/T?).
Next, we show that the sequence {w*} generated by

Algorithm G-ADMM-S is contractive with respect to the set
Y/
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Theorem 3. Let the sequence {wk} be generated by the

proposed Algorithm G-ADMM-S. Then,

2 2 y(Z—y)Tg k 2
S

k+1 * 13 ®
w -—w -—w

< |w

(57)

Proof. Using (21) and (22), we obtain

2 2 T
”war1 —w'| = "wk - w*" - Zyak(wk - w*) D,

+ (yo )’ Dy
= "wk B w*|'2 - [zyakbk - (Y“k)ank”z]

|12
-y (2 - y)by

k2 y@2-pbi

S p(2- y)T “_k “2

< "w

(58)

where the first inequality follows from the first inequality of
(42) and the second inequality follows from (54)-(56). [

3.3. Convergence Result. In this section, we establish the
global convergence for Algorithm G-ADMM-S based on the
analytic framework of contraction methods in [29].

Theorem 4(global convergence). Let the sequence {w*} be
generated by Algorithm G-ADMM-S. Then, there exists
w® € W™ such that

lim w* = w®™. (59)

k—00

Proof. It follows from (57) that the sequence {wk} is
bounded and

00 2
R ) I A T

which implies that lim kHoonk —wk| =0
Since {w*} is bounded, the sequence {w*} has at least one

cluster point and we denote it by
w® = (x7°,x5°,...,x°,1). In addition, let {w J} be the
subsequence convergin to w. Since
hmk_,oollw —TF| = {wkfi converges to w™.
By taking the 11m1t over k; in (15), we have that
O(x)-0(x7)+(w-w”)G(w)=0, Ywew. (61)

Therefore, w™ is a solution point of VI (%', G, ®). By
using (57), we have

Yw' e W”.

9

R T R TR
(62)
and thus, lim,___ w* = w™. O

4. Iteration Complexity

In this section, we will show that after ¢ iterations of Al-
gorithm G-ADMM-S, we can ensure that

min {ut -} < (63)

where ¢ =0(1/t). Thus, a worst-case O(1/e) iteration
complexity is established in nonergodic sense for Algorithm
G-ADMM-S.

Theorem 5. Let the sequence {w*} be generated by Algorithm
G-ADMM-S. Then,

min{”w - wk" } ||w o', vt ewr,
o<kt c (t +1)
(64)
where c(y (2 —y)T3/T?).
Proof. 1t follows from (57) that
[k k|| 2 " ¥
cZ"w —w"_ , Yw ew". (65)
k=0
Thus, for any integer ¢ >0, we obtain
t
2 * 2 * *
cZ"Ek—wk" S" 0 , Yw ew, (66)
k=0
and consequently, we obtain assertion (64). O

Recall that 7" is convex and closed under our as-
sumptions (see, Theorem 2.3.5 in [30]). Let

d= inf{" 0 } (67)

For any given ¢ > 0, inequality (64) indicates that Algorithm
G-ADMMS-S requires at most |d/ (ce)] iterations to fulfill the
requirement |[@* — w¥|* <e.

5. Numerical Results

To investigate the numerical performance of the proposed
algorithm, we apply it to solve a convex quadratic pro-
gramming and a nonlinear convex programming with
separable structure and report some preliminary numerical
results. All codes were written by Matlab 2016a, and all the
numerical experiments were conducted on a Dell desktop
computer with Intel Pentium Intel (R) Core processor
3.30 GHz and 4 GB memory.

5.1. Quadratic Programming Problem. First, we consider the
following quadratic programming problem:
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/1
min Z(ExiTMixi + qiTxi>
i=1
st Ax;+x,+Asx; =D, (68)
x, €RM, B <x,<By, x,€R",
|, <. x5 € R
In the experiments, we set f;(x;)=¢glx; and

g: (x1) = (1/2)xI M;x;, (i = 1,2,3). We set the matrix M, =
I,, «u, and construct the rest of matrices M; (i = 2,3) ina way
similar to [25, 31]. That is, M, =VIV,+ 7l,,, where V; are
random matrices and

max (

A (VIVY) =t i (VIV)

t—1

(69)

In our tests, we set t = 10° and generate the matrices V; =
rand ((n,;/5), n;) in Matlab function. In the experiments, we
set [B, By] = [0, 10] and the radius » = 10. For the linear
constraint, the entries of A; € %" (i = 1,3) are uniformly
distributed in (0, 1) with the density 0.1 and [ = n,. x;*’s are
given generated by x;* = sprand(n;, 1,0.5) (i = 1,2,3) in the
Matlab function. In order to guarantee the feasibility of the
problem, we set ¢g;=-M;x, (i=1,2,3) and
b= Ax] + x5 + A;x;. Thus, (x],x5,x}) is an optimal so-
lution of (68). The Algorithm G-ADMM-S is compared with
the PPSM-C in [25]. The initial iteration points are the zero
vectors x) = 0, (i=1,2,3) and A% =0y, for all tested
algorithms. We set a maximal number of 20000 for iteration
of the proposed algorithms with a modified stopping cri-
terion as follows:

[k - =] 7]
max xuxkﬁc I

<1072 (70)

Now, we specify the choices of parameters to imple-
ment these algorithms. First, we set H = I with = 0.01
and the relaxation parameter y = 1.8 for all tested algo-
rithms. For “PPSM-C”, we set r; = [ M,z + 0.15]|AT A,
(i =1,2,3), where |-|| represents the Frobenius norm. For
G-ADMMS-S, we consider two cases of the matrices G;
(1=1,2,3):

Case 1: Gy=rl,, —BATA; with 7, = ||M,|p+
0.15]| AT Al

Case 2: Gy=rl,,, —BATA; with 7, =M+
BIAT Al

In order to investigate the stability and efliciency of
our algorithms, we test 16 groups of problems with
random data. Some preliminary numerical results are
reported in Table 1. Since they are synthetic examples with
random date, for each scenario, we test 10 times and
report the average performance. Specifically, we report the
number of iterations (“Iter.”) and the computing time in
seconds (“Time”) for all the tested methods. The data in
Table 1 show that Algorithm  G-ADMM-S
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TaBLE 1: Numerical results.

G-ADMM-S
PPSM-C

(ny,ny, n3) Case 1 Case 2

Iter. Time Iter. Time Iter. Time
(500, 500, 500) 1253  6.065 1589 6.290 1340 5.302
(500, 600, 500) 1057 5483 1744 7.628 1523 6.671
(600, 500, 600) 1560 9.296 1825 8.589 1445 6.753
(600, 600, 600) 1580 10.307 1915 10.142 1642 8.625

(600, 700, 600) 1641
(700, 600, 700) 1745
(700, 700, 700) 2036
(700, 800, 700) 2857
(800, 700, 800) 2428
(800, 800, 800) 2809
(800, 900, 800) 4048

11.432 2042 11.817 1782 10.313
13.129 2223 13.157 1871 11.087
16.875 2357 16.304 1998 13.820
25.090 2628 19.335 2308 17.168
23.296 2634 19.875 2210 16.638
28.659 2804 23.453 2381 19.620
43.482 3016 28.678 2592 24.695
(900, 800, 900) 3204 41.398 3178 31.030 2675 26.080
(900, 900, 900) 3881 47.465 3332 36.036 2820 30.255
(900, 1000, 900) 10000 129.147 3790 44.253 3224 37.557
(1000, 900, 1000) 4547 71.910 3771 46.183 3140 38.250
(1000, 1000, 1000) 10000 151.273 4131 53.813 3482 45.660

(G; =1l — BAT A; with r; = [ M,z + BIAT A,llg) is more
efficient than the rest of algorithms for the test problems.

5.2. Nonlinear Convex Programming Problem. In this sec-
tion, we consider the following nonlinear convex pro-
gramming problem:

min(al, 51l + 1)) + (", + 200,

1 2 e
(B -3conss
i=1

st Ax; + A, + Asxy = b,

m
n n n .
X, € R, 0<x, %, € B, x, € R 3,|x37i|£5,1:,1,...,n3,

(71)

where ||x|l, = Y7, |x;] and M is a positive matrix. In the
experiments, we set f,(x) = lxl,g,(x)=—- (1/
2)ln(||x1||2 +1), f5(x) = q %5, g5 (x,) = (1/2)x§ Mx,, f;
(x3) = (1/2) ||x3||2, and g5 (x3) = — Z:Zl cos x3;. It is easy to
see that, when the PPSM-C in [25] solves (71), there is no
explicit solution to the subproblems. In this section, we only
use the Algorithm G-ADMMS-S to solve (71). In the ex-
periments, the entries of A; € %" (i = 1,3) are uniformly
distributed in (0,1) w1th the density 0.1 and I= .
x7 =0, X3 =0,,,, and x] is given generated by x; =
sprand(nz, 1,0.5) in the Matlab function. We set the matrix
M in a way similar to [25, 31]. In order to guarantee the
feasibility of the problem, we set g=-Mx; and
b= Ax] +Ayx; + Asx;. Thus, (x],x5,x;) is an optimal
solution of (71). The initial iteration points are the zero
vectors x? =0,,; (i=1,2,3) and A° =0y, for all tested
algorithms. We set a maximal number of 20000 for iteration
of the proposed algorithms with a modified stopping cri-
terion as follows:
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TABLE 2: Numerical results.

Case 1 (u=p) Case 2 (u =0.15)
(1,15, 113) . .

Iter. Time f-error Iter. Time f-error
(600, 600, 600) 3760.0 42.487 0.000211 3535.6 39.895 0.000207
(600, 700, 600) 5036.0 68.516 0.000196 5205.0 71.399 0.000200
(800, 700, 800) 3598.0 59.179 0.000211 3842.8 64.059 0.000211
(800, 800, 800) 5620.0 109.576 0.000202 5114.4 99.910 0.000206
(800, 900, 800) 7206.0 170.436 0.000192 7015.2 158.227 0.000199
(1000, 900, 1000) 5655.0 148.923 0.000203 5351.4 140.452 0.000205
(1000, 1000, 1000) 7577.0 223.832 0.000202 7529.2 229.729 0.000198
approximation,” Computers ¢ Mathematics with Applica-

A, |A1x]f + AlezC + A3x]3< - b“} <107’

st 5
(72)

Now, we specify the choices of parameters to implement
these algorithms. We set H = I with 8 = 0.01, the relaxa-
tion parameter y=1.8, r, =nl+BIATAl, r, = M|+
ﬁ”AgAZ"’ r3 = n3 + ﬁ”A’_{ASH’ and G - ern Xn; HA;FAt
(i=1,2,3). We consider two cases of the parameter y: Case
1: y = f3; Case 2: u = 0.15.

We test 7 groups of problems with random data. Nu-
merical results are reported in Table 2. For each scenario, we
test 5 times and report the average performance. Specifically,
we report the number of iterations (“Iter.”), the computing
time in seconds (“Time”), and the absolute error of function
value (“f-error”). The numerical results show that Algorithm
G-ADMMS-S is effective.

6. Conclusion

In this paper, for the linearly constrained separable convex
programming, whose objective function is the sum of m
individual blocks with nonoverlapping variables and each
block is convex, we present a gradient-based ADMM with a
substitution in the case m>3. We have analysed its con-
vergence and iteration complexity. The preliminary nu-
merical results have shown the efficiency of the proposed
algorithm.
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