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Section flattening often occurs in the hot bending process of magnesium alloy tube with large curvature. In order to control the
forming quality of the tube, it is necessary tomeasure the section profile of the magnesium alloy pipe online. In this paper, the laser
vision system is used to measure the profile of magnesium alloy tube. Due to the influence of the environment and the surface
quality of the pipe, there are obviously isolated outliers in the profile data, which seriously affects the accuracy and precision of the
tube measurement. An outlier identification algorithm based on robust locally weighted regression and PakTa criterion is
proposed.+is algorithm is used to identify the typically isolated outliers in the measurement process and discuss its identification
ability. Meanwhile, it is compared with the moving mean identifier and the Hampel identifier. Subsequently, the ellipse fitting of
profile data was carried out, and the fitting ellipse parameters and fitting precision of the curved section were obtained. At the same
time, the fitting results were compared before and after the outliers are eliminated. +e experiment proves that the outlier
identification method based on robust locally weighted regression and PakTa criterion can effectively identify outliers in profile
data, especially for spot outliers. +is algorithm is a robust, accurate, and efficient outlier identification method, which can
effectively improve the laser profile measurement accuracy of the pipe section and has great significance for the quality control of
magnesium alloy tube.

1. Introduction

Magnesium alloy has the advantages of low density and high
specific strength and specific stiffness, so it is gradually
receiving attention from various industries [1–4]. In par-
ticular, various types of magnesium alloy tubes are widely
used in aviation, aerospace, transportation, and other fields
[5–7]. However, various defects often occur in the hot
bending forming process of magnesium alloy tubes with
large curvatures, such as section flattening, excessive thin-
ning, and wrinkle fracture [8–11]. Section flattening is an
unavoidable problem in magnesium alloy tubes with large
curvature. As shown in Figure 1, the section flattening of the
magnesium alloy tube is mainly due to the action of bending
moments M1 and M2, the compression stress Fc on the
inner side, and the tensile stress Ft on the outer side, and the
pipe is bent due to the uneven force on both sides. As a

result, the section is deformed to become approximately
elliptical. For the same specification, the smaller the bending
radius, the larger Ft and Fc and the more obvious the trend
of section flattening. If it is a bending without a mandrel, the
flattening is more serious, which affects the forming quality
of the pipe. In order to control the forming quality of the
tube, the section profile must be measured online, and the
flattening of the magnesium alloy section must be detected
in real time.

Pipe profile measurement generally uses contact mea-
surement and noncontact measurement [12–15]. Machine
vision is an important method in noncontact measurement.
Compared with traditional manual contact measurement
methods, machine vision measurement has high accuracy
and fast speed and causes no damage [16–19]. In this study, a
laser vision system based on line structure light was used to
measure the flattening section of magnesium alloy tube
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caused by the large curvature hot bending to obtain the
accurate profile data of the magnesium alloy tube section.

+e online vision measurement of tube bending is
strongly demanded to improve the dimensional accuracy.
However, the quality of the profile data deteriorates sharply
due to the environment and surface quality of the pipe. In
particular, many isolated outliers appear in the measured
data. Outliers generally mean that the observed values are
significantly different from most observed values, that is, the
measured data do not obey the statistical distribution law of
the data [20]. In this experiment, the outliers appear in
isolation as the form of dot or point, which are not nec-
essarily related to the data quality before and after. +ere-
fore, they are also called isolated outliers. Outliers can be
generated for a variety of reasons, such as sensor noise,
channel interference, and human factors [12, 21]. +ese
outliers will cause data distortion, leading to the miscal-
culation of model parameters and wrong analysis results.
+erefore, it is necessary to identify and eliminate the
outliers in the laser measurement process to improve the
precision and accuracy of the measurement.

Commonly used identification methods for outliers
include Nair, Grubbs, Dixon, etc [22, 23].+ese methods are
difficult to apply in laser profile measurement due to the
limitation of data distribution and data amount. +is paper
presents an outlier identification method based on robust
locally weighted regression (RLWR), which is applied to
laser profile detection. RLWR is developed from locally
weighted regression (LWR) and belongs to nonparametric
estimation. Nonparametric estimation is an important re-
search direction of modern statistical analysis. It can adapt to
more complex nonlinear changes without assuming the
specific form of population distribution and error distri-
bution and without directly obtaining data models, which is
more flexible, robust, and widely applied than parameter
estimation [24, 25].

RLWR is a robust fitting process that integrates local
polynomial estimation and locally weighted regression with
excellent smoothing performance. +is method was first

proposed by Cleveland [26] and further elaborated [27, 28],
subsequently improved by Jacoby [29] and Loader [30]. It
has been gradually applied to different fields of scientific
research and engineering applications. Ma et al. [31] used the
RLWR to reduce the impact of high-frequency noise on
superresolution enhancement of multiangle remote sensing
imagery. Leonor et al. [32] minimized the influence of the
inhomogeneity effect on tree reradiation pattern by using
RLWR. Chen et al. [33] proposed an algorithm based on
RLWR and robust z-scores for the construction of a pit-free
canopy height models. Nurunnabi et al. [34, 35] and Liu et al.
[36] used RLWR techniques to study the filtering of 3D
ground cloud point data. Yu et al. [37] applied the method to
the smoothing of combustion kinetics data of pine sawdust
biochar.

+is study is based on the robust smoothing perfor-
mance of RLWR, which is used to smooth the laser mea-
surement data and realize the identification of isolated
outliers. At the same time, profile fitting was carried out to
verify the effectiveness of this algorithm in the profile
inspection.

+is paper organized as follows. Section 2 introduces the
laser vision measurement system and its basic principles and
analyzes the profile data of magnesium alloy tube, pointing
out the typical outliers in the data. In Section 3, the moving
average algorithm, Hampel algorithm, and RLWR algorithm
are, respectively, adopted to identify the outliers. It focuses
on the outlier recognition effect for the RLWR combined
with PakTa criterion, median criterion, and quartile crite-
rion, respectively. In Section 4, elliptic fitting of profile data
is performed by using the RLWR identification algorithm,
and relevant elliptic parameters and fitting error are ob-
tained, at the same time, compared with original data. Lastly,
a conclusion is given in Section 5.

2. Laser Vision Measurement System and
Profile Outliers

2.1. Laser Vision Measurement System. +e laser vision
measurement system adopted in this experiment mainly
consists of a line-structured light sensor, image processing
unit, and control unit, as shown in Figure 2. +e system
works as follows: the laser source in the sensor projects line
structure light to a measured object. +e reflected light is
captured by the camera in the sensor. +e profile data are
recorded and displayed by industrial PC after image pro-
cessing. +e measuring platform can move along the axial
direction of the pipe, which is controlled by the motion
control system, realizing the profile measurement of each
section for the pipe.

Laser triangulation is the basic principle of line-struc-
tured light vision measurement. +e line-structured light
projected by laser source forms a scattered light band on the
pipe surface, and the scattered light is imaged in CCD array.
+e distance and coordinate data of the measured point can
be obtained through triangular geometry [38, 39].

As shown in Figure 3, the point p(x, y, z) is a mea-
surement point on pipe surface, point p′(u, v) is the imaging
point of p in CCD image plane, f is the focal length of
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Figure 1: Force condition of bending process.
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camera, b is the distance between the center of light source
and the center of camera lens, and θ is the angle between the
X axis and the construction line, which is formed by the
measured point and the center of light source. +e precise
coordinates of p(x, y, z) on the measured profile can be
obtained from the spatial geometry in the figure.

2.2. Typical Profile Outliers. Observe the profile data of each
section obtained by the measuring system. +ere are two
typical isolated outliers in the measured profile, that is, the
spot outliers and the point outliers. +e spot outliers or
speckle outliers are composed of multiple point outliers, as
shown on the right side of Figure 4. +e double-point
isolated outliers are shown in the middle of Figure 5.

In order to facilitate analysis, as shown in Figure 6, the
double-point outliers in Figure 5 are superimposed in Figure 4.
Subsequently, the recognition ability of different identification
algorithm is investigated for two types of outliers.

3. Identification of Profile Outliers

3.1. Moving Mean Identifier Recognizes Isolated Outliers.
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Figure 2: +e process of laser vision measurement.
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Figure 3: Principle of triangulation measurement.
Data of typical profile B
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Figure 5: Double-point outlier in profile B.
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Figure 6: Typical profile after superposition of outliers.
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Figure 4: Spot outlier in profile A.
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Moving mean identifier or movmean identifier is the easiest
way to identify isolated outliers [40, 41]. +e basic definition
is as follows. For the data sequence x1, x2, x3, . . . , xn, moving
window length is wl, and the outliers are judged by the
following equation:

yi �
xi, xi − μi


≤ 3σi,

outlier, xi − μi


> 3σi,

⎧⎨

⎩ (1)

where μi is the local mean and σi represents local standard
deviation (LSD) within the moving window. +e moving
mean identifier is to use the 3σ criterion to judge the outliers
in the data window when the length is wl. When the dif-
ference between the measured value and the local mean is
greater than three times the local standard deviation, it is
considered as an outlier.

+e moving mean identifier is used to identify outliers in
Figure 6, and the recognition results are shown in Figures 7
and 8.

+emoving window length is gradually increased. When
the window length increases to 19, only one point outlier is
identified, as shown in Figure 7. When the window length is
increased to 25, the threshold range is reduced in the middle
of the profile so that the double-point outliers in the middle
could be completely identified (see Figure 8). However, the
spot outliers on the right are never identified regardless of
the length of the moving window.

It can be seen from Figures 7 and 8 that the dis-
tinguishing threshold at the location of outliers is greatly
increased due to the existence of outliers in the middle of the
profile. With the increase of window length, the threshold
curve in the middle of the profile is gradually smooth and the
threshold range is gradually reduced. However, the upper
and lower threshold ranges on both sides of the profile
increase significantly. It indicates that the identification
ability of outliers on both sides of the profile decreases with
the increase of window width.

3.2. Hampel Identifier Recognizes Isolated Outliers.
Hampel identifier is a median identification method, which
uses the median and absolute median deviation as a robust
estimation of the location and distribution of outliers, with
good robustness [42–45].

Hampel identifier is defined as follows: for data se-
quences x1, x2, x3, . . . , xn, the number of neighbors on ei-
ther side of is k; then, the moving window length is 2k + 1,
and the local median is mi.

mi � median xi− k, xi− k+1, xi− k+2, . . . , xi, . . . , xi+k− 2,(

xi+k− 1, xi+k− 1, xi+k.
(2)

+e local scaled median estimated deviation (MADl) is
expressed as follows:

MADl � k · median xi− k − mi


, . . . , xi+k − mi


 , (3)

where k � 1/(
�
2

√
erfc− 1(1/2)) ≈ 1.4826, which is the un-

biased estimation of the Gaussian distribution.

yi �
xi, xi − mi


≤ tMADl,

outlier, xi − mi


> tMADl.

⎧⎨

⎩ (4)

When the difference between the measured data and the
local median is greater than t times MADl, the measured
value is considered to be an outlier, as shown in equation (4).

Hampel identifier is used to recognize the outliers in
Figure 6. +e identification effect is observed by changing
the length of moving window when t � 3. As shown in
Figure 9, when the window length is 5, the threshold range of
identification is relatively narrow. Hampel identifier was
able to identify the double-point outlier in the middle of the
profile, but it is unable to identify the spot outliers on the
right side. At the same time, the identification threshold
fluctuates significantly with the spot outliers. Furthermore,
the misidentification of outliers is observed. Besides,
influenced by the discontinuous data on both sides of the
profile, the identification threshold fluctuated greatly and
the endpoint data are identified as outliers.

When the window length is increased to 25, as shown in
Figure 10, the upper and lower identification threshold on
both sides of the profile increased significantly and the
central double point outliers can be effectively identified, but

2 4–4 –2 0–8 –6–10 6
x (mm)

51
51.5

52
52.5

53
53.5

54
54.5

55

z (
m

m
)

Original signal
Outlier

Lower
Upper

Figure 7: Outlier recognition using movmean identifier, window
length� 19.
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Figure 8: Outlier recognition using movmean identifier, window
length� 25.
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the spot outliers on the right side of the profile are unrec-
ognized. It is worth noting that the misidentification in
Figure 9 no longer appeared. Meanwhile, several discon-
tinuous data at the right end of the profile are identified as
outliers.

If the moving window length continues to increase, the
identification threshold on both sides of the profile will
increase accordingly. Although the double-point outliers can
be identified, the spot outliers are still unrecognizable.

Compared with the moving mean identifier, the Hampel
identifier significantly reduces the threshold range and the
fluctuation phenomenon, which can effectively identify
point outliers, but it is still unable to identify spot outliers. In
addition, the large interval of profile data will increase the
difference between the data and the median, resulting in a
large fluctuation for threshold, which affects its ability to
identify outliers.

3.3. Recognition of Isolated Outliers Based on RLWR. In this
section, the RLWR algorithm is combined with PakTa
criterion, median criterion, and quartile criterion to identify
the isolated outliers and choose the appropriate smoothing
window length and observe its identification effect.

3.3.1. Identification of Outliers Based on RLWR and PakTa
Criterion. +e RLWR smoothing algorithm is combined with
the PakTa criterion, i.e., 3σ criterion, to identify the laser profile
outliers; this algorithm can be referred to as the RLWRP
identifier.+e basic approach of this identifier is to smooth the
profile data by using the RLWR algorithm firstly, and then the
residual between smoothing data and original data is calcu-
lated; finally, we use the PakTa criterion to identify outliers.

+e algorithm of RLWRP identifier is as follows.
+e measured data sequence is xi, yi , i � 1, 2, . . . , n.

+e data model assumes the following:

yi � g xi(  + εi, (5)

where g(xi) is a smooth function of xi and εi is independent
and normally distributed with zero mean and variance.

Set the smoothing coefficient as f, where 0<f≤ 1, and
round f · n to get the data width r, r � [f · n]. Taking each
observation point xi as the center, select the appropriate f to
determine the smoothing window length wl, wl � xi ± r.

Subsequently, a weight function is selected for the locally
weighted regression (LWR). LWR typically uses tricube
weight function W(x) for weighted least squares fit, defined
as

W xi(  �

1 −
d xi,xj( 

maxj∈N xi( )d xi,xj( 
 

3
⎡⎣ ⎤⎦

3

, j ∈ N xi( ,

0, j ∈ N xi( ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where N(xi) is local neighborhood in smoothing window
which is closest to xi and d(xi, xj) is the distance between xi

and xj in smoothing window. +e value of W(xi) is a
maximum for the point closest to xi and reduces to zero for
the point farthest to xi in smoothing window.

Use weighted least squares method get estimates of
parameters. +e parameters estimates of equation (5) are the
values of the parameters that minimize


n

i�1
Wi(x) yi − g xi( ( 

2
. (7)

+e coefficients from each local neighborhood are used
to estimate the fitted values g(xi) at xi.

Generally, the RLWR selects the bisquare weight func-
tion Q(z) as follows:

Q(z) �
1 − |z|2 

2
, |z|< 1,

0, |z|≥ 1,

⎧⎨

⎩ (8)

where zi � ei/(6 · s), in which ei is the fitting residual, i.e.,
ei � yi − yi. s � Median(|ei|), in which s is the median of |ei|.

Replace W(xi) with Q(zi) · W(xi) as new bisquare
weight, which is used to estimate the new set of RLWR
coefficients by minimizing the error sum of squares:



n

i�1
Q zi( W xi(  yi − g xi( ( 

2
. (9)

+e new RLWR fitting value yi is calculated using
weighted least squares method. Repeat the above steps of
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Figure 10: Outlier recognition using Hampel identifier, window
length� 25.
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Figure 9: Outlier recognition using Hampel identifier, window
length� 5.
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robust enhancement, and the final robust locally weighted
fitting value is obtained.

Next, the outliers are identified according to the 3σ
criterion. +e residual gi is calculated by using the
smoothing value obtained by the RLWR algorithm and the
original measurement data, and then we get the mean of
residual, i.e., μ � 1/n 

n
i�1 gi. Finally, the standard deviation

σ is obtained:

σ �
 gi − μ( 

2

n − 1
 

1/2

. (10)

When the difference between the residual and the mean
is greater than three times the local standard deviation, it is
considered to be an outlier, as shown in the following
equation:

yi �
normal data, gi − μ


≤ 3σ,

outlier, gi − μ


> 3σ.

⎧⎨

⎩ (11)

RLWRP identifier is used to identify the outliers in Fig-
ure 6, and its identification ability is observed under different
smoothing windows. +e length of smoothing window in-
creases gradually from 5.+is method shows good recognition
effect when the length of smoothing window increases to 11.

As shown in Figure 11, the blue dot is the original data
and the red dash dot line is the RLWR smoothing curve. +e
RLWR smoothing curve retains the characteristics of
original profile without the risk of excessive smoothing. In
Figure 12, the distribution trend of the original data is re-
moved, which is obtained by using the residual between the
smoothing data and the original data, and the outliers in the
residual are identified by the 3σ criterion, as shown in the
box. +e identification result also is plotted in Figure 11. It
can be seen from the figure that the method successfully
identifies the double-point outlier and the spot outlier.
Meanwhile, a few discontinuous data at the right end of the
profile are recognized as outliers.

3.3.2. Identification of Outliers Based on RLWR and Median
Criterion. +is section uses RLWR smoothing algorithm
combined withmedian criterion to identify outliers; it can be
called the RLWRM identifier. +e algorithm is as follows.

According to the residual gi obtained in above section,
the median of the residual sequence is calculated, i.e.,
mg � median(gi).

+e scaled median absolute deviation (MAD) is defined
as follows:

MAD � k · median xi − median gi( 


 , i � 1, 2, . . . , n,

(12)

where k � 1/(
�
2

√
erfc− 1(1/2)) ≈ 1.4826.

When the data element is greater than three times MAD,
it is considered to be outlier, as shown below.

yi �
xi, xi − mg



≤ 3MAD,

outlier, xi − mg



> 3MAD.

⎧⎪⎨

⎪⎩
(13)

+e RLWRM identifier is used to identify outliers in
Figure 6. +e RLWR smoothing data are used when the
smoothing window length is 11. +e identification effect is
shown in Figures 13 and 14. In Figure 13, the blue point is
the residual between RLWR smoothing data and original
data and the red boxes are the outliers identified by the
median criterion.+e identification result and the smoothed
value are plotted in Figure 14 for observation. It can be seen
from the figure that although the RLWRM identifier can
recognize the double-point outliers and the spot outliers,
there are many misidentifications about the isolated outliers.

3.3.3. Identification of Outliers Based on RLWR and Quartile
Criterion. +is section uses RLWR smoothing algorithm
combined with quartile criterion to identify outliers; it can
be called the RLWRQ identifier. Quartile criterion is a
relatively robust identification method; the algorithm di-
vides sorted data into quarters; Q1, Q2, and Q3 are their
break points. Q1 is lower quartile (25 percentile), Q2 is
median (50 percentile), and Q3 is upper quartile (75 per-
centile). +e interquartile range (IQR) is introduced here as
a statistic for checking outliers, i.e., IQR � Q3 − Q1.

Outliers are defined as elements more than 1.5 IQR
above Q3 or below Q1.
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Figure 11: Outlier recognition using RLWRP identifier, window
length� 11.
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Figure 12: Residual of original and smoothed data using RLWRP
identifier.
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yi �
xi, Q1 − 1.5(IQR) ≤gi ≤Q3 + 1.5(IQR),

outlier, otherwise.


(14)

+e RLWRQ identifier is used to identify outliers in
Figure 6. Similarly, the smoothing window length of RLWR
is 11. +e identification results are shown in Figures 15 and
16. It can be seen from the figures that the identification
effect of the RLWRQ identifier is similar to the RLWRM
identifier. +is algorithm also has misidentification of
outliers and identifies more normal data as outliers. If these
values are removed, the profile will not be truly reflected,
forming new errors and affecting themeasurement accuracy.

4. Profile Fitting and Error Analysis

According to the previous section, the RLWRP identifier can
obtain better identification results for the isolated outlier.
+e identification results in Figure 13 are used to remove
outliers, and the ellipse fitting experiment is performed by
the least squares method.

+e least squares method is one of the most important
methods of data fitting. +e least squares method has the
characteristics of simple, effective, and strong applicability.
+erefore, this method is selected to conduct ellipse fitting
research. +is paper chooses the algebraic least squares
method to carry out ellipse fitting research, which is to
determine the ellipse parameters by measuring the smallest
algebraic distance squared from the fitting ellipse to the
ellipse.

+e elliptic algebraic equation is expressed as follows:

x
2

+ Axy + By
2

+ Cx + Dy + E � 0. (15)

According to the principle of least squares method, its
objective function is minimized as follows:

F(α) � 
n

i�1
[f(A, B, C, D, E)]

2

� 
n

i�1
x
2
i + Axiyi + By

2
i + Cxi + Dyi + E 

2
.

(16)

To minimize F(α) on the basis of the extreme value
principle, the following equation exists:
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Figure 14: Outlier recognition using RLWRM identifier, window
length� 11.
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Figure 15: Residual of original and smoothed data using RLWRQ
identifier.
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Figure 16: Outlier recognition using RLWRQ identifier, window
length� 11.
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Figure 13: Residual of original and smoothed data using RLWRM
identifier.
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zf

zA
�

zf

zB
�

zf

zC
�

zf

zD
�

zf

zE
� 0. (17)

+us, a linear equation is obtained. +en, by solving the
linear equations and combining the constraints, the values of
the equation coefficients can be obtained. Get the elliptic
equation and draw the fitted ellipse. Finally, get the ellipse
equation and draw the fitted ellipse.

+e fitting results are compared before and after outlier
eliminating, as shown in Figure 17. Meanwhile, the fitting
ellipse parameters are shown in Table 1.

In Figure 17, the blue dots are the original data, the boxes
are the outliers that are identified, the dotted line is the fitted
ellipse of the original data, and the dash-dotted line is the
fitting ellipse after removing the outliers.

Before removing outliers, “∗” is the center of the ellipse
fitted with the original data, the diameter of the ellipse’s
major axis is 11.7197mm, the eccentricity is 0.9263, and the
ellipticity is 0.6233. +e ellipticity is defined as follows:

ellipticity �
Dmax − Dmin

Dmax
. (18)

After eliminating the outliers, the center of the fitted
ellipse is “+,” the major axis diameter is 15.8586mm, the
eccentricity is 0.6739, and the ellipticity is 0.2611.

At the same time, the profile was measured by the co-
ordinate measuring machine (CMM). +e measurement
data are shown in Table 1. By comparison, it is found that the
fitting ellipse with outliers removed is similar to the mea-
surement results of CMM.

From the above figure and table, it can be found that the
fitting result of the original profile has deviated from the actual
situation. After removing the outliers by using the RLWRP
identifier, the fitted ellipse conforms to themeasurement reality.

In addition, the fitting error before and after removing
outliers is analyzed, and the results are shown in Table 2. For
the original profile, the sum of squares due to error (SSE) is
7.1938e − 06 and the root mean square error (RMSE) is
1.5750e − 04. After eliminating the outliers, the SSE and the
RMSE of the fitted ellipse are reduced to 2.1157e − 06 and
8.6617e − 05, respectively. It shows that the elimination of
outliers greatly reduces the fitting error and improves the fitting
accuracy, and the measurement results are more accurate.

5. Conclusions

In this paper, the profile of magnesium alloy tubes with large
curvature is measured by a laser vision system based on line
structure laser. +ere are two typical outliers in measurement,
that is, point outliers and spot outliers. For these outliers, the
moving average method, the Hampel method, and the RWLR
method were, respectively, adopted to identify the outliers of
profile data. And their ability to identify outliers is discussed for
the above methods with different window lengths.

+e experiment found that all the above methods could
identify the isolated point outliers, but neither the moving
mean method nor the Hampel method could identify the
isolated spot outliers. In this article, the RWLR method is
studied emphatically for the isolated outliers, which was

combined with the PakTa criterion, the median criterion,
and the quartile criterion. +e research shows that the
RWLR smoothing algorithm combined with PakTa crite-
rion, i.e., RLWRP identifier, can more accurately identify
different types of outliers with a lower misidentification rate.

At the same time, according to the outlier identification
result of the RWLRP identifier, the profile fitting was carried
out by the algebraic least squares method. +en, the main
parameters of the fitted ellipse are obtained, and the fitting
errors are calculated. After the comparison and analysis of
the fitting results before and after the outlier processing, it is
found that the data contaminated by outliers will lead to a
great deviation of profile fitting and wrong profile shape

Original data

Outliers

Fitting ellipse of
original data

The ellipse center of the
original data
Fitting ellipse after
removing outliers
The ellipse center after
removing outliers

–5 0 5 10–10
x (mm)

40

45

50

55

z (
m

m
)

Figure 17: Comparison of ellipse fitting result for original profile,
window length� 11.

Table 1: Elliptical parameters obtained by profile fitting.

Elliptical
parameters Original data After removing

outliers
+e CMM

data
Center
coordinates

(− 2.0536,
52.1455)

(− 2.1344,
48.5674) —

Major
axis (mm) 11.7197 15.8586 15.683

Minor axis mm) 4.4145 11.7173 11.378
Eccentricity 0.9263 0.6739 0.688
Ellipticity 0.6233 0.2611 0.283

Table 2: Ellipse fitting error before and after removing outliers.

Fitting error Original data After removing outliers
SSE 7.1938e − 06 2.1157e − 06
RMSE 1.5750e − 04 8.6617e − 05
MSE 2.4806e − 08 7.5024e − 09
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parameters. +e RWLRP identifier is a robust, accurate, and
efficient outlier identification method, which can effectively
deal with outliers in profile data, especially for spot outliers.
+is algorithm is suitable for data cleaning in the line
structure light measurement, which can effectively improve
the precision and accuracy of online profile measurement in
the process of hot bending of magnesium alloy tube.
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