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In practical engineering problems, the distribution parameters of random variables cannot be determined precisely due to limited
experimental data.)e hybrid uncertain model of interval and probability can deal with the problem, but it will produce extensive
computation and it is difficult to meet the requirement of the complex engineering problem analysis. In this scenario, this paper
presents a vertex method for the uncertainty analysis of the hybrid model. By combining the traditional finite element method, it
can be applied to the structural uncertainty analysis. )e key of this method is to demonstrate the monotonicity between
expectation and variance of the function and distribution parameters of random variables. Based on the monotonicity analysis,
interval bounds of the expectation and variance are directly calculated by means of vertex of distribution parameter intervals. Two
numerical examples are used to evaluate the effectiveness and accuracy of the proposed method. )e results show the vertex
method is computationally more efficient than the common interval Monte Carlo method under the same accuracy. Two practical
engineering examples are to show that the vertex method makes the engineering application of the hybrid uncertain model easy.

1. Introduction

Uncertainties are widely encountered in practical engi-
neering problems, and traditional analysis techniques for
uncertainties are based on probability theory. In probability
theory, uncertain parameters are represented by random
variables, which are quantified by distribution function and
correlation coefficient. Many probabilistic analysis methods
that are based on probability models have been well de-
veloped, such as the Monte Carlo method [1, 2], full factorial
numerical integration [3], univariate dimension reduction
[4], first-order reliability method [5, 6], and Bayesian ap-
proach [7, 8]. For the uncertainty analysis of structures, the
probabilistic theory and the finite element method are
combined to generate stochastic finite element analysis
(SFEM) [9]. SFEM techniques include Monte Carlo simu-
lation, perturbation method [10, 11], and spectral stochastic
finite element method [12, 13]. However, constructing the
precise probability model requires a large amount of

experimental data which is impractical, especially for the
complex engineering problem.

To overcome the disadvantages of the probabilistic
method, hybrid uncertain models are developed. )e hybrid
uncertain models integrate the classical probabilistic method
and interval analysis, which are commonly divided into two
types [14]. For the models of the first type, uncertain model
parameters with sufficient experimental data are represented
by the probability model, and uncertain parameters with
limited information are quantified by intervals. Several
analysis techniques for this model have been developed
[15–19]. Hybrid models of the second type are also called
probability-box or interval random variable models in the
literature [20–23]. All of the uncertain parameters are
quantified by the probability model, including some interval
distribution parameters, due to the limited information. In
the traditional probability analysis, this model can be di-
rectly constructed by interval estimation with a confidence
level; hence, it is considered as an extension of the
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probability model. Since this model was proposed by Eli-
shakoff and Colombi [24], it has been applied in the mul-
tifield of structural analysis, and several analysis methods for
this model have been developed. Based on the monotonicity
analysis for probability transformations of random variables,
Jiang et al. [25, 26] proposed two efficient algorithms for
solving the second hybrid reliability model. By combining
Monte Carlo simulation and finite element method, Zhang
et al. [27, 28] proposed an interval Monte Carlo method for
computing the failure probabilistic intervals and the re-
sponse probability bounds of structures with interval
probability variables. Xia and Yu [13] developed an interval
random perturbation method for obtaining the interval
expectations and variances of the responses of acoustic fields
and structural-acoustic systems with interval probability
variables. Xiao and Lu [29] presented a sampling method for
the structural response analysis with dependent interval
random variables. Xiao et al. [30] improved the double-loop
sampling method by using monotonicity analysis for the
interval random variables. Liu et al. [21] used the optimized
univariate dimension reduction method and the Johnson
distributions fitting method to calculate the probability
bounds of the response function. Liu et al. [31] proposed a
new uncertainty propagation method that is based on the
sparse grid technique and saddle point approximation.

From the overall perspective, significant successes have
also been realized with the hybrid interval probability model.
However, studies on interval random variables are still in
their preliminary stage. Especially for the second type of
hybrid uncertainty model, some important issues that are
associated with its response analysis remain unsolved. One
of the very challenging tasks is to improve the computational
efficiency. )e second hybrid model can be regarded as a set
of many probability models that have the same distribution
function and different distribution parameters; hence, un-
certainty analysis of the hybrid model typically is of products
with higher cost than that of the corresponding probability
model. )e Monte Carlo method is the simplest and the
most versatile method for uncertain problems with random
variables and can be combined with the finite element
method to solve practical engineering problems. However,
two-layer nesting sampling is commonly involved in the
hybrid model analysis [32], which will lead to extremely low
computational efficiency especially for complex problems.
Various modified methods that are based on the pertur-
bation technique are provided for improving the compu-
tational efficiency [33]. )ese methods use Taylor series
expansion to calculate the relative matrix; thus, the available
deterministic finite element analysis (FEA) cannot be di-
rectly utilized. To apply these methods to the practical
problems, new and more complex FEA codes must be de-
veloped. To use the hybrid uncertain model in practical
applications, the efficient and practical computational
techniques must be developed.

In this paper, a new methodology is presented for the
static structural response analysis with uncertain parame-
ters, which is represented by the second type of hybrid
model. )is hybrid model is named the interval random
variable model in this paper. For obtaining the intervals of

expectation and standard variance of the response vector of
the static structural system with interval random variables, a
vertex method is proposed. A monotonicity analysis is
conducted for the expectation and variance of the response
vector with respect to interval variables. On the basis of the
monotonicity analysis, the intervals of expectation and
variance of the response vector are calculated by the classical
probabilistic method. )e response vector of the complex
structural system is calculated by the determined FEA. )e
remainder of this paper is organized as follows. )e
mathematical background regarding the interval random
arithmetic is discussed in Section 2.)emethod for the static
structural system with interval random variables is proposed
in Section 3. In Section 4, the effectiveness and efficiency of
the proposed method are evaluated by four numerical ex-
amples. In Section 5, the conclusions of this study are
presented.

2. Mathematical Background

2.1. Expectation and Variance of Interval Variables. Let X
denote a random vector with n independent random
variables:

X� X1, . . . , Xi, . . . , Xn( , i � 1, 2, . . . , n. (1)

Assuming a distribution, the parameters of Xi are in-
terval variables. )e interval variables that are associated
with the random parameter Xi can be represented as an
interval vector xI

i

xI
i � xL

i , xR
i , (2)

or in component forms

x
I
i,j � x

L
i,j, x

R
i,j , j � 1, 2, . . . , m, (3)

where xL
i and xR

i are the lower and upper bounds, respec-
tively, of the interval variable vector xI

i ; j is the number of
interval variables in the interval vector xI

i ; and xL
i,j and xR

i,j

are the lower and upper bounds, respectively, of the interval
variable xI

i,j. )us, the interval random vector with interval
parameters xI

i can be denoted as

X xI
  � X1 xI

1 , . . . , Xi xI
1 , . . . , Xn xI

n  . (4)

)e expectation E(X(xI)) and variance var(X(xI)) of
the independent interval random vector X(xI) can be
expressed as

E X xI
   � E X1 xI

1 , . . . , Xi xI
i , . . . , Xn xI

n  

� E X1 xI
1  , . . . ,E Xi xI

i  , . . . , E Xn xI
n   ,

var X xI
   � var X1 xI

1 , . . . , Xi xI
i , . . . , Xn xI

n  

� var X1 xI
1  , . . . , var Xi xI

i  , . . . , var Xn xI
n   .

(5)

2.2. Calculation of the Expectation and Variance Based on
Monotonicity Analysis. Consider the following linear
function of n independent interval random variables:
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f X xI
   � a0 + a1X1 xI

1  + a2X2 xI
2  + · · · + anXn xI

n ,

(6)

where Xi(xI
i ) is an interval random variable and ai is a

coefficient of the linear function. Based on classical statistical
theory, the expectation and variance of the response dis-
tribution of f(X(xI)) are

E f X xI
    � a0 + 

n

i�1
aiE Xi xI

i  ,

var f X xI
    � 

n

i�1
a
2
i var f Xi xI

i   .

(7)

To obtain the lower and upper bounds of expectation
and variance of the interval random function f(X(xI)), a
new arithmetic will be proposed in this section.

)e spatial derivative of E(f(X(xI))) with respect to xi,j

can be expressed as
zE f X xI( ( ( 

zxi,j

� ai

zE Xi xI
i( ( 

zxi,j

. (8)

A monotonicity analysis of the expectation for com-
monly used PDFs is conducted, and the results are presented
in Table 1. According to Table 1, (zE(Xi(xI

i ))/zxi,j) remains
negative or positive. Hence, (zE(f(X(xI)))/zxi,j) is
monotonic, and extreme points of E(f(X(xI))) exist on the
boundaries of xI. In this case, the vertex method can be used
to calculate the extreme points. If ai(zE(Xi(xI

i ))/zxi,j)> 0,
xL

i,j minimizes E(f(X(xI))); if ai(zE(Xi(xI
i ))/zxi,j)< 0, xR

i,j

minimizes E(f(X(xI))). In other words, the optima of
E(f(X(xI))) are the vertex of the interval xI.

According to the monotonicity analysis, the values that
minimize and maximize E(f(X(xI))) can be determined.
Subscripts L and R represent the minimum and maximum
values, respectively, of E(f(X(xI))). For example, (xL

i,j)L is
the value at which the minimum is attained and (xL

i,j)R is the
value at which the maximum is attained. )e extreme
minimum value vector and the extreme maximum value
vector are denoted as xL and xR. )us, extreme values of the
expectations can be expressed as

min E f X xI
     � E f X xL( ( ( ,

max E f X xI
     � E f X xR( ( ( .

(9)

Hence,

E
I

f X xI
    � E f X xL( ( ( , E f X xR( ( (  , (10)

where EI(f(X(xI))) is the interval of expectation of
f(X(xI)).

)e partial derivative of var(f(X(xI))) with respect to
xi,j is

zvar f X xI( ( ( 

zxi,j

�
a2

i zvar f Xi xI
i( ( ( 

zxi,j

, (11)

which is always negative or positive for the commonly used
PDFs in Table 1. Similar to the analysis above, the interval of
variance of f(X(xI)) can be expressed as

varI
f X xI

    � var f X xL( ( ( , var f X xR( ( (  ,

(12)

where varI(f(X(xI))) is the interval of variance of
f(X(xI)).

According to the above analysis, the expectation and
variance of equation (6) with the uncertain distribution
parameters are monotonous. Based on the monotonicity
analysis, the vertex method is presented to quickly calculate
the interval bounds of expectation and variance by equations
(11) and (12). )is vertex method can avoid the optimal
iterative search process.

3. Structural Uncertainty Analysis Static
System with Interval Random Variables

3.1.Calculationof theExpectationandVarianceofaStructural
Static System. In the previous section, an interval random
vector is defined. An interval random matrix is constructed
in this section, which is a matrix whose elements are the
interval random variables. Consider the real linear equations
that are solved by a displacement-based linear static FEA.

In this paper, it focuses on the large finite element (FE)
model with a load vector that includes interval random
variables. Hence, the real linear equations can be expressed
as

KU(X) � F X xI
  , (13)

where K is the real stiffness matrix, F(X(xI)) is the interval
random structure load vector, and U is the interval random
displacement response vector of the system. )e solution of
(13) that is considered in this paper is expressed in terms of
the intervals of expectation and standard variance of U.

Solving the matrix equation (13), the interval random
displacement response vector can be expressed as

U(X) � K− 1F X xI
  , (14)

where

U(X) �

u1 X xI( ( 

u2 X xI( ( 

⋮

un X xI( ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K− 1
1 �

k− 1
1,1 k− 1

1,2 · · · k− 1
1,n

k− 1
2,1 k− 1

2,2 . . . k− 1
2,n

⋮ ⋮ ⋮ ⋮

k− 1
n,1 k− 1

n,2 . . . k− 1
n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F �

F1 X xI( ( 

F2 X xI( ( 

⋮

Fn X xI( ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)

)en, the nodal displacement ui(xI) can be obtained as
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ui X xI
   � k

− 1
i,1F1 X xI

   + k
− 1
i,2F2 X xI

   + · · · + k
− 1
i,nFn X xI

  .

(16)

Merging the same interval random Xi(xI
i ), equation (16)

can be expressed as

ui X xI
   � a1X1 xI

1  + a2X2 xI
2  + · · · + anXn xI

n ,

(17)

where (a1, a2, . . . , an) is the coefficient of the linear function.
According to equations (10) and (12), the interval expec-
tation and variance of ui(X(xI)) are

E
I

ui X xI
    � E ui X xL( ( ( , E ui X xR( ( (  ,

varI
ui X xI

    � var ui X xL( ( ( , var ui X xR( ( (  .

(18)

3.2. Solving theCoefficient ofUncertaintyFunction. To obtain
equation (17), it must solve equation (14) to obtain the
inverse of the stiffness matrix, namely, K− 1. However, the
computation of K− 1 is time-consuming, and K− 1, which is
typically nonsingular, requires a large amount of memory
for storage, especially for large-scale engineering problems.
In this section, a new method is proposed for computing the
coefficient in equation (16), which avoids the computation of
K− 1.

Consider n independent interval random variables
Xi(xI

i )(i � 1, 2, ..., n). Sampling n sets from Xi(xI
i ) and

substituting them into equation (13), the node displacements
are calculated by the following equation:

ui,1 � a1X1,1 + a2X1,2 + · · · + anX1,n,

ui,2 � a1X2,1 + a2X2,2 + · · · + anX2,n,

. . .

ui,n � a1Xn,1 + a2Xn,2 + · · · + anXn,n,

(19)

where (Xi,1, Xi,2, . . . , Xi,n)(i � 1, 2, . . . , n) is the i-th sam-
pling data from (X1(xI

1), X2(xI
2), . . . , Xn(xI

n)),(a1, a2, . . . ,

an) are coefficient that are associated with inverse of the
stiffness matrix, and (ui,1, ui,2, . . . , ui,n) is the i-th node
displacement under n sampling data. By solving the linear
equation (19), the coefficient in (17) can be obtained. In
engineering application, the node displacements can be
calculated by the commercial FEA software. )erefore, the
present algorithm avoids to solve the inverse matrix of the
stiffness matrix and improves the computation efficiency of
the vertex method.

4. Illustrative Examples

4.1. Static Response of a Truss Structure. To evaluate the
efficiency of the approach that is presented in this paper, a
linear elastic plane truss is considered, as illustrated in
Figure 1. )e design values of the structural parameters for
all members are the cross-sectional areas for elements
A1∼A6 �10.32 cm2, the cross-sectional areas for elements
A7∼A15 � 6.45 cm2, and Young’s modulus E� 2×1011 Pa.

Suppose that loads P1, P2 � 0.3, and P3 � 0.1m are interval
random variables; their parameters are listed in Table 2.

In the following, the intervalMonte Carlomethod (IMC)
[34] and the vertex method (VM) are used to calculate the
lower and upper bounds of the expectation and variance of
the structural displacement response at node 5. In every IMC
method, the first step is to arbitrarily generate intervals via
the inverse transform method, and the second step is to use
interval FEA to compute the interval structural system.
)en, the lower and upper bounds of the expectation and
variance can be determined. )is model has been investi-
gated with the IMC method in [34]; hence, the results with
5000, 50000, and 500000 samples are presented in Table 3.
)e intervals of the expectation and variance for the pro-
posed method are also specified in Table 3. To compare the
two methods in terms of efficiency and accuracy, relative
errors are calculated and are presented in Table 4.

According to Table 4, the accuracy of the results is
influenced by the simulation times for IMC. To improve the
accuracy, more computational time is required. )us, the
results of IMC 500,000 are closer to the exact values. )e
intervals of expectation and variance that are calculated by
the proposed method and IMC 500,000 are close to each
other. )e IMC is time-consuming as large simulations and
interval arithmetic are required. For realizing the same level
of accuracy with the proposed method, the total number of
simulations for IMC 500,000 is 5×105. Because of the
monotonicity analysis, the proposed method saves much
time.

4.2. Static Response of a Cantilever Plate. Consider the
analysis of a cantilever plate, as illustrated in Figure 2.
Suppose that there is no preload in any element, and only a
force is applied at the top-right corner of the plate. )e
material of this plate is steel. )e deterministic values of
the plate are a Poisson ratio of m � 0.3 and a thickness of
H � 0.1m. Suppose that Young’s modulus E, the concen-
trated loads P, and the density ρ are interval random
variables. as presented in Table 5. )e finite element
method is used to compute the displacements in the plate
A. To demonstrate the analysis technique, the 3-node
triangular element idealization in Figure 2(b) is
considered.

In this example, the finite element model includes 8
nodes and 6 elements. )e self-weights of the triangular
elements are considered and are equivalent to the element
nodal load matrix. As Young’s modulus E is an interval

2 3
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3 4 7
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P1 P2 P3

Figure 1: Truss structure.
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random variable, the inverse of the stiffness matrix K cannot
be calculated directly. Instead, it can obtain K � EK1 and
K− 1 � 1/EK− 1

1 , where K1 is a new matrix and K− 1 and K− 1
1

are the inverse matrices of K and K1, respectively. )e node
displacement vector is U � K− 1F � 1/EK− 1

1 F. )e displace-
ment of node 4 can be expressed as u4 � (1/E)f(P, ρ), where
f(P, ρ) is a linear function of P and ρ. )e expectation and
variance can be computed via the following equations:

E u4(  � E
1
E

 E(F(P, ρ)),

var u4(  � var
1
E

 var(F(P, ρ)) + var
1
E

 E(F(P, ρ))
2

+ var(F(P, ρ))E
1
E

 
2
,

(20)

where the interval bounds of E(1/E) and var(1/E) can be
calculated by classical numerical integration. As F(P, ρ) is a
linear function, the proposed method is used to be compute
EI(F(P, ρ)) and varI(F(P, ρ)). Synthesizing the above
method, the interval expectation EI(u4) and the interval
variance varI(u4) are obtained:

E
I

u4(  � [− 1886e − 5, − 1.687e − 5],

varI
u4(  � [0.0851e − 11, 0.1178e − 11].

(21)

From this example, the proposed method can be applied
to FE models in which the stiffness matrix includes common
interval random variables.

4.3. Automobile Frame Structure. )e proposed method is
applied to the uncertainty analysis of a practical automobile
frame, which is modified from the numerical example in
[35]. As illustrated in Figure 3, the frame is composed of two
side beams and eight cross beams, and four equivalent
distributed forces, namely, Q1, Q2, Q3, and Q4, are applied to
the frame, which result from the operator cabin, engine
assembly, gasoline tank, and goods, respectively. Because the
vertical stiffness affects the performance of the automobile,
the real maximum displacement d of the frame in the Y-
direction is analysed. In this application, Q1, Q2, Q3, and Q4
represent four uniformly distributed forces that act on the
frame. Young’s modulus E is 2.07 × 105 MPa. )e density ρ
and the four external forces Q1 ∼ Q4 are treated as interval
random variables, which are listed in Table 6.

In this example, FEA is used to compute the real dis-
placement d of the frame in the Y-direction. FE model of the
automobile frame structure includes 30854 nodes and 29038
shell elements, and it has 92562 degrees of freedom. So the
inverse matrix of the stiffness matrix is a 92562× 92562
nonsingular matrix. It is hard to solve and save the inverse
matrix. However, it is very easy to solve the displacement
vector of the automobile frame structure with commercial
FE software. For this problem, the solve process is given as
follows. By the method in Section 3.2, the function of un-
certain parameter and output response can be calculated.
Firstly, 5 sets of data sampling from the five interval variables
are denoted as (ρi, (Q1)i, (Q2)i, (Q3)i, (Q4)i)(i � 1, 2, ..., 5).
Secondly, using the 5 sets of data solves the nodal dis-
placement with the FEA and will get six nodal displacements
of di(i � 1, 2, . . . , 5). )en, the linear coefficient of the in-
terval random variables associated with displacement re-
sponse d is solved by equation (19). Lastly, the interval
expectation and variance of d can be computed by the
present method. If it is to compute the other nodal interval
expectation and variance, result from 5-time computations
of FEA can be utilizable.

To evaluate the efficiency, multiple nodal interval ex-
pectations and variances and their computation times with
the proposed method are listed in Table 7. Simulation of this
FE model and solution of the expectation and variance are
conducted using ANSYS 12.1 and MATLAB 7.1, respec-
tively, on a 3.10GHz Intel (R) Core (TM) i3-2100. )e
runtime for a single FE model with the ANSYS software is
14.1082 s, and 5 rounds of FEA require 70.5 s. )e com-
putation time of a nodal interval of expectation and variance
with MATLAB code is 0.004 s. Hence, the total computing
time for the expectation and variance of a node is 70.5 s.
Point A in Figure 3 is the most likely point for generating the
maximum displacement in the Y-direction. Via the

Table 2: Statistics of random loadings that act on the truss.

Statistical parameters 90% confidence interval
Mean ln P1 [4.4465, 4.5199]
Mean ln P2 � 0.3 [5.5452, 5.6186]
Mean ln P3 � 0.1m [4.4465, 4.5199]
ln standard dev. P1, P2, P3 0.09975

Table 3: Expectation and variance of the displacement of node 5
with IMC and the vertex method.

Method Expectation of the
displacement of node 5

Variance× E of the
displacement of node 5

IMC
5,000 [− 0.0619094, − 0.057528] [1.7665, 2.0459]

IMC
50,000 [− 0.0619236, − 0.0575412] [1.7833, 2.06539]

IMC
500,000 [− 0.0619299, − 0.057547] [1.7724, 2.053]

)e
vertex
method

[− 0.0619326, − 0.057549] [1.7758, 2.0566]

Table 4: Relative error of expectation and variance.

Method

Relative error of
expectation

|(IMC − VM)/VM|(%)

Relative error of
variance

|(IMC − VM)/VM|(%)

Lower
bound

Upper
bound

Lower
bound

Upper
bound

IMC 5,000 0.0375 0.0365 0.5237 0.5203
IMC 50,000 0.0145 0.0136 0.4223 0.4274
IMC 500,000 0.0044 0.0035 0.1915 0.1750
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Figure 2: Finite element idealization of the cantilever plate: (a) a cantilever plate; (b) 3-node triangular element model.

Table 5: Distributions of the three random variables for the cantilever beam.

Random variable Distribution parameter 1 Distribution parameter 2 Distribution type
E(Pa) uE � 2.1 × 1011 βE � [4.8, 5.15] Type I extreme value
P(N) up � [0.98 × 104, 1.1 × 104] βp � [0.85 × 103, 1 × 103] Type I extreme value
ρ(kg/m3) μp � [7600, 7920] σp � 65 Normal

Table 6: Distribution of the random variables for the automobile frame.

Uncertain variables Parameter 1 Parameter 2 Distribution type
ρ (kg/mm3) μρ ∈ [7.595 × 10− 6, 7.905 × 10− 6] σρ � 5.0 × 10− 8 Normal
Q1(N) μQ1

� 1.8 × 104 σQ1
� [100, 120] Normal

Q2(N) μQ2
� [6.27 × 103, 6.65 × 103] σQ2

� [50, 65] Normal
Q3(N) aQ3

� [6.27 × 103, 6.65 × 103] bQ3
� 6.76 × 103 Uniform

Q4(N) aQ4
� 1.2 × 105 bQ4

∈ [1.55 × 105, 1.65 × 105] Uniform

Table 7: Intervals of expectation and variance of 8 nodes of the hexahedral element at Point A.

Node no. Interval expectation Interval variance Computing time (s)
7535 [1.35818561, 1.40560837] [0.05111004, 0.08449479] 0.004
7536 [1.37720014, 1.42532155] [0.05238237, 0.08659866] 0.004
7537 [1.39622373, 1.44504495] [0.05367141, 0.08873017] 0.004
7538 [1.41532345, 1.46484746] [0.05498247, 0.09089812] 0.004
7539 [1.59172880, 1.64721704] [0.06870772, 0.11359037] 0.004
7540 [1.59152348, 1.64702854] [0.06874794, 0.11365677] 0.004
7541 [1.59078654, 1.64628807] [0.06873925, 0.11364232] 0.004
7542 [1.59236121, 1.65139101] [0.06875101, 0.11364232] 0.004

b1
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Y
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Figure 3: An automobile frame structure [35].
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proposed method, the intervals of expectation and variance
of 8 nodes (nodes 7535 to 7542) of the hexahedral element at
Point A are listed in Table 7. )e acquisition of all nodal
expectations and variances only requires 208.066 s, which is
the sum of 6 times the computation time of FE model and
the product of 30854 nodes and 0.004 s. )e double Monte
Carlo method with 10000 samples is used to calculate the
displacements of 30854 nodes [30]. )e calculation requires
4.3529×105 s, which is equivalent to 120.9151 h, which is
more than 2000 times the computation time of the proposed
method (Table 8). According to this numerical example, the
proposed method is highly computationally efficient for this
complex engineering problem.

4.4. A Tall Wind Turbine Tower. Tower is mainly bearing
structure of a large wind turbine. It supports the gravita-
tional and inertial loads of nacelle and wind rotor as well as
aerodynamic loads, actuation loads, and so on [36]. Tower
reliability and safety is key factor in ensuring the normal
operation of the wind turbine. It is important to acquire the
accurate loads under the limit state. However, tower loads
are difficult to calculate. Load calculation involves

multisource uncertainties that include variations in wind
tunnels measurements, geometric distortions of the blade
under loading, 3D rotational correction, and so on [37].
)erefore, tower loads under the extreme wind speed cannot
quantify by the probability model. )e interval random
variables are an effective means of quantifying the loads. In
this section, the loads are represented by interval random
variables. )e vertex method is used to calculate the dis-
placement of tower.

In this example, tower is from a 2MW horizontal-axis
wind turbine. )e diameter of the wind rotor is 100m, and
the high of hub center is 80m. )e geometry dimensions
of tower are shown in Figure 4. ANSYS software is used to
analyze the structural response. SOLD45 solid elements
and hexahedron mesh are applied to establish the finite
element model, which includes 153686 nodes and 190742
elements. Loads and the material parameters are given in
Table 9. FE model is plotted in Figure 5. )e displacement
counter is also given in Figure 6, which is used to validate
the FE model.

)ere are 6 interval random variables in the FE model of
wind turbine tower. According to equation (22), 6 times of
random sample is performed to acquire the

Table 8: Comparison of the calculation time of all the nodal displacement expectation and variance.

Double Monte Carlo )e vertex method
Total time(s) 4.3529×105 208.066

80m

Φ100m

(a)

0.06mA A

78m

A-A

Φ4.2m

Φ4.2m

Φ3.6m

Φ2.4m

(b)

Figure 4: 2MW horizontal-axis wind turbine and tower.

Table 9: Distribution of the random variables for the wind turbine tower.

Name Uncertain variables Expectation Standard deviation Distribution type
X-direction force (KN) Fx [44.6, 51.5] 1.78 Normal
Y-direction force (KN) Fy [880, 960] 35 Normal
Z-direction force (KN) Fz [1864, 1960] 75 Normal
X-direction moment (KN·m) Mx [9247, 9500] 240 Normal
Y-direction moment (KN·m) My [112, 120] 4.5 Normal
Z-direction moment (KN·m) Mz [4281, 4490] 171 Normal
Density (kg/mm3) ρ 7.75 × 10− 6 — —
Elasticity modulus (Pa) E 2.1 × 1011 — —
Poisson’s rate μ 0.2 — —
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(Fx)i, (Fy)i, (Fz)i, (Mx)i, (My)i (i � 1, 2, 3, · · · , 6) from
the interval random variables Fx, Fy, Fz, Mx, My, and Mz.
Substituting them into the finite element model, 6 groups of
nodal displacement are calculated by the AYSYS software.
Solving equation (19), coefficient ai(i � 1, 2, 3, . . . , 6) is
computed. Based on theoretical analysis, the maximum
displacement locates the top of the tower. So, nodes of top
tower are selected and their coefficient ai(i � 1, 2, 3, . . . , 6) is
calculated. )ere is monotonicity between loads and dis-
placement, so the vertex method can be used to calculate the
interval expectation and variances. )e nodal displacement
of 121 nodes located in the top of tower is computed and
shown in Figure 7. In Figure 7, red points and black points
are the lower and upper bounds of expectation, respectively.
Standard deviations of displacement are calculated and
plotted in Figure 8. Because standard deviations of the in-
terval random variables are constants, standard deviation of
a nodal displacement is also a constant. In practical engi-
neering design of wind turbines tower, the maximal dis-
placements are concerned. So, the maximal upper bounds of
expectation and the maximal standard deviations are se-
lected as the design values, which are shown in Table 10.
)ese parameters could be used for reliability analysis and
structural design.

)is example is to show the analysis and design produce
using the interval random variables. )e traditional un-
certainty analysis methods for the interval random variables

are time-consuming, which makes it difficult to solve the
complex engineering problem. )e proposed method takes
full advantage of the monotonicity and makes the engi-
neering application of the hybrid model possible.

Figure 5: FE model of tower.
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Mathematical Problems in Engineering 9



5. Conclusion

In this paper, a vertex method is proposed for the static
analysis of structures that have interval random variables.
Expressions for calculating the expectation and variance
of interval random responses are developed. A monoto-
nicity analysis of the response expectation and variance
with respect to interval distribution parameters and
variables is conducted. On the basis of the monotonicity,
the intervals of the expectation and the standard variance
of the response vector are obtained by the traditional
probability method. )e efficiency and accuracy of the
proposed method are demonstrated based on four
examples.

)e proposed method is simple. )e developed FEA
code utilizes a highly popular method that has been widely
used for analysis of practical engineering structures. Solving
for the expectation and variance of a linear function with a
random vector, traditional probability theory yields an ac-
curate mathematical expression. Monotonicity is applied to
compute the extreme values of the function. )ese tradi-
tional methods are integrated to form the vertex method.
)erefore, the proposed method and the traditional method
are compatible. Although the proposed method can be used
only for a specified type of uncertain structures, it can
address large-scale engineering problems with a traditional
technique. In the future work, it will extend the proposed
technique to the uncertain analysis of more general struc-
tural models.
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