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,is paper addresses a version of the linear quadratic control problem for mean-field stochastic differential equations with
deterministic coefficients on time scales, which includes the discrete time and continuous time as special cases. Two coupled
Riccati equations on time scales are given and the optimal control can be expressed as a linear state feedback. Furthermore, we give
a numerical example.

1. Introduction

,e linear quadratic control problem is one of the most
important issues for optimal control problem. ,e study of
the mean-field linear quadratic optimal control problem
also has received much attention [1, 2], and it has a wide
range of applications in engineering and finance [3, 4].
Until now, the mean-field linear quadratic control problem
is well understood both from the continuous and discrete
points of view. In this paper, the mean-field linear qua-
dratic control problem is studied in the version of time
scales.

Time scales were first introduced by Hilger [5] in 1988
in order to unite differential and difference equations into a
general framework. Recently, time scales theory is exten-
sively studied in many works [6–14]. It is well known that
the optimal control problems on time scales are an im-
portant field for both theory and applications. Since the
calculus of variations on time scales was studied by Bohner
[15], results on related topics and their applications has
become more and more. ,e existence of optimal control
for the dynamic systems on time scales was discussed
[16–18]. Subsequently, maximum principles were studied
in several work [19, 20], which specify the necessary
conditions for optimality. In addition, Bellman dynamic

programming on time scales for the deterministic optimal
control problems was considered in [21]. At the same time,
some results were obtained for the linear quadratic control
problems for deterministic linear system on time scales in
[22, 23]. In [24], the authors developed the linear quadratic
control problems for stochastic linear system on time
scales. To our best knowledge, the optimal control prob-
lems for the mean-field system on time scales have not been
established.

We are interested in the mean-field stochastic linear
quadratic control problem on time scales (MF-SΔLQ for
short). To deal with the well posedness of the state equation
on time scales, we use the similar iteration method as [25].
Very similar to continuous and discrete cases, we can also get
the associated Riccati equations (see [26, 27], for continuous
and discrete cases) on time scales, and the optimal control
can be expressed as a linear state feedback through the
solutions of the coupled Riccati equations.

,e organization of this paper is as follows. In Section 2,
we show some preliminaries about time scales’ theory and
MF-SΔLQ problem.We study the well posedness of the state
equation on time scales and show the feedback represen-
tation of the optimal control by the associated Riccati
equations on time scales in Section 3. Finally, an example is
presented.
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2. Preliminaries

A time scales T is a nonempty closed subset of real numbers
set R and we denote [0, T]T � [0, T]∩T . In this paper, we
always suppose T is bounded. ,e forward jump operator σ
and backward jump operator ρ are, respectively, defined by

σ(t) � inf s ∈ T : s> t{ }, (1)

ρ(t) � sup s ∈ T : s< t{ }, (2)

(supplemented by inf ∅ ≔ sup T and sup∅ ≔ inf T ,
where ∅ denotes the empty set). If σ(t) � t (σ(t)> t,
ρ(t) � t, and ρ(t) � t), the point t is called right-dense
(right-scattered, left-dense, and left-scattered). Moreover, a
point is called isolated if it is both left-scattered and right-
scattered. For a function f, we denote fσ � f · σ and
fρ � f · ρ. ,e definition of the graininess function μ is as
follows:

μ(t) � σ(t) − t. (3)

We now present some basic concepts and properties
about time scales (see [10, 11]).

Definition 1. Let f be a function on time scales T , and f is
called right-dense continuous function if f is continuous at
every right-dense point and has finite left-sided limits at
every left-dense point. Similarly, f is called left-dense
continuous function if f is continuous at every left-dense
point and has finite right-sided limits at every right-dense
point. If f is right-dense continuous and also is left-dense
continuous, then f is called continuous function.

Remark 1. If a function f is right-dense continuous, then f

has an antiderivative F.
Define the set Tκ as follows:

T
κ

�
T\(ρ(sup T), sup T], if sup T <∞,

T , if sup T �∞.
􏼨 (4)

Definition 2. Let f: T⟶ R be a function and t ∈ Tκ, and if
for all ε> 0, there exist a neighborhood U of t such that

f(σ(t)) − f(s) − f
Δ
(t)(σ(t) − s)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ε|σ(t) − s|, for all s ∈ U.

(5)

We call fΔ(t) the Δ derivative of f at t.

Remark 2. If the functions f and g are differentiable at t,
then the product fg is also differentiable at t and the product
rule is given by

(fg)
Δ

(t) � f
Δ

(t)g(t) + f
σ
(t)g
Δ
(t). (6)

In this paper, we adopt the stochastic integral defined by
Bohner et al. [25]. Let (Ω,F, Ft􏼈 􏼉t∈[0,T]T

, P) be a complete
probability space with an increasing and continuous fil-
tration Ft􏼈 􏼉t∈[0,T]T

. We define that L2
F([0, T]T ;R) is the set

of all Ft-adapted, R-valued measurable process X(t) such
that E[􏽒

T

0 |X(t)|2Δt]<∞.
A Brownian motion indexed by time scales T is defined

by Grow and Sanyal [13]. Although the Brownian motion on
time scales is very similar to that on continuous time, but
there are also some differences between them. For example,
the quadratic variation of a Brownian motion on time scales
(see [14]) is an increasing process yet, but it is not deter-
ministic. In fact, 〈W〉t � λ([0, t]T ) + 􏽐s≤t(Wσ

s − Ws)
2,

where λ is the Lebesgue measure.
Next, we give the definition of the stochastic Δ integral

and its properties.

Definition 3 (see [25]). ,e random process X(t) is sto-
chastic Δ integrable on [0, T]T if the corresponding 􏽥X(t) is
integrable, and define the integral value of X(t) as

􏽚
T

0
X(t)ΔW(t): � 􏽚

T

0
􏽥X(t)dW(t), (7)

where
􏽥X(t) � X sup [0, t]T( 􏼁, for all t ∈ [0, T], (8)

and the Brownian motion on the right side of (7) is indexed
by continuous time.

We also have the following properties.
Let X(t), Y(t) ∈ L2

F([0, T]T ;R) and α, β ∈ R. ,en,

(i) 􏽚
T

0
(αX(t) + βY(t))ΔW(t) � α􏽚

T

0
X(t)ΔW(t) + β􏽚

T

0
Y(t)ΔW(t),

(ii)E 􏽚
T

0
X(t)ΔW(t)􏼢 􏼣 � 0,

(iii)E 􏽚
T

0
X(t)ΔW(t)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼢 􏼣 � E 􏽚
T

0
|X(t)|

2Δ〈W〉t􏼢 􏼣 � E 􏽚
T

0
|X(t)|

2Δt􏼢 􏼣,

(9)

where the integral X with respect to the quadratic variation
of Brownian motion 〈W〉t is defined by Stieltjes integral as
􏽒

T

0 Xt(ω)Δ〈W〉t(ω).

Notation 1. ,e following notation will be used:

M′: the transpose of any vector or matrix M
|M|: �

������
􏽐i,jm

2
ij

􏽱
for any matrix or vector M � (mij)
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M≥ 0: M is a positive semidefinite matrix
Sn: the space of all n × n symmetric matrices
〈X, Y〉t: the quadratic covariation process of X and Y

L∞([0, T]T ;R): the space of bounded, Δ-Lebesgue
integrable, and R-valued functions on [0, T]T

C1([0, T]T ;R): the family of all R-valued continuous
functions f(t) defined on [0, T]T such that they are Δ
differentiable in t

Finally, we introduce our MF-SΔLQ problem. Consider
the following stochastic Δ-differential equation:

ΔX(t) � A(t)X(t) + A(t)E[X(t)] + B(t)u(t) + B(t)E[u(t)]􏼈 􏼉Δt + D(t)u(t) + D(t)E[u(t)]􏼈 􏼉ΔW,

X(0) � x,

⎧⎨

⎩ (10)

where the coefficients A(·), A(·), B(·), B(·), D(·), andD(·)

are all deterministic matrix-valued functions and
u(·) ∈ U[0, T]T � L2

F([0, T]T ;Rm). ,e cost functional is

J(x; u(·)) � E 􏽚
T

0
X′(t)Q(t)X(t) + E[X(t)]′Q(t)E[X(t)]􏽨􏼨

+ u′(t)R(t)u(t) + E[u(t)]′R(t)E[u(t)]􏼃Δt

+ X′(T)GX(T) + E[X(T)]′GE[X(T)]􏼉,

(11)

where G and G are symmetric matrices and
Q(·), Q(·), R(·), andR(·) are given deterministic matrix-
valued functions.

Problem (MF-SΔLQ). For any given initial state x ∈ Rn, find
a u∗(·) ∈ U[0, T]T such that

J x; u
∗
(·)( 􏼁 � inf

u(·)∈U[0,T]T

J(x; u(·)). (12)

u∗(·) is called an optimal control of the MF-SΔLQ
problems and the corresponding X(·; x, u∗(·)) is called an
optimal state process.

3. Main Results

First, we introduce the following assumptions which are
necessary for the proofs of our main results.

(H1) Assume that

A(·), A(·) ∈ L
∞

[0, T]T ;R
n×n

( 􏼁, B(·), B(·), D(·), D(·) ∈ L
∞

[0, T]T ;R
n×m

( 􏼁. (13)

(H2) Assume that

Q(·), Q(·) ∈ L
∞

[0, T]T ; S
n

( 􏼁, R(·), R(·) ∈ L
∞

[0, T]T ; S
m

( 􏼁, G, G ∈ S
n
, (14)

and for some δ > 0,

Q(s)≥ 0, Q(s) + Q(s)≥ 0, R(s)≥ δI, R(s) + R(s)≥ δI, s ∈ [0, T]T ,

G≥ 0, G + G≥ 0.

⎧⎨

⎩ (15)

Remark 3. Assumption (H1) can guarantee the existence
and uniqueness of the solution of the mean-field stochastic
linear system (10). Under Assumptions (H1) and (H2), we
can establish two coupled Riccati equations to show the
feedback control.

Now, we show the well posedness of the state equation
(10) by the iteration method, which is very similar to the way
as in [25].

Theorem 1. Let (Ω,F, Ft􏼈 􏼉t∈[0,T]T
, P) be given and W be a

standard Ft􏼈 􏼉t∈[0,T]T
Brownian motion. Suppose that (H1)

holds, then system (10) has a unique solution
X ∈ L2

F([0, T]T ;Rn) for any (x, u(·)) ∈ Rn × U[0, T]T .

Proof. For the existence, we adopt the iteration method and
define
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X
0
(t) � x, (16)

X
n
(t) � x + 􏽚

t

0
A(s)X

n− 1
(s) + A(s)E X

n− 1
(s)􏽨 􏽩􏽮

+ B(s)u(s) + B(s)E[u(s)]􏼉Δs

+ 􏽚
t

0
D(s)u(s) + D(s)E[u(s)]􏼈 􏼉ΔW(s),

n ∈ N, t ∈ [0, T]T .

(17)

Let δn(t) � E[|Xn+1(t) − Xn(t)|2], and we claim that

δn
(t)≤M

n+1
hn+1(t, 0), n ∈ N, t ∈ [0, T]T , (18)

where M is a generic constant and hn is the generalized
monomials defined in [28]. When n � 0, we obtain

δ0(t) � E X
1
(t) − X

0
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼔 􏼕

� E 􏽚
t

0
A(s)X

0
(t) + A(s)E X

0
(t)􏽨 􏽩 + B(s)u(s) + B(s)E[u(s)]􏽮 􏽯Δs + 􏽚

t

0
D(s)u(s) + D(s)E[u(s)]􏼈 􏼉ΔW(s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼢 􏼣

≤ 2E 􏽚
t

0
A(s)X

0
(s) + A(s)E X

0
(s)􏽨 􏽩 + B(s)u(s) + B(s)E[u(s)]􏽮 􏽯Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼢 􏼣

+ 2E 􏽚
t

0
|D(s)u(s) + D(s)E[u(s)]|

2Δs􏼢 􏼣

≤ tM � Mh1(t, 0).

(19)

Suppose inequality (14) holds for n − 1, then

δn
(t) � E X

n+1
(t) − X

n
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼔 􏼕

� E 􏽚
t

0
A(s) X

n
(s) − X

n− 1
(s)􏽨 􏽩 + A(t)E X

n
(s) − X

n− 1
(s)􏽨 􏽩􏽮 􏽯Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼢 􏼣

� 2E 􏽚
t

0
A(s) X

n
(s) − X

n− 1
(s)􏽨 􏽩Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼢 􏼣 + 2E 􏽚
t

0
A(t)E X

n
(s) − X

n− 1
(s)􏽨 􏽩Δs

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼢 􏼣

≤M 􏽚
t

0
E X

n
(s) − X

n− 1
(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼔 􏼕Δs � M 􏽚
t

0
δn− 1

(s)Δs

≤M 􏽚
t

0
M

n
hn(s, 0)Δs � M

n+1
hn+1(t, 0), n ∈ N, t ∈ [0, T]T .

(20)

,is proves the claim.
Similarly, we have

supt∈[0,T]T
X

n+1
(t) − X

n
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
≤ 2TM 􏽚

T

0
X

n
(s) − X

n− 1
(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼒

+E X
n
(s) − X

n− 1
(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼔 􏼕􏼓Δs, n ∈ N.

(21)

By a martingale inequality and by inequality (18) (see [25],
for details), one has

E supt∈[0,T]T
X

n+1
(t) − X

n
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼔 􏼕≤CM
n
hn(T, 0), n ∈ N,

(22)

where C � 4TM. Note that a simple probability inequality is
obtained from Markov’s inequality,
P(|Y|> a)≤ (1/ap)E[|Y|p], where a> 0, p> 0, and Y is a
random variable. Using the probability inequality, where

Y � supt∈[0,T]T
|Xn+1(t) − Xn(t)|, a � 1/2n and p � 2, we

obtain

P supt∈[0,T]T
X

n+1
(t) − X

n
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>

1
2n

􏼒 􏼓≤ 4n
CM

n
hn(T, 0), n ∈ N.

(23)

According to Borel–Cantelli lemma, this implies that

P supt∈[0,T]T
X

n+1
(t) − X

n
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>

1
2n

i.o.􏼒 􏼓 � 0, (24)

where i.o. is the abbreviation of “infinitely often”. Conse-
quently, X0 + 􏽐

n−1
i�0 (Xi+1 − Xi) converges uniformly. Let

n⟶∞, we have

X(t) � x + 􏽚
t

0
A(s)X(s) + A(s)E[X(s)] + B(s)u(s)􏼈

+ B(s)E[u(s)]􏼉Δs + 􏽚
t

0
D(s)u(s) + D(s)E[u(s)]􏼈 􏼉ΔW(s).

(25)
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For the uniqueness, we assume X1 and X2 are both
solution. ,en,

X1(t) − X2(t) � 􏽚
t

0
A(s) X1(s) − X2(s)( 􏼁􏼈

+ A(s)E X1(s) − X2(s)􏼂 􏼃􏼉Δs.

(26)

It follows that

E X1(t) − X2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏽨 􏽩≤C 􏽚
t

0
E X1(s) − X2(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏽨 􏽩Δs. (27)

By Gronwall’s inequality [29], we obtain E[|X1(t) − X2
(t)|2] � 0. ,us, X1 � X2.

We are in a position to give the main results of the MF-
SΔLQ optimal control problem. For this, we need a useful
lemma. By some simple calculations, it is not hard for us to
get the following product rule for stochastic processes on
time scales, which is very similar to Du and Dieu [12]. □

Lemma 1. For any two n-dimensional stochastic processes
X1 and X2 with
ΔXi(t) � ai t, Xi(t)( 􏼁Δt + bi t, Xi(t)( 􏼁ΔW(t), t ∈ [0, T]T ,

Xi(0) � ξi,
􏼨

(28)

where ai, bi: T × Rn⟶ Rn, we have

ΔX1′(t)X2(t) � X1′(t)ΔX2(t) + ΔX1′(t)( 􏼁X2(t)

+ Δ〈X1, X2〉t, t ∈ [0, T]T .
(29)

In this case,

Δ〈X1, X2〉t � μ(t)a1′a2Δt + b1′b2Δ〈W〉t

+ μ(t) a1′b2 + a2′b1( 􏼁ΔW(t), t ∈ [0, T]T ,

(30)

where the function μ is the graininess function as defined in
(3) on time scales.

Remark 4. Another form of the abovementioned product
rule is as follows:

ΔX1′(t)X2(t) � X1′(t)ΔX2(t) + ΔX1′(t)( 􏼁X2(t)

+ ΔX1′(t)ΔX2(t),
(31)

where ΔtΔt � μ(t)Δt, ΔtΔW � ΔWΔt � μ(t)ΔW, and
ΔWΔW � Δ〈W〉t. When T � R, it is consistent with It􏽢o’s
formula.

Remark 5. As mentioned before, because the quadratic
variation of a process depends on not only the process itself
but also the structure of time, the quadratic variation of a
process becomes a little more complicated than the classical
one. For instance, the quadratic variation of a deterministic
continuous process is no longer zero.,erefore, we can have
different forms of the product rule on time scales. For ex-
ample, the product rule (6) is equivalent to

(fg)
Δ

(t) � f
Δ

(t)g(t) + f(t)g
Δ

(t) + μ(t)f
Δ

(t)g
Δ
(t).

(32)

Now, we use the square completion technique to present
a state feedback optimal control via two coupled Riccati
equations on time scales.

Theorem 2. Let (H1) and (H2) hold; then, the following
Riccati equations on time scales (RΔEs) admit unique solution
P(·), 􏽢P(·) ∈ C1([0, T]T ; Sn):

−PΔ(t) � Q(t) + A′(t)Pσ(t) + Pσ(t)A(t) + μ(t)A′(t)Pσ(t)A(t) − I + μ(t)A′(t)( 􏼁Pσ(t)B(t)K− 1(t)B′(t)Pσ(t)

(I + μ(t)A(t)), t ∈ [0, ρ(T)]T ,

P(T) � G,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(33)

−􏽢P
Δ

(t) � Q(t) + Q(t) +(A(t) + A(t))′􏽢P
σ
(t) + 􏽢P

σ
(t)(A(t) + A(t)) + μ(t)(A(t) + A(t))′􏽢P

σ
(t)(A(t) + A(t))

− I + μ(t)(A(t) + A(t))′( 􏼁􏽢P
σ
(t)(B(t) + B(t)) 􏽢K

− 1
(t)(B(t) + B(t))′􏽢P

σ
(t)(I + μ(t)(A(t) + A(t))),

􏽢P(T) � G + G, t ∈ [0, ρ(T)]T ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

where K and 􏽢K are given as

K(t) � R(t) + μ(t)B′(t)P
σ
(t)B(t) + D′(t)P

σ
(t)D(t),

(35)

􏽢K(t) � R(t) + R(t) + μ(t)(B(t) + B(t))′Pσ
(t)(B(t)

+ B(t)) +(D(t) + D(t))′Pσ
(t)(D(t) + D(t)).

(36)

Furthermore, the optimal control of theMF-SΔLQ problems
can be presented as

u
∗
(t) � −K

− 1
(t)B′(t)P

σ
(t)(I + μ(t)A(t))(X(t)

− E[X(t)]) − 􏽢K
− 1

(t)(B(t) + B(t))′􏽢P
σ
(t)(I

+ μ(t)(A(t) + A(t)))E[X(t)], t ∈ [0, ρ(T)]T .

(37)

In this case, the optimal cost functional is
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J
∗

� x′􏽢P(0)x. (38)

Proof. From the state equation, we have
ΔE[X(t)] � (A(t) + A(t))E[X(t)] +(B(t)) + B(t)E[u(t)]􏼈 􏼉Δt,

(39)

Δ(X(t) − E[X(t)]) � A(t)(X(t) − E[X(t)]){

+ B(t)(u(t) − E[u(t)])}Δt + D(t)(u(t) − E[u(t)]){

+(D + D)E[u(t)]􏼉ΔW(t).

(40)

Assume that PΔ(t) � Γ(t) and 􏽢P
Δ

(t) � Λ(t) for some
deterministic and differentiable functions P and 􏽢P on time
scales [0, T]T . Applying Lemma 1 to
(X − E[X])′P(X − E[X]) and E[X′]􏽢PE[X], we can obtain

Δ(X(t) − E[X(t)])′P(t)(X(t) − E[X(t)])

� (X(t) − E[X(t)])′Γ(t)(X(t) − E[X(t)]) + μ(t)(u(t) − E[u(t)])′B′(t)P
σ
(t)B(t)(u(t) − E[u(t)])􏼈

+2(u(t) − E[u(t)])′B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼉Δt

+ (u(t) − E[u(t)])′D′(t)P
σ
(t)D(t)(u(t) − E[u(t)]) + E[u(t)]′(D(t) + D(t))′Pσ

(t)(D(t) + D(t))E[u(t)]􏼈 􏼉Δ〈W〉t

+ 2 [X(t) − E[X(t)] + μ(t)(A(t)(X(t) − E[X(t)]) + B(t)(u(t) − E[u(t)]))]′Pσ
(t)D(t)(u(t) − E[u(t)])􏼈

+[X(t) − E[X(t)] + μ(t)(A(t)(X(t) − E[X(t)]) + B(t)(u(t) − E[u(t)]))]′Pσ
(t)(D(t) + D(t))E[u(t)]􏼉ΔW(t),

(41)

ΔE X′(t)􏼂 􏼃􏽢P(t)E[X(t)]

� E[X(t)]′Λ(t)E[X(t)] + μ(t)E[u(t)]′(B(t) + B(t))′􏽢P
σ
(t)(B(t) + B(t))E[u(t)]􏽮

+ 2E[u(t)]′(B(t) + B(t))′􏽢P
σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏽯Δt.

(42)

By property (9), integrating from 0 to T and taking
expectation from the both sides of the above two equations
(41) and (42), we see that

(X(T) − E[X(T)])′P(T)(X(T) − E[X(T)])

� 􏽚
T

0
(X(t) − E[X(t)])′Γ(t)(X(t) − E[X(t)])􏼈

+ μ(t)(u(t) − E[u(t)])′B′(t)P
σ
(t)B(t)(u(t) − E[u(t)])

+ 2(u(t) − E[u(t)])′B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])

+(u(t) − E[u(t)])′D′(t)P
σ
(t)D(t)(u(t) − E[u(t)])

+ E[u(t)]′(D(t) + D(t))′Pσ
(t)(D(t) + D(t))E[u(t)]Δt􏼉,

(43)

E X′(T)􏼂 􏼃􏽢P(T)E[X(T)] − x′􏽢P(0)x

� 􏽚
T

0
E[X(t)]′Λ(t)E[X(t)] + μ(t)E[u(t)]′(B(t) + B(t))′􏽢P

σ
(t)(B(t) + B(t))E[u(t)]􏽮

+ 2E[u(t)]′(B(t) + B(t))′􏽢P
σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏽯Δt.

(44)
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Moreover, the cost functional can be rewritten as

J(x; u(·)) � E 􏽚
T

0
(X(t) − E[X(t)])′Q(t)(X(t) − E[X(t)])􏼂􏼨

+ E[X(t)]′(Q(t) + Q(t))E[X(t)]

+(u(t) − E[u(t)])′R(t)(u(t) − E[u(t)])

+ E[u(t)]′(R(t) + R(t))E[u(t)]Δt

+(X(T) − E[X(T)])′GX(T)

+ E[X(T)]′(G + G)E[X(T)]􏼩.

(45)

Inserting (43) and (44) into the cost functional (45) gives

J(x; u(·)) � E 􏽚
T

0
E[u(t)] + 􏽢K

− 1
(t)(B(t) + B(t))′􏽢P

σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓

′ 􏽢K(t)􏼚􏼢

× E[u(t)] + 􏽢K
− 1

(t)(B(t) + B(t))′􏽢P
σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓

u(t) − E[u(t)] + K
− 1

(t)B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑′K(t)

× u(t) − E[u(t)] + K
− 1

B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑

+(X(t) − E[X(t)])′ Γ(t) + Q(t) + A′(t)P
σ
(t) + P

σ
(t)A(t) + μ(t)A′(t)P

σ
(t)A(t)􏼂

− I + μ(t)A′(t)( 􏼁P
σ
(t)B(t)K

− 1
(t)B′(t)P

σ
(t)(I + μ(t)A(t))􏽩(X(t) − E[X(t)])

+ E X′(t)􏼂 􏼃 Λ(t) + Q(t) + Q(t) +(A(t) + A(t))′􏽢P
σ
(t) + 􏽢P

σ
(t)(A(t) + A(t))􏽨

+ μ(t)(A(t) + A(t))′􏽢P
σ
(t)(A(t) + A(t)) − I + μ(t)(A(t) + A(t))′( 􏼁􏽢P

σ
(t)(B(t) + B(t)) 􏽢K

− 1
(t)

×(B(t) + B(t))′􏽢P
σ
(t)(I + μ(t)(A(t) + A(t)))􏽩E[X(t)]􏽯Δt􏽩

+ x′􏽢P(0)x +(X(T) − E[X(T)])′(G − P(T))(X(T) − E[X(T)]) + E X′(T)􏼂 􏼃(G + G − 􏽢P(T))E[X(T)􏼣.

(46)

If P and 􏽢P satisfy the Riccati equations (33) and (34),
then

J(x; u(·)) � E 􏽚
T

0
E[u(t)] + 􏽢K

− 1
(t)(B(t) + B(t))′􏽢P

σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓

′ 􏽢K(t)􏼢

× E[u(t)] + 􏽢K
− 1

(t)(B(t) + B(t))′􏽢P
σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓Δt􏼕

+ E 􏽚
T

0
u(t) − E[u(t)] + K

− 1
(t)B′(t)P

σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑′K(t)􏼢

× u(t) − E[u(t)] + K
− 1

B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑Δt􏽩 + x′􏽢P(0)x.

(47)
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Since K> 0 and 􏽢K> 0, the optimal control should satisfy

E[u(t)] + 􏽢K
− 1

(t)(B(t) + B(t))′􏽢P
σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)] � 0, t ∈ [0, ρ(T)]T , (48)

u(t) − E[u(t)] + K
− 1

B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)]) � 0, t ∈ [0, ρ(T)]T . (49)

Making some calculations, we get the optimal control as
(37). Substituting it into (47), we have the optimal cost
functional can be expressed as (38). For the existence and
uniqueness of the solutions to the RΔEs, it is assert [24] that
Riccati equation (33) admits as a unique positive semi-
definite solution P since (H2) holds. It follows that 􏽢K> 0.
Using the similar method, we can get the solvability of the
RΔE (34). □

Remark 6. When A, B, D, Q, R, and G are all equal to zero,
then P � 􏽢P. ,is recovers the result of the classical SΔLQ
problem [24].

Remark 7. When T � R+, the coupled RΔEs (33) and (34)
reduce to the result in [26]. On the contrary, when T � Z+,
the coupled RΔEs are consistent with the case in [27].

Similarly, we have the following theorem which can be
regarded as an equivalent form of ,eorem 2.

Theorem 3. Let (H1) and (H2), then RΔE (33) and the
following RΔE (50) admit unique solution
P(·), P(·) ∈ C1([0, T]T ; Sn):

−P
Δ
(t) � Q(t) + A′(t)Pσ(t)(I + μ(t)A(t)) + I + μ(t)A′(t)( 􏼁Pσ(t)A(t) + μ(t)A′(t)Pσ(t)A(t)

+(A(t) + A(t))′Pσ
(t) + P

σ
(t)(A(t) + A(t)) + μ(t)(A(t) + A(t))′Pσ

(t)(A(t) + A(t))

− I + μ(t)(A(t) + A(t))′( 􏼁(P + P)σ(t)(B(t) + B(t)) 􏽢K
− 1

(t)

×(B(t) + B(t))′(P + P)σ(t)(I + μ(t)(A(t) + A(t)))

+ I + μ(t)A′(t)( 􏼁Pσ(t)B(t)K− 1(t)B′(t)Pσ(t)(I + μ(t)A(t)), t ∈ [0, ρ(T)]T ,

􏽢P(T) � G,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

where K and 􏽢K are given as before. For the MF-SΔLQ
problem,

u
∗
(t) � − 􏽢K

− 1
(t)(B(t) + B(t))′(P + P)

σ
(t)(I + μ(t)(A(t) + A(t))) − K

−1
(t)B′(t)P

σ
(t)(I + μ(t)A(t))􏼚 􏼛E[X(t)]

− K
− 1

(t)B′(t)P
σ
(t)(I + μ(t)A(t))X(t), t ∈ [0, ρ(T)]T ,

(51)

is an optimal control. Moreover, the optimal cost functional
with respect to u∗ is

J
∗

� x′P(0)x + x′P(0)x. (52)

Proof. As the statement in previous ,eorem 2, we can
obtain the solvability of the RΔEs (33) and (50). We need
only to prove (51) and (42). Taking integral of
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Δ(X′(t)P(t)X(t) + E[X(t)]′P(t)E[X(t)]) from 0 to T and
taking expectation, we obtain

E X(T)′P(T)X(T)􏼂 􏼃 + E[X(T)′]P(T)E[X(T)] − x′P(0)x − x′P(0)x

� −E 􏽚
T

0
X′(t)Q(t)X(t) + E[X(t)]′Q(t)E[X(t)] + u′(t)R(t)u(t) + E[u(t)]′R(t)E[u(t)]( 􏼁Δt􏼢 􏼣

+ E 􏽚
T

0
E[u(t)] + 􏽢K

− 1
(t)(B(t) + B(t))′(P + P)

σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓

′ 􏽢K(t)􏼢

× E[u(t)] + 􏽢K
− 1

(t)(B(t) + B(t))′(P + P)
σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓Δt􏼕

+ E 􏽚
T

0
u(t) − E[u(t)] + K

− 1
B′(t)P

σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑′K(t)􏼢

× u(t) − E[u(t)] + K
− 1

(t)B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑Δt􏽩.

(53)

Consequently, by completing the squares, one has

J(x; u(·)) � E 􏽚
T

0
E[u(t)] + 􏽢K

− 1
(t)(B(t) + B(t))′(P + P)

σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓

′ 􏽢K(t)􏼢

× E[u(t)] + 􏽢K
− 1

(t)(B(t) + B(t))′(P + P)
σ
(t)(I + μ(t)(A(t) + A(t)))E[X(t)]􏼒 􏼓Δt􏼕

+ E 􏽚
T

0
u(t) − E[u(t)] + K

− 1
(t)B′(t)P

σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑′K(t)􏼢

× u(t) − E[u(t)] + K
− 1

B′(t)P
σ
(t)(I + μ(t)A(t))(X(t) − E[X(t)])􏼐 􏼑Δt􏽩 + x′P(0)x + x′P(0)x.

(54)

Since K> 0 and 􏽢K> 0, we must select u such that

E[u(t)] � − 􏽢K
− 1

(t)(B(t) + B(t))′(P + P)σ(t)(I + μ(t)(A(t) + A(t)))E[X(t)],

u(t) − E[u(t)] � −K− 1(t)B′(t)Pσ(t)(I + μ(t)A(t))(X(t) − E[X(t)]), t ∈ [0, ρ(T)]T .

⎧⎨

⎩ (55)

,erefore, the optimal control satisfies (51). In this case, the
optimal cost functional is (52). ,e conclusions are
proved. □

Remark 8. ,e solution 􏽢P of the RΔE (34) equals to the sum
of P and P, where P and P are the solutions of the RΔEs (33)
and (50).

4. Example

,e theorems in Section 3 tell us that we can solve the MF-
SΔLQ problems if the corresponding Riccati equations can
be solved. Now, we discuss a numerical example based on
the method developed in the previous sections and compare
the difference among the time scales, continuous time, and
discrete time.

Consider the following example with one-dimensional
state equation on time scales T1 � [0, 1/2]∪ 1{ }∪[3/2, 2]:

ΔX(t) � E[X(t)] +
1
2
E[u(t)]􏼒 􏼓Δt + u(t)ΔW(t),

X(0) � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(56)

and the cost functional

J(u(·)) � E 􏽚
2

0
(u(t))

2
+(E[u(t)])

2
􏽨 􏽩Δt +(E[X(2)])

2
􏼢 􏼣.

(57)

,e corresponding coupled Riccati equations are

PΔ(t) � 0,

P(2) � 0,

⎧⎪⎨

⎪⎩
(58)

−􏽢P
Δ

(t) � (2 + μ)􏽢P
σ
(t) −

1
8
(1 + μ)

2 􏽢P
σ
(t)􏼐 􏼑

2
,

􏽢P(2) � 1.

⎧⎪⎪⎨

⎪⎪⎩
(59)

Mathematical Problems in Engineering 9



By solving the coupled Riccati equations and using,eorem
2, the optimal control can be expressed as

u
∗
1(t) �

−
4

1 + 0.97e2t− 1 E[X(t)], t ∈ 0,
1
2

􏼔 􏼓,

−3.05E[X(t)], t �
1
2
,

−3.99E[X(t)], t � 1,

−
4

1 + 15e− 2(2− t)
E[X(t)], t ∈

3
2
, 2􏼔 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

If we regard the time as the continuous time T2 � [0, 2],
then the optimal control is

u
∗
2(t) � −

4
1 + 15e−2(2− t)

E[X(t)], t ∈ [0, 2). (61)

On the contrary, if we treat the time as discrete time
T3 � 0, 1, 2, 3, 4{ }, then the optimal control is

u
∗
3(t) �

−2.87E[X(t)], t � 0,

−3.61E[X(t)], t �
1
2
,

−3.13E[X(t)], t � 1,

−1.21E[X(t)], t �
3
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

,e comparison result of the optimal controls is shown
in Figure 1.

,e example implies that we should take an impulsive
control when t � 1/2 and t � 1 in the time scales setting T1.
Although the optimal control in the interval [3/2, 2) on the

time scales T1 is the same as in the continuous case, they are
different in the interval [0, 1/2). It is to say that the time gap μ
influences not only the impulsive control but also the op-
timal control in the interval [0, 1/2). We can see that the
optimal control depends on the structure of time domain.
,is interesting result is hidden in the classical continuous
and discrete formulation.

5. Conclusions

,e linear quadratic optimal control problems for mean-
field stochastic differential equations on time scales are
studied. It unifies and extends the mean-field optimal
control problems in continuous and discrete time formu-
lations. Via two coupled RΔEs on time scales, we get the
corresponding optimal control with the state feedback
representation. ,e optimal control problems established in
this paper offer a more practical scheme in tackling directly
the issue on the mixture of continuous time and discrete
time.
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