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Sea ice is one of the most prominent marine disasters in high latitudes. Remote sensing technology provides an effective means for
sea ice detection. Remote sensing sea ice images contain rich spectral and spatial information. However, most traditional methods
only focus on spectral information or spatial information, and do not excavate the feature of spectral and spatial simultaneously in
remote sensing sea ice images classification. At the same time, the complex correlation characteristics among spectra and small sample
problem in sea ice classification also limit the improvement of sea ice classification accuracy. For this issue, this paper proposes a new
remote sensing sea ice image classification method based on squeeze-and-excitation (SE) network, convolutional neural network (CNN),
and support vector machines (SVMs). The proposed method designs 3D-CNN deep network so as to fully exploit the spatial-spectrum
features of remote sensing sea ice images and integrates SE-Block into 3D-CNN in-depth network in order to distinguish the con-
tributions of different spectra to sea ice classification. According to the different contributions of spectral features, the weight of each
spectral feature is optimized by fusing SE-Block in order to further enhance the sample quality. Finally, information-rich and rep-
resentative samples are chosen by combining the idea of active learning and input into SVM classifler, and this achieves superior
classification accuracy of remote sensing sea ice images with small samples. In order to verify the effectiveness of the proposed method,
we conducted experiments on three different data from Baffin Bay, Bohai Bay, and Liaodong Bay. The experimental results show that
compared with other classical classification methods, the proposed method comprehensively considers the correlation among spectral
features and the small samples problems and deeply excavates the spatial-spectrum characteristics of sea ice and achieves better
classification performance, which can be effectively applied to remote sensing sea ice image classification.

1. Introduction

Sea ice is one of the most prominent marine disasters in the
polar and mid- and high-latitude regions [1]. Freezing,
melting, and drifting of sea ice have major impact on
production operations in coastal areas and on the sea [2].
Therefore, in order to quickly and accurately assess sea ice
conditions, timely forecast sea ice disasters, and ensure the
safety of personal and property, research on sea ice detection
has important significance [3], and sea ice classification is an
important part of sea ice detection [4].

Remote sensing technology can acquire large-scale data
rapidly and efficiently [5], and it provides a kind of effective

mean for sea ice detection. At present, remote sensing
technology has been widely used in sea ice detection. During
recent years, the data sources commonly used include
synthetic aperture radar [6], multispectral satellite images
with medium or high-spatial resolution (e.g., MODIS and
Landsat), and hyperspectral images [7-9]. Especially for
multispectral and hyperspectral remote sensing data, they
have the advantages of wide coverage, high resolution, rich
spectral information and spatial information, multiple data
sources, and low data cost, which provides abundant data
support for sea ice detection [10]. However, remote sensing
images contain tens to hundreds of bands, and there is a
strong correlation between the spectral bands. In order to
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achieve accurate classification result of sea ice, it is necessary
to distinguish the differences between different spectral
bands and measure their contributions to sea ice classifi-
cation. At the same time, because of the particularity of
environmental condition, it is difficult to obtain the labeled
samples of sea ice, which also limit the improvement of sea
ice classification accuracy. Therefore, these problems bring
enormous challenge for remote sensing sea ice images
classification.

Traditional remote sensing image classification methods
include the maximum likelihood method, minimum dis-
tance method, K-means clustering method, etc., but these
methods based on spectral statistical features have relatively
lower accuracy. Therefore, researchers apply machine
learning algorithms such as neural network (NN) and SVM
to classify remote sensing images. Studies have shown that
the remote sensing image classification method based on
machine learning algorithms can achieve better classification
results than traditional statistical methods [11, 12]. In
particular, the SVM method has a good performance in
solving small sample, high dimensional, and nonlinear
classification problems, so it has been widely used. However,
both SVM and NN belong to the shallow learning algorithm.
Due to the non-homomorphic spatial structure and spectral
information with high correlations contained in remote
sensing sea ice image [13, 14], it is difficult to extract the deep
features of remote sensing images effectively and achieve
higher classification accuracy by using the shallow learning
method with limited computational units [15].

Compared with shallow learning methods, deep learning
methods have better expressive ability and can automatically
extract deep hidden features, thus avoiding complex manual
feature extraction processes [16-19]. CNN is a specially
designed deep learning structure, and it is widely used in
image recognition and image classification considering
interpixel spatial correlation [20-23]. Therefore, remote
sensing image classification based on CNN has attracted
special research interest [24]. Liu et al. used the Siamese
convolution network to classify remote sensing images and
achieved better classification results [25]. Chen et al. pro-
posed a 3D-CNN model which utilized local hyperspectral
data cubes as input to excavate spatial and spectral infor-
mation. Zhao and Du developed a local patch-based CNN
spatial feature extraction architecture [17, 23, 25-27].
However, most of these methods improve network per-
formance through spatial information, without considering
the contribution difference of different spectra for classifi-
cation result. Momenta proposed a squeeze-and-excitation
network (SENet) structure in 2017; the core idea is that the
network learns the feature weights through loss function; the
weights of the effective feature maps are significant, and
those of the ineffective feature maps are small in order to
train the model to achieve better results. Experiments show
that the SE-Block structure can be embedded in other
network structures and can achieve superior results [28].

Based on the above research, this paper proposes a new
remote sensing sea ice image classification method which
integrates squeeze-and-excitation (SE) network, convolutional
neural network (CNN), and SVM classifier (SE-CNN-SVM).
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The proposed method uses 3D-CNN network to fully exploit
the spectral and spatial characteristics of sea ice and dis-
tinguishes the contributions of different sea ice spectral
features by combining SE-Block, that is, increasing the
weight of the effective features, suppressing or reducing the
weight of the invalid or ineffective features to further en-
hance the quality of samples. Finally, the rich and repre-
sentative samples are chosen by combining the idea of active
learning and input into SVM classifier to achieve high
classification performance of sea ice remote sensing image in
the case of small number of samples. The contributions of
this paper are as follows: (1) this paper proposes a new
method SE-CNN-SVM for remote sensing sea ice image
classification. This method designs and constructs the 3D-
CNN model, which can simultaneously extract the spatial
information and spectral information of sea ice images and
tully exploit the spatial-spectrum characteristics of sea ice
hidden in remote sensing data. (2) Due to the high corre-
lation among multiple spectral channels in remote sensing
sea ice data, and the different channels have different degrees
of discrimination for sea ice classification, the proposed
method combines 3D-CNN network with the SE-Block to
distinguish the different contributions of different spectral
features and weight the spectral channels in order to im-
prove the sample quality further in sea ice classification. (3)
Because SVM has obvious advantages in solving small
samples and high dimensional nonlinear problems, the
proposed method extracts the spatial spectral feature and
weight based on the 3D-CNN fusing SE-Block, combining
the active learning method to choose the rich and repre-
sentative samples and input into SVM classifier for classi-
fication, which achieves superior sea ice classification
performance in the case of small number of samples.

The remainder of this paper is organized as follows. In
Section 2, we introduce the overall framework and relative
technology. Then, the proposed method is described in
Section 3 in detail. Experiments and results are demon-
strated in Section 4. Finally, Section 5 concludes the paper.

2. The Framework for Sea Ice
Image Classification

In this section, we illustrate the design of 3D-CNN and SE-
CNN model for sea ice image classification. Using these
methods, we extract deep spectral-spatial features from
multi or hyperspectral data and feed them into SVM clas-
sifier for classification. Figure 1 shows the entire framework
for sea ice images classification. Four major issues were
investigated: (1) data preprocessing, (2) building the SE-
CNN network, (3) sea ice image classification based on SVM,
and (4) classification accuracy evaluation. The methods are
discussed in detail in the following sections.

2.1. 3D-CNN. In recent years, CNN has achieved great
success in the fields of image recognition and target de-
tection. It can automatically extract features that are effective
for classification results from images, thus avoiding the
process of manually designing and extracting features. Due
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FIGURE 1: General framework for remote sensing sea ice image.

to the special three-dimensional structure of the multi/
hyperspectral remote sensing image, part of the information
in the image will be lost if classification is performed using
spectral feature-based 1D-CNN and spatial feature-based
2D-CNN methods. Therefore, this paper uses the 3D-CNN
structure and performs convolution operations through 3D
convolution kernels and extracts simultaneously spatial and
spectral features.

2.1.1. 3D-CNN Structure. The CNN is generally composed
of a convolutional layer, a pooled layer, a fully connected
layer, and a softmax classification layer as shown in
Figure 2. The convolutional layer performs nonlinear
feature extraction on images by using an activation
tunction; the fully connected layer integrates the extracted
features and then obtains the probability value of each
type of tag through the softmax function, thereby pre-
dicting the label of the image. Before the final prediction
value is obtained, the network hidden layer minimizes the
error between the predicted value and the true value
through the loss function and finally determines the
classification performance of the model. This paper uses
the Adam optimizer to update and calculate the network
parameters that affect model training and model output

and to approximate or reach the optimal value in order to
minimize the loss function.
In 3D-CNN, the value of the neuron at (x, y, z) is
P,~1Q-1R~1

xXyz _ pqr . (x+p) (y+q) (z+7)
vit=al XX X Y whovilha +bij ),

m p=0 g=0 r=0

(1

where i denotes ith layer of neurons and j denotes a jth
feature map; P; and Q, represent the height and width of the
convolution kernel; R; is the dimension of the convolution
kernel along the spectral dimension; m represents the
number of features connected to the previous layer, related
to the feature dimension of each layer; w%rz is the weight of
the (p, g, r)th neuron connected to the mth feature; b;; is the
deviation of the jth feature map on the ith layer neuron; and
g is the activation function; the activation function used in
this paper is the ReLU function. ReLU function is repre-
sented by the following formula:

x, ifx>0,

g(x) =ReLU(x) = { (2)

0, ifx<o.

2.1.2. Optimizer. The optimizer is used to update and cal-
culate network parameters that affect model training and
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FIGURE 2: CNN model consisting of convolution layers, pooling layers, and full connection layer.

model output and to approximate or reach optimal values,
thereby minimizing the loss function. Among them, the
Adam optimizer combines the advantages of AdaGrad and
RMSProp optimizer and has the characteristics of high ef-
ficiency, convenient implementation, and parameter
updation without gradient transformation. Therefore, this
paper uses the Adam optimizer, and Adam’s update rules are
as follows.

First, calculate the exponential moving average of the
gradient; my is initialized to 0.

9t = Vé)](et—l)’ (3)

my = ym,_y +(1-B,)g. (4)

Second, calculate the exponential moving average of the
square of the gradient; v, is initialized to 0.

v =BV + (1 - /52)9?' (5)

Third, the deviation correction is performed on the
gradient mean 1, and the gradient variance v,.

_ m,
"Ry (©)
~ Vi

Ve = m (7)

Fourth, update the parameters; the initial learning rate o
is multiplied by the ratio of the gradient mean to the square
root of the gradient variance.

mt
N (8)
v, t+e
In equations (4)-(8), 3, represents the exponential decay
rate, which controls the weight assignment, usually taking a
value close to 1, with a default of 0.9; 5, represents the
exponential decay rate, which weights the mean of the

gradient squares, with a default of 0.99; ¢ = 10" — 8, which
prevents the denominator from being 0.

®,=0,,-a

2.2. Squeeze-and-Excitation Net. The remote sensing sea ice
image contains rich spatial information and spectral in-
formation. Different spectral features are suitable for

distinguishing different types of sea ice, and there are strong
correlations among spectral dimensions. SENet can auto-
matically gain the importance of each feature channel by
learning. And according to this importance, the features
effective for the classification are improved and those less
effective for the classification are suppressed. The weighted
feature can effectively improve the classification perfor-
mance of remote sensing sea ice image. The implementation
of SE-Block is shown in the following formula:

U= Ftr (X),
X e RH’XW’XC” (9)
U e RH><W><C,
C/
uC:vC*X:sz*XS, (10)
s=1

where X indicates the input sample. For simplicity, in the
flowing notation, we take F,, to be a convolutional operator.
Let V = [v},v,,...,v.] denote the learned set of filter ker-
nels, where v, refers to the parameters of the c-th filter. The
output is U = [uy, Uy, . ..,u.]; X represents the sth input. U
represents the characteristics obtained after convolution. In
the SE-Block structure, squeeze and excitation are two very
important operations. A diagram illustrating the structure of
an SE block is shown in Figure 3.

2.2.1. Squeeze Operation. Squeeze operations are imple-
mented through global average pooling, which is used to
obtain dependencies between channels. We perform feature
compression along the spatial dimension, turning each two-
dimensional feature channel into a real number. This real
number has a global receptive field to some extent, and the
output dimension matches the number of input feature
channels. It characterizes the global distribution of responses
on feature channels and allows layers close to the input to
obtain global receptive fields, which is very useful in many
tasks. We opt for the simplest aggregation technique, global
average pooling, which can be realized by formula (11).
Formula (11) converts the input of H*W*C into the output
of 1"1°C, that is, the Fyq operation in Figure 3. The result is
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FIGURE 3: A squeeze-and-excitation block.
equivalent to indicating the numerical distribution of the C D (w b) = 1
feature maps of the layer. i (w,b) = 2 (w-w). (14)
1 g Restrictions:
z.=F(u,) = u, (i, §). 11
e = Fug () HXW;; etbJ (11) yil(w-x,)+b] > 1. (15)

2.2.2. Excitation Operation. Excitation operation is used to
generate weights for each feature channel by parameters.
And the parameters are learned to explicitly model the
correlation between feature channels. To make use of the
information aggregated in the squeeze operation, we follow
it with a second operation which aims to fully capture
channelwise dependencies. To fulfil this objective, the
function must meet two criteria: first, it must be flexible (in
particular, it must be capable of learning a nonlinear in-
teraction among channels) and second, it must learn a non-
mutually-exclusive relationship since we would like to en-
sure that multiple channels are allowed to be emphasized
(rather than enforcing a one-hot activation). To meet these
criteria, we opt to employ a simple gating mechanism with a
sigmoid activation:

z,=F, (z,W)=0(g(z,W)) =0(W,8(W,z)), (12)
where o refers to the sigmoid function, ¢ refers to the ReLU
function, W, € R©¢/"*C and W, € RC*(©/) The final output
of the block is obtained by rescaling the transformation
output U with the activations:

Xc = Fscale (uc’sc) = ScUp (13)

where X = [%X,%,,...,%,] and F . (u,,s,) refers to chan-
nelwise multiplication between the scalar s, and the feature
map u, € RIPW,

2.3. SVM. Support vector machine (SVM) is a machine
learning algorithm based on statistical learning theory,
which adopts structural risk minimization criteria, and it
minimizes the sample error while reducing the upper
bound of the model generalization error, thereby im-
proving the generalization ability of the model. The main
idea of SVM is to use the kernel transform to transform the
linear indivisible problem of low-dimensional space into
high-order space for accurate classification. It is widely
used in all aspects of remote sensing data processing. The
basic mathematical form of SVM is shown in the following
formula [29]:

Introduce the Lagrange multiplier «; to solve the
equation as

k
mgn:L(w,b,oc)— (ww) - Zoc, yil(wx;) +b] - 1.
w,b,a =

(16)
Seek partial deviations for w and b; then, get
k
Z «y; =0,
i=1 (17)

& YiXi

g
I
M»

I
—_

i

Substitute formula (17) into (16) and get

W(a) = Zoc ——ZZocloc]yly](x x) (18)

i=1 j=1

Through the duahty theorem, we can find the optimal
solution of w = Zl L %" ¥ x;, and taking any «; #0, you can
find b.

For high-dimensional space, if the inner product K (x, x")
is used instead of the dot product in the optimal classification
plane, it is equivalent to mapping the original feature space to a
high feature space. The optimization function at this time is

maxw () = Z(x - = Z(xl(x]yly] (x x]) (19)

i=1 l]l

Restrictions: Y., y;a; = 0,0;>0, where «; is the
Lagrange multiplier corresponding to formula (16). The
optimal classification function obtained after solving the
above problem is

f(x) = sgn[(w.x) + b] = sgn [Z a;y;K (x;, x) + b], (20)
i=1
where the kernel function K (x; - x) in this paper chooses the
RBF kernel function, that is,

2
K (x;,x) = exp [_@] (21)



3. Proposed Sea Ice Image Classification
Algorithm Combining 3D-CNN and Squeeze-
and-Excitation Networks

3.1. Algorithm Framework. The implementation framework
of the SE-CNN-SVM method in this paper is shown in
Figure 4. The method comprises three modules: 3D-CNN
module, SE-Block, and SVM classification module.

3.1.1. 3D-CNN Module. First, the original remote sensing
sea ice data are preprocessed and the sample library is
obtained. Then, the sample library is divided into training
samples and test samples according to different strategies.
Consequently, the 3D-CNN network model is established,
the related network parameters are determined, and the
training samples are input into the established CNN network
for model training.

3.1.2. SE-Block. The SE-Block module includes two opera-
tions, squeeze and excitation. The squeeze operation is a
global average pooling of the features obtained from the
convolution of the last layer in the CNN; the feature maps
after the squeeze are reduced by a fully connected layer and
are nonlinearized by the ReLU activation function, hereafter
upgraded through the fully connected layer, and then weight
is activated by sigmoid, that is, the excitation operation. The
weight of the excitation output represents the importance of
each feature channel after feature selection, and then
multiply the previous features by the resulting weights, and
the recalibration of the original features in the channel
dimension is completed. Finally, the rescaled features are
converted into one-dimensional vector and input to the fully
connected layer, and the weights of the parameters in the
network are updated by the loss function, and the network
optimization is finished.

3.1.3. Classification Module. Firstly, the sample features
obtained by the previous module are normalized, and the sea
ice classification is performed by the SVM classifier. Aiming
at the small samples problem caused by the difficulty in
obtaining sea ice samples, the module incorporates the idea
of active learning ideas and uses a combination of uncer-
tainty and differential strategies for sampling. And this
method is a combination of best versus second-best (BVSB)
and enhanced clustering-based diversity (ECBD) [30]. By
this method, more representative samples which are suitable
for sea ice classification are chosen and input into classifier,
and superior classification results are obtained with fewer
labeled samples.

3.2. Algorithm Implementation. The description of Algo-
rithm 1 is shown below.

4. Experiments and Results

The experimental results are generated on a personal
computer equipped with Intel Core i5-4590 with 3.30 GHz
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FiGUure 4: Flowchart of the proposed combination of SE-CNN-
SVM.

and Nvidia GeForce GT 705. The personal computer’s
memory is 16G. These proposed methods are implemented
by TensorFlow library. The SVM classifier is implemented by
Lib-SVM library.

4.1. Data Description. To verify the performance method SE-
CNN-SVM for sea ice remote sensing image classification,
we utilized three remote sensing datasets in our experiments:
Baffin Bay image captured by Earth Observing-1 (EO-1)
satellite, Bohai Bay image capture by EO-1 satellite, and
Liaodong Bay image captured by Landsat-8 satellite.

The first dataset utilized in our experiments is the Baffin
Bay images, which are hyperspectral images acquired on a
marine area of Baffin Bay in northwest Greenland on April
12, 2014. The original image dataset has a spatial resolution
of 30m. It comprises 2395 x 1769 pixels (which includes
background pixels) and has 242 bands, among which 176
bands are used for the analysis after removing the bands with
low signal-to-noise and water absorption. In the experiment,
according to the spectral curve and the reference data
Landsat-8, the Hyperion images are mainly divided into
three categories: seawater, white ice, and gray ice, and a total
of 3190 labeled samples are selected as samples of the
network. The scene, shown in Figure 5(a), is a hyperspectral
dataset that is a false color image composed of three bands:
R: 115, G: 102, and B: 91. Figure 5(a) shows the RGB image of
Baffin Bay image. Figure 5(b) shows magnified view of part
of the area in Figure 5(a). The corresponding class legends
are shown in Figure 5(c). The number of training data for
each category in Baffin Bay data is shown in Table 1.

The second dataset utilized in our experiments is the
images of Bohai Bay, which is from the EO-1 hyperspectral
sea ice dataset on January 23, 2008, and the image size
selected in the experiment is 442 *212. According to the
spectral curve, the image dataset is roughly divided into four
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Input:

(1) The labeled samples set: data blocks of size Kx Kx B, K represents the image size of the input network and B represents the
number of bands.

(2) The training samples S and test samples set T according to the training strategy.

(3) The batch size for training network: N

(4) The learning rate of the network: «

Begin:
SE-CNN Model:

(1) N training samples are randomly selected from S and input into a preestablished CNN.

(2) Squeeze operation: global average pooling of the features obtained by the CONV3 layer.

(3) Excitation operation: reduce the dimension of the feature maps from the squeeze operation, nonlinearize by the ReLU activation
function, then upgrade through the fully connected layer, and then perform weight activation through sigmoid.

(4) Recalibration of the original features: according to the output of excitation operation, reweight the original spectral features by
multiplication to the previous features.

(5) Convert the characteristics of the network training into a one-dimensional vector and input into the fully connected layer of 3D-
CNN network, update the parameter weights in the network with the loss function, and optimize the network through the Adam
optimizer.

(6) Repeat steps 1-5 until the network converges.

(7) Input T'into the trained network to obtain prediction labels, and the classification accuracy is calculated by the confusion matrix.

(8) SE-CNN end;

(9) Save the features after training network.

SVM Model:
(10) Uniform normalization of saved features.
(11) According to the BVSB-ECBD algorithm, M feature samples with rich information content are selected.
(12) Optimize the parameters ¢ and g of RBF kernel function by using the grid optimization method.
(13) Obtain the classification accuracy based on SVM classifier.
(14) SVM Model end
Output: Overall accuracy, Kappa coefficient;
End

ALGORITHM 1: SE-CNN-SVM algorithm.

I White ice
B Gray ice
N Sco vater

(c)

FIGURE 5: (a) False color image composed of R: 115, G: 102, and B: 91; (b) magnified view of part of the area in (a); (c) class legend of Baffin
Bay image.

categories: white ice, gray white ice, gray ice, and sea water,  hyperspectral dataset that is a false color image composed of
and a total of 1247 labeled samples are selected as samples of ~ three bands: R: 93, G: 105, and B: 84. Figure 6(a) shows the
the network. The scene, shown in Figure 6(a), is a  RGB image of Bohai Bay image. Figure 6(b) shows marked
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TaBLE 1: Number of training data for each category in Baffin Bay data.

Class name Number 5 per class 10 per class 20 per class

White ice 2098 5 10 20

Gray ice 783 5 10 20

Seawater 309 5 10 20

Total 3190 15 30 60

I White ice
I Gray white ice
I Grayice
I Sc: water

(c)

FIGURE 6: (a) False color image composed of R: 95, G: 105, and B: 84; (b) marked sample distribution map in the experiment; (c) class legend

of Bohai Bay image.

TaBLE 2: Number of training samples per category in the Bohai Bay data.

Class name Number 10% training 20% training 30% training
White ice 142 14 28 42
Gray white ice 398 39 78 117
Gray ice 511 51 102 153
Seawater 196 19 38 57
Total 1247 123 246 369

sample distribution map in the experiment. The corre-
sponding class legends are shown in Figure 6(c). The number
of training samples per category in the Bohai Bay data is
shown in Table 2.

The third dataset utilized in our experiments is an image
of Liaodong Bay, which is a Landsat-8 dataset acquired on a
section of coastal waters in the northeast of Bohai Sea on
January 24, 2016. It has a 15m spatial resolution and
comprises 596 x 373 pixels. We have identified three classes
of ice: white ice, gray ice, and white-gray ice. The scene,
shown in Figure 7(a), is a hyperspectral dataset that is a false
color image composed of three bands: R: 6, G: 5, and B: 4.
Figure 7(a) shows the RGB image of Liaodong Bay image.
Figure 7(b) shows magnified view of part of the area in
Figure 7(a). The corresponding class legends are shown in
Figure 7(c). The number of training data for each category
Liaodong Bay data is shown in Table 3.

4.2. Network Structure Design. In the three experiments, we
design the network structure which contains seven different

functional layers; they are the input layer, three convolu-
tional layers, SE-Block, a full connection layer, and output
layer, respectively. The learning rate of the model is set to
0.0005 and batch number is set to 25. The convolution layer
of each layer uses the ReLU activation function, the sliding
step size of the convolution kernel is [1, 1, 1], and the
number of convolution kernels per layer is 2, 4, and 8,
respectively. In SE-Block, the global average pooling size is
[1, 1, 1]; the first fully connected layer (FC1) neuron number
is 2, using the ReLU activation function; the second fully
connected layer (FC2) neuron number is 8, using sigmoid
activation function. The final fully connected layer uses the
ReLU activation function with a dropout value of 0.5. The
network structure of the three datasets is shown in Table 4.

4.3. Network Parameter Tuning

4.3.1. The Effect of Input Image Size on Classification
Performance. In the experiment, we input a three-dimen-
sional data block with a neighborhood size of K x K x B into
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FIGURE 7: (a) False color image composed of R: 6, G: 5, and B: 4; (b) magnified view of part of the area in (a); (c) class legend of Liaodong Bay

image.

TaBLE 3: Number of training data for each category Liaodong Bay
data.

TaBLE 5: The effect of different sizes of network images on accuracy
and time.

Class name Number 5 per class 10 per class 20 per class
White ice 247 5 10 20
Gray ice 535 5 10 20
Seawater 676 5 10 20
Total 1458 15 30 60

TaBLE 4: The network structure of the three datasets.

Bohai Bay image

SE-CNN
10% training 20% training 30% training
Acc (%) 70.70 73.37 78.71
PX5XB e (s) 338 396 694
Acc (%) 70.80 73.85 78.55
7XTXB e (s) 1090 1302 1514

TaBLE 6: The effect of different sizes of network images on accuracy

. Bohai Bay Liaodong Bay -
Network Baffin Bay image image image and time.
Image  305x1769% 176 442x212x176  596x373 %7 SE-CNN Liaodong Bay image
;1ze 5 per class 10 per class 20 per class
nput 5x5x176 5x5x176 5x5%7 Acc (%) 90.09 93.60 96.45
layer SX5XB e (s) 20 39 44
Convl 3x3x7 3x3x7 3x3x7
Acc (%) 93.78 91.07 96.77
Conv2 3x3x5 3x3x3 3x3x3 7xX7%xB Ti (s) 35 97 151
Conv3 1x1x1 1x1x1 Ix1x1 e 1
(1) Global average Pooling (Conv3)
SE-Block () Fel lunits =2, Rel0)
@) (umts-l, sigmoid) type randomly as training samples, the classification accu-
(4) Scale racy increased by 0.30% and 0.47% respectively, but the
FC 128 128 128 Kk .. . has i db . d
Class network training time has increased by 2.2 times and 2.3
num 3 4 3 times; when taking 30% sample size of each type was ran-

the deep network and use the label category of the central
pixel as the category of the sample. However, different sizes
of input image will affect the classification accuracy and
model training time. We analyzed the effects of different
sizes of input image on classification performance by using
experimental data from Bohai Bay and Liaodong Bay, re-
spectively. The experimental results are shown in Tables 5
and 6. Among them, the accuracy and time data are the
average of 5 experimental results.

In the Bohai Bay data, when the input image size is
changed from 5x5x B to 7x7 x B in different proportions
of training data, taking 10% and 20% samples size for each

domly selected as the training samples, the classification
accuracy decreased by 0.16%, and the training time increased
by 1.2 times.

In the Liaodong Bay data, when the input image size is
changed from 5x5xB to 7x 7 x B in each type of training
data, taking 5 per class and 10 per class samples for each type
randomly as training samples. The classification accuracy
decreased by 0.31% and 2.52%, and the network training time
increased by 3.3 times and 1.5 times, respectively; when taking
20 per class samples for each type randomly as training
samples, the classification accuracy increased by 0.32%, but the
training time increased by 2.4 times.

According to the experimental results, comprehensively
considering the classification accuracy and training time,
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F1GURE 8: (a) Baffin Bay data SE-CNN structure with or without dropout layer experiment results when the number of trainings per class is 5,
10, and 20; (b) Bohai Bay data SE-CNN structure with or without dropout layer experiment results when the number of trainings per class is

5, 10, and 20.

this paper sets the image size of the input network to
5x5x B, and B indicates the number of bands.

4.3.2. Impact of Dropout Layer on Classification Performance.
Dropout is an optimization used to solve overfitting and
gradient-disappearing problems in deep learning networks.
In the learning process, the partial weights or outputs of the
hidden layers are randomly zeroed, thereby reducing the
dependencies among nodes and improving the classification
performance. This paper verified the effects of dropout on
classification performance through experiments in Baffin
Bay and Bohai Bay.

In the Baffin Bay data, when 5, 10, and 20 samples of each
class are taken randomly as training samples, the classifi-
cation accuracy increased by 0.97%, 0.89%, and 1.85% after
adding the dropout layer. In the Bohai Bay data, when 10%,
20%, and 30% samples of each category are taken randomly
as training samples, the classification accuracy increased by
2.10%, 1.16%, and 3.22% after adding the dropout layer. The
experimental results are shown in Figure 8.

According to the experimental results, this article adds a
dropout layer after the last fully connected layer. The
dropout value is 0.5, which means that some parameters are
randomly discarded with a probability of 50% so that the
network will not be overfitting, and because the parameters
are reduced, the network training speed is also faster.

4.4. Result Analysis

4.4.1. Experimental Results on Baffin Bay Dataset. The result
maps of Baffin Bay dataset using 5 methods are shown in
Figure 9. Table 7 shows a comparison of experimental results
in the Baffin Bay data experiment using the proposed
method and several other classical methods in selecting
different sample sizes. In Table 7, the proposed method

achieves a better classification effect. This shows that the
deep learning method can deeply explore the intrinsic re-
lationship among the spatial-spectrum characteristics of
multi/hyperspectral remote sensing sea ice image, better
extract the typical characteristics of different types of sea ice,
and achieve higher classification performance under small
sample conditions. When 5, 10, and 20 samples are ran-
domly selected as training samples for each category, the
classification accuracy can reach 93.98%, 94.54%, and
97.02%, respectively.

From Table 7, the SVM classification accuracy is
generally low, indicating that the deep learning algorithm
generally obtains better classification results than the
shallow learning algorithm. The Siamese method has the
lowest precision, and the Siamese method is more suitable
for more classified image classifications due to its double-
convolution network structure. Due to the advantages of
SVM classifiers in dealing with small samples and non-
linear high-dimensional feature classification problems,
compared with CNN methods, CNN-SVM can obtain
better classification results than CNN’s own softmax
classifier. The method proposed in this paper considers
the small sample problem and the complex correlation
among spectra, 3D-CNN is used to extract different types
of sea ice features, and SE-Block is integrated to optimize
the weight of each spectral feature, further distinguishing
the contribution of different spectral features to sea ice
classification. Finally, the SVM classification model is
used for sea ice classification, which improves the sepa-
rability between sea ice categories, thus achieving better
classification performance. For example, when 20 samples
are randomly selected for each category as the training
samples, the classification accuracy is 97.02%, which is
higher than the Siamese method, SVM method, CNN
method, and CNN-SVM method, 14.00%, 4.97%, 2.99%,
and 2.10% respectively.
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FiGure 9: Classification maps of Baffin Bay dataset: (a) false-color composite; (b) SVM; (c) Siamese; (d) CNN; (e) CNN-SVM; (f) SE-CNN-

SVM; (g) class legend of Baffin Bay image.

TaBLE 7: Classification results (%) of SE-CNN-SVM and other
methods.

Method 5 per class 10 per class 20 per class
SVM 90.58 91.08 92.05
Siamese 76.44 79.87 83.02
CNN 93.07 93.68 94.03
CNN-SVM 93.95 94.85 94.92
SE-CNN-SVM 93.98 94.54 97.02

4.4.2. Experimental Results on Bohai Bay Dataset. The result
maps of Bohai Bay dataset using 5 methods are shown in
Figure 10. Table 8 shows a comparison of experimental
results in the Bohai Bay data experiment using the pro-
posed method and several other classical methods in

selecting different sample proportion. In Table 8, the
proposed method achieves higher classification results
under small sample conditions. When each class is ran-
domly selected as 10%, 20%, and 30% as training samples,
the classification accuracy can reach 72.58%, 74.93%, and
80.64%.

From Table 8, the SVM classification accuracy is gen-
erally low, indicating that the deep learning algorithm
generally obtains better classification results than the shallow
learning algorithm; the Siamese method has the lowest
precision; compared with CNN method and CNN-SVM, the
method proposed in this paper comprehensively considers
the small sample problem and the complex correlation
among spectra and distinguishes the contribution of
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FiGure 10: Classification maps of Bohai Bay dataset: (a) false-color composite; (b) SVM; (¢) Siamese; (d) CNN; (e) CNN-SVM; (f) SE-CNN-

SVM; (g) class legend of Bohai Bay image.

TaBLE 8: Classification results (%) of SE-CNN-SVM and other methods.

Method 10% training 20% training 30% training
SVM 64.41 67.53 73.45
Siamese 64.09 67.34 70.61
CNN 68.51 70.59 76.64
CNN-SVM 70.78 73.37 78.71
SE-CNN-SVM 72.58 74.93 80.64

FiGgure 11: Continued.
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F1GURE 11: Classification maps of Liaodong Bay dataset: (a) false-color composite; (b) SVM; (c) Siamese; (d) CNN; (e) CNN-SVM; (f) SE-

CNN-SVM; (g) class legend of Liaodong Bay image.

TaBLe 9: Classification results (%) of SE-CNN-SVM and other
methods.

Method 5 per class 10 per class 20 per class
SVM 88.16 89.40 91.14
Siamese 81.18 83.45 85.10
CNN 90.90 91.77 94.96
CNN-SVM 93.46 93.35 95.48
SE-CNN-SVM 94.58 95.11 97.42

different spectral features to the classification of sea ice by
SE-Block, and finally, the SVM classification model is used
to classify and obtain better classification performance.
When each class randomly selects 10%, 20%, and 30% as
training samples, the classification accuracy of the pro-
posed method is higher than the other four methods.
When each class randomly selects 30% as training sam-
ples, the accuracy difference from other four methods
reaches the maximum, which is 10.03%, 7.19%, 4.00%, and
1.93%, respectively.

4.4.3. Experimental Results on Liaodong Bay Dataset.
The result maps of Liaodong Bay dataset using 5 methods are
shown in Figure 11. Table 9 shows a comparison of ex-
perimental results in the Liaodong Bay data experiment
using the proposed method and several other classical
methods in selecting different sample size. From Table 9, the
proposed method achieves higher classification performance
in small sample cases. When 5, 10, and 20 samples are
randomly selected for each type as training samples, the
classification accuracy can reach 94.58%, 95.11%, and
97.42%. When each class randomly selects 20 as training
samples, the SE-CNN-SVM method is 12.32% higher than
the Siamese method, 6.28% higher than the SVM method,
2.46% higher than the CNN method, and 1.94% higher than
the CNN-SVM method.

5. Conclusion

Because of the high labeling cost in remote sensing sea ice
image classification, the labeled samples are difficult to
acquire, which causes small sample problems. At the same
time, there are high correlations among multiple spectral
channels in remote sensing sea ice data, and different
channels have different degrees of discrimination for sea ice
classification, which results in low classification accuracy of
sea ice image. Aiming at above problems, this paper pro-
poses a new convolutional neural network model for remote
sensing sea ice image classification and compares the pro-
posed method with several other classical remote sensing
image classification methods. The experimental results show
that compared with other methods, the proposed method
SE-CNN-SVM can effectively extract feature information
from remote sensing sea ice images with fewer labeled
samples, weight the spectral features according to the
contribution of different spectral channels in the sea ice
classification, and further optimize the model structure, and
it can achieve better overall classification performance
overall. We can summarize the results as follows.

The convolutional neural network method can extract
image features by autonomous learning and is widely used in
remote sensing image classification. And 3D-CNN model
can simultaneously extract the spectral and spatial features
of remote sensing sea ice data, which fully exploits the sea ice
feature information hidden in the remote sensing data. It
meets the requirements of remote sensing sea ice image
classification and achieves better classification results.

There are high correlations among multiple spectral
channels in remote sensing sea ice data, and different
channels have different contributions for sea ice classifica-
tion. Therefore, unified processing of each spectral channel
data indiscriminately will inevitably limit the improvement
of classification accuracy. The proposed method integrated
the SE-Block in the 3D-CNN structure and improved the
network model to achieve better classification result by
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increasing the weight of the effective feature and reducing
the feature weight with invalid or small effect.

Compared to CNN’s softmax classifier, SVM has obvious
advantages in the way of solving small samples, nonlinearity,
and preventing the network from entering local mini-
mum. The proposed method combined 3D-CNN with SE-
Block for spatial spectral feature extraction and weighting
and integrated the active learning method to select rich
and representative samples and input SVM classifier for
classification, which further achieved higher classification
accuracy of remote sensing sea ice image with small
samples and provided a new method for remote sensing
sea ice image classification.
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