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In order to improve the robustness of the pipeline target detection algorithm against strong noises and occlusion, this paper
presents an adaptive pipeline filtering algorithm (APFA). In APFA, the velocity and the center of the target are firstly predicted
based on the smooth motion trajectory after background suppression. (en, time-domain energy enhancement of targets is
adopted to improve the obscure target detection, and adaptively updating the center and radius of the pipeline filter are carried out
for targets’ motion variation. Experiments on five different typical scenes show that APFA can improve the robustness of the
pipeline filter against strong noises and even when targets are temporarily obscured partially or completely. Simultaneously, APFA
can significantly improve the energy and signal-to-noise ratio of targets, and as a result, the target detection rate is significantly
promoted on all experiments.

1. Introduction

In complex scenes, signal-to-noise ratios and contrasts
between dim-small targets and their background are low due
to their small scale and weak energy. (erefore, background
suppression is needed before target detection [1, 2]. After
background suppression, the signal-to-noise ratios and
contrasts between targets and their background are im-
proved in difference images, and it is conducive to improve
the effect of target detection. Traditional dim-small target
detection algorithms can be classified into two categories,
namely, detect before track (DBT) [3–5] and track before
detect (TBD) [6–8]. (e pipeline target detection algorithm
(PTDA) first proposed by Wang et al. [3] is a classic al-
gorithm of DBT. Later, other improved algorithms were
proposed [9–11]. (ey are collectively referred to as the
traditional pipeline filtering algorithm (TPFA) in this paper.
(e TPFA has the advantages of easy implementation and
strong real-time performance. (e basis of TPFA is that
trajectories of small targets are continuously smooth, and the

energy intensity of targets is higher than that of their sur-
rounding backgrounds [3]. Under this condition, TPFA has
three assumptions: first, the speed of the targets is limited to
about 1 pixel/frame [9, 11, 12]; second, the maximum target
loss rate in the detection pipeline is one frame per five frames
[9, 11, 12]; third, the signal-to-noise ratio of targets should
not be lower than 5 dB [2]. In other words, it requires that
targets’ motion trajectories must be continuous, smooth,
and without fracture, and targets’ velocities must be almost
immobilized. So, TPFA has some shortcomings. First, it is
sensitive to noises. When strong noises exist in the pipeline
area, the algorithm may be invalid. For example, when there
are continuous strong noises in fixed positions in the
pipeline area or there are strong noises at the edge of the
pipeline, the algorithm may take the noise points as the
targets, which will lead to misjudgment and affect the ac-
curacy of subsequent detection. Second, it would not en-
hance the target energy. So, when noises are as strong as
targets, there will be a mistake in target detection. (ird, its
robustness is poor. In the case of strong noise interference or
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temporary occlusion, the target detection would fail. Fourth,
the determination of pipeline centers and pipeline radius is
too mechanical, so it cannot be adaptive to the target moving
variation. For the first shortcoming, some related research
studies have been done. Among them, Liu and Ji [9] pro-
posed to correct the center of the pipeline by using the
deviation between the center of the pipeline and that of the
target, in order to avoid the noises at the edge of the pipeline
affected the determination of the center of pipeline; in [10], a
threshold of a dot occurrence frequency was set to eliminate
the fixed noises in the pipeline; in [11], the continuity of the
target trajectory was used to estimate the target motion
direction, so as to suppress the interference of noises that
were outside the area of the target motion direction in the
pipeline. Essentially, all of these methods have an important
shortcoming, that is, they did not make full use of the in-
formation that is related to target motion and target pixels.
So, these algorithms would fail when targets are weak or
targets temporarily disappear. For example, these algorithms
would fail if targets are temporarily obscured or completely
submerged in background clutters. (erefore, in order to
effectively overcome these shortcomings, an improved
pipeline target detection algorithm named as the adaptive
pipeline filtering algorithm (APFA) is presented in this paper.

(e contribution of this paper is to present the APFA
that has remarkable robustness. It can be mainly reflected in
two aspects: first, APFA has time-domain energy en-
hancement performance. Time-domain energy enhance-
ment improves the contrast between the target and the
residual background and improves the robust performance
of the algorithm when targets are obscured. Second, APFA
can adaptively update the center and radius of the pipeline,
so that it is robust against noise interference and target
motion variation.

Section 2 of this paper mainly presents the improved
method that can enhance the energy of targets in the time
domain and adaptively update the center and radius of the
pipeline. In Section 3, experiments on five different typical
scenes are demonstrated to verify and evaluate the perfor-
mance of APFA, which includes the test of time-domain
energy enhancement of targets and the test of target de-
tection robustness against strong noises and occlusion.
Section 4 is to draw a conclusion of this paper.

2. The Adaptive Pipeline Filtering Algorithm

(e three main parameters of the pipeline filtering algorithm
are the center coordinate G, the radius R, and the length L of
the pipeline. Among them, L affects the judgment of the
target, while the other two parameters, G and R, directly
determine whether the target can be successfully retrieved.
(e research of APFA is focused on G and R.

2.1. Image Preprocessing. In the complex background, the
contrast between the dim-small target and the background is
low because the target is small and weak. (erefore, in order
to enhance the target, image preprocessing, namely, back-
ground suppression, should be carried out before the target

detection. In this paper, background suppression is imple-
mented by the statistical region low-rank background
modeling algorithm (SRLBMA). SRLBMA (under review) is
an improved low-rank background modeling algorithm:

I � L + S. (1)

(e existing mature low-rank background modeling
algorithms [13, 14] model the whole video image as a kind of
superimposition that some sparse components, namely,
targets and random noises, interfere on the low-rank
background, just as shown in equation (1), where I is the
original video image, L is the low-rank background, and S
represents the sparse components, i.e., targets and random
noises. However, SRLBMA does not directly establish the
model of the whole video image as shown in equation (1) but
models and solves the statistical clustering regions of the
video image. (e purpose of SRLBMA is to eliminate ex-
cessive nonstationary residues of background suppression
and improves the contrast between the target and the re-
sidual background.

Firstly, SRLBMA performs statistical clustering of original
video images. Secondly, a low-rank background model as
shown in equation (2) is established for each statistical
clustering region.(irdly, the optimal solution of equation (2)
is solved and the low-rank background B of each statistical
clustering region is obtained by using equations (3) to (5)
[13–16]. Equations (3) to (5) are the equivalent improved
algorithm for the augmented Lagrange multiplier algorithm
[15, 17]. Fourthly, B is superimposed to each other to obtain
the low-rank background L of the original video image. Fi-
nally, the difference image S is obtained by subtracting the
low-rank background L from the video image I:

F � B + P, (2)

Bk+1 � H(1/μ) F − Pk + μ− 1
Yk􏼐 􏼑, (3)

Pk+1 � P(λ/μ) F − Bk+1 + μ− 1
Yk􏼐 􏼑, (4)

Yk+1 � Yk + μ F − Bk+1 − Pk+1( 􏼁. (5)

In equation (2), F is the statistical region image matrix, B
is the low-rank matrix of F, and P is the sparse matrix of F.
(e parameters λ and μ are specified in Section 3.1.

2.2. Adaptive Pipeline. Figure 1 represents a curve of a
functionf(·) that describes an event. Figure 1(a) represents the
intact curve off(·), and Figure 1(b) represents the curve where
the information of f(·) is lost at D and E for some reason. So,
whether the lost information atD and E of functionf(·) can be
retrieved by prediction? (e answer is obvious: if the function
f(·) is continuous and smooth, that is, the function f(·) is
regular, the lost information at D and E can be predicted and
retrieved by the information beforeD and E, respectively. So, it
can be seen that unknown information of regular events can be
predicted by using the existed information. Actually, the
motion of the natural object is continuous and smooth in a
certain time range. Taking advantage of this objective fact, the
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position and velocity of themoving target can be predicted, and
then the pipeline target detection algorithm can be improved
by using the prediction information. At the same time, the
prediction information can be combined with the target pixel
information to enhance the energy of the target. In this way, the
target can also be predicted and detected even when the target
trajectory is temporarily discontinuous, that is, when the target
is temporarily obscured or lost. (erefore, the continuous and
smooth property of the trajectory of the target are extended to
the predictability of the information of the motion target,
which is the basis for the establishment of the APFA.

(e motions of targets in the video frame images are
represented by three-dimensional data D(x, y, t), as shown
in Figure 2. In Figure 2, investigating targets and their
neighborhood region, video frame images can be divided
into three categories. (e first are those where the target
pixels are stronger than their neighboring nontarget pixels,
such as the image frames before the moment tA, that is,
frames before the frame A; the second category are those
where noise pixels are stronger than target pixels, for ex-
ample, the B, C, and D frames corresponding to the moment
of tB, tC, and tD, and the strong noise points in the figure are
represented by red dots.(e strong noise point nB of frame B
is closer to the target, the strong noise point nC in frame C is
near the pipeline edge, and in frame D, the target is weaker
than the noise.(e third category are those where targets are
temporarily obscured, e.g., images of frame E to F corre-
sponding to time tE to tF. When the pipeline filter is applied
to detect targets, the strong noises in the second type images
may cause false detection, that is, noises are taken as targets,
which will affect the determination of the center positions of
the pipeline filter and make the subsequent detection unable
to continue. For example, under the influence of the noise
nC, the center of the pipeline filter in the next frame may be
mistakenly moved to the position where nC is, namely, the
edge position of the pipeline. As a result, the pipeline filter in
the next frame fails to contain the target, so the target cannot
be detected forward. Images of the third type have no target
points, so the detection cannot continue effectively. Since the
motion of targets is continuous and smooth, the positions
and velocities of targets can be predicted by making full use
of the motion information such as the speed and direction of
targets. In order to improve the robustness of the pipeline
filter detection algorithm, after target positions and veloc-
ities are predicted, works of two aspects need be done. (e
first is to enhance the time-domain energy of targets by using
the information of target pixels; the second is to use the
information of positions and velocities of targets to adap-
tively update G and R of the pipeline filter. In this way, the
influence of random strong noises and temporary obscure
on target detection can be effectively solved.

2.2.1. Position and Velocity Prediction of Targets.
Classical optimal estimation algorithms include least square
method, maximum likelihood method, Wiener filter
method, and Kalman filter method. (e Kalman filter
method is a time-domain filtering algorithm, which de-
scribes the system with state space and adopts the recursive

iteration method for optimization. (e calculation amount
and storage capacity of the Kalman filter method are rela-
tively less than those of other optimal estimation algorithms,
and it is applicable to multidimensional and various random
processes [18]. (erefore, the Kalman filtering method is
widely applied in various fields. So, the Kalman filter al-
gorithm is used in this paper to predict the centroids and
velocities of targets.

If the time of examining the motion state of targets is
relatively short, the motion of targets can be approximately
regarded as a uniform rectilinear motion. (e state equation
and the observation equation of the Kalman filter system can
be expressed as follows:

X(k + 1) � F∗X(k) + Q∗W(k),

Z(k + 1) � H∗X(k + 1) + V(k + 1),
(6)

where x(k), y(k), and vx(k), vy(k) in the state variable
X(k) � [x(k), y(k), vx(k), vy(k)]T are the centroid coor-
dinates and velocities of targets in the x and y directions,
respectively; F is the state transition matrix; Q is the noise-
driven matrix; H is the observation matrix; W(k) and V(k)

are the process noise and observation noise, respectively; and
the observation variable Z(k) denotes the observed centroid
coordinates of targets in the x and y directions.

2.2.2. Time-Domain Energy Enhancement of Targets. (e
center of the pipeline filter is mainly determined by the
centroid coordinates of targets. However, under the
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Image frames
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t

Figure 2: (ree types of target points. (e target points are
represented by small black dots, the strong noise points are rep-
resented by red dots, and frames E to F have no target points.

(a)

D
E

(b)

Figure 1: A curve of the function f(·) that describes an event. (a)
(e intact curve of f(·); (b) the curve of f(·) where parts of the
information are lost at D and E.
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influence of strong noises, targets may be undetected. For
instance, in Figure 2, under the influence of strong noise nC,
the pipeline filter may take nC as the target, and then in the
detection of the next frame, the pipeline filter would take the
centroid of nC as the center of the pipeline filter. As another
example in Figure 2, targets are disappeared in frames at the
moment from tE to tF. Under this situation, due to the
absence of targets, the pipeline filter may select a strong
noise as the target point, so the centroid of this strong noise
will be taken as the center of the pipeline filter in the next
frame. (e deviation of the center position of the pipeline
will affect the target detection of the pipeline filter. In order
to improve the robustness of the pipeline filter against strong
noise interference or targets’ obscuration, a time-domain
target energy enhancement algorithm is proposed in this
section.

(e energy enhancement of targets can be realized by
using the predicted positions of targets. Because dim-small
targets are very small in the field of vision, the size and
motion information of targets are relatively stable in a short
time. (erefore, after the centroid of the target of the fol-
lowing frame is predicted out, the time-domain energy
enhancement operation of the target can be carried out.(at
is, the target pixels’ gray value information of several pre-
vious frames could be superimposed on the target of the
prediction frame, so as to effectively enhance the target
energy of the prediction frame. (e specific formula is as
follows:

TN
′ � TN− m + TN− (m− 1) + · · · + TN− 2 + TN− 1 + TN,

(7)

where m is the number of frames that are superimposed on
the frame that needs to be predicted, TN is the original
energy of the target of the frame to be predicted,
TN− m, TN− (m− 1), · · ·, TN− 2, TN− 1 are the target energy of
frames N − m to N − 1 before the predicted frame, and TN

′ is
the enhanced target energy of the frame to be predicted.

(is enhancement operation can be classified into three
scenarios. In the first case, there is complete target infor-
mation in the frame to be predicted. In this case, the target
energy of the frame to be predicted can be greatly enhanced
through the time-domain energy enhancement operation. In
the second case, only partial information of the target is
contained in the frame to be predicted, that is, the target is
partially obscured temporarily. In this case, the lost target
information can be properly compensated through the time-
domain energy enhancement operation, and the whole
target energy can be effectively enhanced in the prediction
frame. In the third case, there is no target in the prediction
frame, that is, the target is completely obscured and lost
temporarily. In this case, the target information can be
estimated at the predicted position of the target through the
time-domain energy enhancement operation, and the en-
ergy of the estimated target has been enhanced.

2.2.3. Pipeline Center Adaptive. Adaptive pipeline is another
work to improve the robustness of the pipeline filter, which
mainly includes pipeline center adaptively tuning and

pipeline radius adaptively tuning. (e center position of the
pipeline is mainly determined by the centroid coordinate of
the target. In the ideal case without random noises, the
coordinate of the target centroid can be directly taken as the
coordinate of the pipeline center. But in fact, pipeline filter
detection is susceptible to random noises in the pipeline
area, especially the strong noise at the edge of the pipeline.
(erefore, in order to improve the robustness of the pipeline
filtering detection algorithm against strong noises, the
pipeline center adaptive tuning algorithm is given as follows:

C
x
k � C

x
k− 1 + ax,

C
y

k � C
y

k− 1 + ay,
(8)

where Cx
k and C

y

k are the centroid coordinates of the pipeline
in x and y directions of frame k, respectively, Cx

k− 1 and C
y

k− 1
are the centroid coordinates of the pipeline in x and y di-
rections of frame k − 1, respectively, and ax and ay are the
correction factors, and they can be determined by the fol-
lowing formula:
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x ,
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⎪⎪⎪⎪⎩

ay �

yk− 1 − C
y

k− 1, yk− 1 − C
y

k− 1 ≤Vk− 1
y ,

yk− 1 − C
y

k− 1
10by

, yk− 1 − C
y

k− 1 >Vk− 1
y ,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where Vk− 1
x and Vk− 1

y are the target velocities in x and y
directions of frame k − 1, respectively, xk− 1 and yk− 1 are the
centroid coordinates of the target of frame k − 1, respec-
tively, and bx and by are the order of the magnitude of
(xk− 1 − Cx

k− 1) and (yk− 1 − C
y

k− 1), respectively.
Vk− 1

x and Vk− 1
y are taken as thresholds, and correction

factors ax and ay are self-adaptively evaluated according to
the distance of the target moved in x and y directions in the
front and rear frames, respectively. Under normal cir-
cumstances, the moved distance of the target in the front and
rear frames in x and y directions will not exceed the moving
speed Vk− 1

x and Vk− 1
y of the target in x and y directions, so the

moved distance of the target is considered reasonable. If the
moved distance of the target exceeds the moving speed of the
target, it may be caused by strong noises. In this case, the
correction factor should be reduced correspondingly to
decrease the interference of strong noises. Since the velocity
and centroid coordinates of the target have been obtained
during prediction and detection operation, velocities Vk− 1

x

and Vk− 1
y are taken as the threshold and correction factors ax

and ay will be adjusted automatically when the velocity
changes, which can make the determination of the coor-
dinates of the pipeline center be more adaptive.

2.2.4. Pipeline Radius Adaptive. (e radius of the pipeline is
mainly determined by the velocity of the target, which is
generally an integer multiple of the target velocity. Since the
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TPFA assumes that the target speed does not exceed 1 pixel
per frame, the pipeline radius is directly set a fixed constant
value. But in fact, the moving speed of the target may change
or exceed 1 pixel per frame. (erefore, it is necessary to
adjust the pipeline radius according to the changed speed.
Otherwise, when the target moves beyond the range of the
pipeline area, the target will not be detected. (erefore, in
order to make the pipeline radius adaptive to the changed
speed and improve the robustness of the detection, the
pipeline radius adaptive algorithm is given as the following
equation:

Rk � Rk− 1 + d,

R0 � cV0,
(10)

whereRk is the pipeline radius of frame k,Rk− 1 is the pipeline
radius of frame k − 1, and R0 is the initial pipeline radius; c is
a constant, that is, it is a positive integer;
V0 � max(|V0

x|, |V0
y|) is the maximum speed in x and y

directions of the target of the initial frame; and d is the
correction factor, which can be determined by the following
formula:

d �

VΔ, VΔ ≤Vk− 1,

VΔ
10e

, VΔ >Vk− 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

where VΔ � max(|Vk− 1
x − Vk− 2

x |, |Vk− 1
y − Vk− 2

y |) is the maxi-
mum velocity difference in x and y directions of targets in
frames k − 1 and k − 2, Vk− 1 � max(|Vk− 1

x |, |Vk− 1
y |) is the

maximum velocity in x and y directions of targets in frame
k − 1, and e is the order of magnitude of VΔ.

In the pipeline radius adaptive algorithm, the pipeline
radius R is mainly determined by Rk− 1, and it is adaptively
adjusted according to the velocity variation VΔ. Under
normal circumstances, VΔ does not exceed Vk− 1 at the k − 1
frame, so it is considered reasonable. When the speed
suddenly changes significantly leading to VΔ greater than
Vk− 1, it indicates that the detection result may be influenced
by strong noises, so the value of the correction factor d
should be reduced to mitigate the interference of strong
noises. Similarly, the velocity of the target has been obtained
during prediction and detection operation, and Vk− 1 is taken
as the threshold, so the correction factor d will be adjusted
automatically when the velocity changes, which can make
the determination of the pipeline radius be more adaptive.

2.3. ;e APFA Algorithm. (e APFA, namely, Algorithm 1,
is an organic combination of target prediction, time-domain
energy enhancement of targets, pipeline center adaptive
tuning, and pipeline radius adaptive tuning.

After the backgrounds of original video images are
suppressed by SRLBMA to get sequence difference images S,
Algorithm 1 is carried out. Firstly, the centroid and velocity
of the target of the Nth frame are predicted by using the
information of targets in previous frames; secondly, the
target energy of frame N is enhanced in the time domain.
After the time-domain energy enhancement operation, if

there is a target in the original Nth frame, the target will be
significantly enhanced; if there is only part signal of the
target in the original Nth frame, the target information will
be compensated and the energy will be effectively enhanced;
if there is no target in the originalNth frame due to obscured
or other reasons, the target information will be estimated
and the energy will be enhanced. (irdly, the obtained
information of centroids and velocities of targets is used to
adaptively adjust the center and radius of the pipeline filter
to eliminate the interference caused by strong noises. Finally,
the adaptive pipeline filter is used to detect targets.

In order to understand the algorithm and demonstrate
its difference from TPFA intuitively, both the flow diagrams
of APFA and TPFA are shown in Figure 3. Comparing with
TPFA, it can be seen from Figure 3 that based on the
prediction information, the detection of APFA can be just
confined in the prediction area. In addition, it is more
robust.

3. Experiments

In this section, five different scenes are given, deep space
scene A, complex sky scene B, complex forest scene C,
complex space scene D, and sky scene E. Among them,
except scenes B and C, the other three scenes are the field
application signals. Scene A was got by an optical imaging
system with 1-meter aperture and 5-meter focal length,
sceneDwas got by an optical imaging system with 0.5-meter
aperture and 4-meter focal length, and scene E was got by a
digital camera. (e five scenes are used to carry out ex-
perimental verification of the APFA algorithm. First,
background suppression is carried out. Second, robust
performance experiments of APFA are conducted. It in-
cludes the time-domain energy enhancement experiment of
targets and target detection experiments when targets are
temporarily partial or entire obscured. (ird, comparison
experiments of target detection are conducted for the whole
motion process of targets to verify the overall target de-
tection performance of APFA.

3.1. Background Suppression. (e SRLBMA algorithm is
used for the background suppression experiment. In
SRLBMA, the parameters λ � 1/max(o, q) and
μ � o∗ q/4‖F1‖; o and q are the size of the statistical region
image matrix F ∈ Ro×q; and the convergence condition is
‖F − B − PF‖≤φ‖FF‖, where φ � 10− 7 [15].

Scene A is a deep space scene. (ere are two targets in
each frame, where target 2 is below target 1. (e energy and
size of target 2 are obviously larger than those of target 1, and
the energy of target 1 is very weak. (ey flew from the lower
right corner to the upper left corner in the frame. Scene B is a
complex sky scene. Moving from the upper right to the lower
left, the target in scene B is eventually submerged in the
turbulent layer of the atmosphere above the clouds. Scene C
is a complex forest scene. (e target is moved from the right
to the left at the edge of the forest and is constantly, partially,
or completely obscured by the trees as it is moving. In scene
D, the target moves from the bottom to the top of the image.
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From frames 103 to 123, the target is submerged in the
highlight background. In scene E, the target is moved from
the left to the right of the image. For scenes A, B, C,D, and E,
the difference images that were obtained by background
suppression are shown in Figure 4. Figure 4 shows only
frame 19 of scene A, 64 of scene B, 115 of scene C, 249 of
scene D, and 61 of scene E.

Based on our PC platform with the Windows7 operating
system, Intel Core i5 CPU, 3G memory, and Matlab R2017b,
the time consumptions of SRLBMA for scenes A, B, C, D,
and E are given in Table 1.

3.2. Robust Performance Experiments of APFA. In this
section, firstly, the energy enhancement experiments
of targets in the time domain are carried out, and then
the next experiments are about the detection of
targets that are temporarily partially or completely
obscured.

3.2.1. Energy Enhancement of Targets in Time Domain.
(e relationship between the number m of superimposed
frames and the effect of time-domain energy enhancement
of targets is discussed by carrying out the experiment for
scene B. Since the TPFA starts to be unstable and large false
detection occurred after frame 331, images before frame 331
of scene B are used for comparing analysis in order to better
illustrate the problem. (e input signal-to-noise ratio
(SNR_i), output signal-to-noise ratio (SNR_o), signal-to-
noise ratio gain (SNR_g), and the average gray scale value of
the target (Ave_gray) are used as evaluation indexes. (ey
are shown in equations (12) to (15):

SNR_i � 10lg
target_inmean − original_imagemean

original_imagestd
􏼠 􏼡,

(12)

SNR_o � 10lg
target_out mean − out_imagemean

out_imagestd
􏼠 􏼡, (13)
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n ≥ T

Identify the candidate target to 
be detected as the real target

Whether all candidate targets 
have been detected

Output the current frame image that 
has completed target detection

Is it the last frame? 

�e end

Take the 
next candidate 

target as the 
candidate 

target that to 
be detected

Take the 
next frame 
as the frame

to be 
detected

Yes

No

Yes

No

No

Yes

(b)

Figure 3: (e flow diagram of the TPFA and APFA methods. (a) (e TPFA flow diagram. (b) (e APFA flow diagram. n denotes the
number of times that the candidate target is detected in the pipeline area, and T denotes the judgment threshold.

6 Mathematical Problems in Engineering



Original video images

Scene A 
frame 19

Scene B
frame 64

Scene C
frame 115

Scene D
frame 249

Background images Difference images

Scene E
frame 61

Figure 4: Background suppression results of scenes A, B, C, D, and E. (e first to third columns correspond to the original video images,
background images, and difference images, respectively.
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SNR_g � 10lg
SNR_o
SNR_i

􏼠 􏼡, (14)

Ave_gray �
graysum
Numpixel

, (15)

where target_inmean and target_out mean are the targets’ mean
gray value of input images and output images, respectively;
original_imagemean and original_imagestd are the gray scale
value mean and standard deviation of the neighborhood
areas of targets of input images, respectively; out_imagemean
and out_imagestd are the mean gray value and standard
deviation of the neighborhood areas of targets of output
images, respectively; graysum is the sum of the gray value of
target pixels; and Numpixel is the total number of target
pixels.

It is known from the previous discussion that for the
current frame to be detected, the target centroid will be
predicted and the targets’ energy in previous m frames will
be superimposed onto the detected frame to enhance the
target energy. Obviously, the energy of the target increases
with the increase in the number m of superimposed frames,
which is indeed true from the experimental results. Frames
131, 236, and 315 of scene B are randomly selected to cal-
culate SNR_i, SNR_o, SNR_g, and Ave_gray of targets be-
fore and after time-domain energy enhancement, and the
data are filled in Tables 2 and 3. It can be seen from Tables 2
and 3 that SNR_o, SNR_g, and Ave_gray of targets of output
images are obviously higher than those without super-
imposed enhancement, and SNR_o, SNR_g, and Ave_gray
of targets of output images are increased with the increase
in m.

However, is the larger the number m of superimposed
frames, the better the result of energy enhancement? If only
from the perspective of energy enhancement, it is true that
the larger the m, the more significant the energy enhance-
ment effect will be obtained. However, with the increasing
value of m, two serious problems arise: the first problem is
that the target is extended, that is, the area that is occupied by
the superimposed target is larger than that of the real target.

(e reason for this problem is that there is a certain dif-
ference in the area that is occupied by the target of different
frames, so the target that is superimposed bymultiple frames
must be expanded. Another problem is that superimposed
targets can interfere with real targets, and the reason for this
problem is that no prediction can avoid error. If there is a
significant deviation of the centroid coordinate value be-
tween the predicted and real target, it may lead that the real
target is located on the edge or outside of the superimposed
target, and at the same time, if the energy of the real target is
lower than that of the superimposed target, the target de-
tection result will be unstable or even failure. At the same
time, this phenomenon will be fed back to the prediction
system, which further exacerbates the error of the centroid of
the predicted target in the subsequent image frames. (ese
two problems affect the detection results together, and the
larger the m, the more obvious the effect. From the ex-
perimental data in Figures 5 and 6, it can be clearly seen that
after the time-domain energy enhancement, the target en-
ergy is significantly enhanced, but the phenomenon of target
expansion and the coordinate deviation of the target cen-
troid are also generated. Figures 5 and 6 shows the change of
target size and centroid position of the representative frames
100, 214, 274, and 322 on the three conditions that of
without superposition enhancement, superposition of 2
frames, and superposition of 8 frames, respectively. It can be
seen from Figures 5 and 6 that at frame 100, the overlap
between the superimposed target and the real target is very
good on the two conditions that of superimposed 2 frames

(1) Input: Sequence difference images S ∈ Rw×z that were obtained by the SRLBMA algorithm.
Parameters m, F, H, Q, W(k), V(k), c, and V0

(2) while not the last image do
(3) // Centroids and velocities prediction of targets

X(k + 1) � F∗X(k) + Q∗W(k)

Z(k + 1) � H∗X(k + 1) + V(k + 1)

(4) // Time-domain energy enhancement of targets
TN
′ � TN− m + TN− (m− 1) + · · · + TN− 2 + TN− 1 + TN

(5) // Pipeline centers adaptive and pipeline radiuses adaptive
Cx

k � Cx
k− 1 + ax

C
y

k � C
y

k− 1 + ay

Rk � Rk− 1 + d

(6) Pipeline target detecting
(7) end while
(8) Output: target images T

ALGORITHM 1: (e adaptive pipeline filtering algorithm (APFA).

Table 1: (e time consumptions of SRLBMA for scenes A, B, C, D,
and E.

Scenes Total
frames

Image
size

Total
time

Average time
per frame

A 110 250∗ 250 746.4270 6.7857
B 532 250∗ 180 4339.5772 8.1571
C 521 250∗ 180 3171.1707 6.0867
D 399 256∗ 256 3582.6609 8.9791
E 115 300∗ 150 943.8970 8.2078
(e time unit is second.
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and superimposed 8 frames; at frames 214, 274, and 322, the
overlap between the superimposed targets of superimposed
2 frames and the real targets is still very good; but in the case
of superimposed 8 frames, the real target shifts slightly to the
upper right of the superimposed target at frame 214, the real
target distinctly moves to the upper right edge of the

superimposed target at frame 274, the real target completely
moves beyond the upper right edge of the superimposed
target at frame 322, and the detection performance becomes
more and more unstable after frame 322. So, it can be seen
that the value of the superimposed frame number m is not
the larger the better, which should be determined according

Table 2: SNR_i, SNR_o, and SNR_g of targets of difference images for frames 131, 236, and 315 of scene B before and after time-domain
energy enhancement.

Frame 131 Frame 236 Frame 315
SNR_i SNR_o SNR_g SNR _i SNR_o SNR_g SNR _i SNR_o SNR_g

Superposition of 2 frames 8.9275 11.0483 2.1208 6.3721 10.0170 3.6499 4.7623 9.6999 4.9375
Superposition of 8 frames 8.9275 11.6644 2.7369 6.3721 10.2355 3.8634 4.7623 10.1655 5.4032
Unit: dB.

Original
video images

Original
difference images

Images of 
superimposed 2 frames

Images of 
superimposed 8 frames

Frame 322

Frame 100

Frame 214

Frame 274

Figure 5: Images before and after time-domain energy enhancement of targets at frames 100, 214, 274, and 322. (e first to fourth columns
correspond to the original video images, original difference images, images of superimposed 2 frames, and images of superimposed 8 frames,
respectively.

Table 3: Ave_gray of targets after time-domain energy enhancement of difference images for frames 131, 236, and 315 of scene B before and
after time-domain energy enhancement.

Frame 131 Frame 236 Frame 315
No superposition 94.3913 64.0227 49.0000
Superposition of 2 frames 146.8167 130.2157 121.3396
Superposition of 8 frames 166.1977 136.6744 131.2437
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to different scenes. Experimental data show that for scene B,
in the case of superimposed 2 frames, the overlap between
superimposed targets and real targets remains good through
all the frames of scene B, which is a total of 532 frames.
(erefore, for scene B, m� 2 can achieve better effect of
energy enhancement and target detection. Similarly, better
effect of energy enhancement and target detection can be

achieved whenm� 2 for sceneA,m� 4 for scene C,m� 2 for
scene D, and m� 2 for scene E.

3.2.2. Estimation and Detection Experiment for Targets under
Occlusion. In a complex scene, targets may be submerged by
strong noises or temporarily occluded by obstacles. In these

Original difference images Superimposed 2 frames Superimposed 8 frames
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Frame 274

Frame 322
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Figure 6: (ree-dimensional figures of energy before and after time-domain energy enhancement of targets of frames 100, 214, 274, and
322. (e first to third columns correspond to the three-dimensional figures of energy of original difference images, images of superimposed
2 frames, and images of superimposed 8 frames, respectively.
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cases, the detection performance of TPFA would decrease
sharply, and result in instability and serious missing de-
tection. It can be seen from Figures 7–9 that because APFA
adopts centroid prediction and energy enhancement com-
pensation of targets, it can effectively solve the problem that
TPFA had encountered. (e target in scene C walks by the
side of the woods. From frames 80 to 89, 190 to 200, 224 to
230, 272 to 356, and 448 to 471, targets in these five different
time periods are partially occluded by trees. Figure 7 shows
that targets can be with good recovery through prediction
and superposition enhancement when targets are obviously
partially obscured by trees, so targets can be accurately
detected. In scene C, from frames 201 to 223, there are 23
frames in total, during which targets are completely ob-
scured by trees. In scene D, from frames 103 to 123, the
target is completely submerged in the highlighted back-
ground. As shown in Figure 8, in this case, targets still can be
estimated and detected through prediction and superposi-
tion enhancement.

In scene C, from frames 224 to 226, the targets are just
beginning to come out from the trees. During the process
from the time when the target was just completely covered
by trees to the time when the target gradually came out

from the trees, the accuracy of target estimation is mainly
determined by the prediction accuracy of the target
centroid. Before the target started to come out from the
trees, there are 23 consecutive frames without the target,
which can cause the prediction error of the target cen-
troid. It can be seen from the third column in Figure 9 that
the prediction position of the target is lagging behind the
real position when the target is slightly emerging from the
trees at the beginning, so that the estimated target is
located on the right side of the partially exposed target
(the target is walking form the right to the left in scene C),
and at this time, the expansion of the target is relatively
serious. As the real target continuously emerges from
behind the trees, the prediction of the target position is
more and more accurate, and the target detection result is
more and more accurate too. Experimental data show that
APFA can detect the target well, whether the target is
partially or completely obscured.

3.3. Target Detection Experiments. Target detection rate is
used to evaluate the detection effect.(e target detection rate
is defined as follows:

Frame 81

Frame 199

Frame 337

Original 
video images

Original 
difference images

Images of 
superimposed 4 frames

Result images of target detection 
of superimposed 4 frames

Frame 451

Figure 7: (e target is partially obscured by trees. (e first to fourth rows correspond to the frames 81, 199, 337, and 451, respectively. (e
first to fourth columns correspond to the original video images, original difference images, images of superimposed 4 frames, and the result
images of target detection of superimposed 4 frames, respectively.
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det_rate �
target_det
target_all

, (16)

where det_rate is the target detection rate, target_det is the
total number of frames from which the real target has been
detected, and target_all is the total number of frames that
have the real target in them. Table 4 gives the target detection

rate data of scenes A, B, C, D, and E obtained by TPFA and
APFA. Figure 10 shows the targets’ trajectory detected by the
two algorithms.

Scene A has a total of 110 frames, and each frame has two
targets. In each frame, target 1 is at the top right of the image
and target 2 is below target 1. For target 1, the TPFA failed to
detect it in frames 15 to 23, 92 to 97, and 102 to 109. So, the

Frame 103

Frame 204

Figure 8: Targets are completely obscured by trees or is submerged in the highlight background.(e first row corresponds to scene C, frame
204, and from left to right, the four images correspond to the original video image, original difference image, image of superimposed 4
frames, and the result image of target detection of superimposed 4 frames. (e second row corresponds to sceneD, frame 103, and from left
to right, the four images correspond to the original video image, original difference image, image of superimposed 2 frames, and the result
image of target detection of superimposed 2 frames.

Original 
video images

Original 
difference images

Images of 
superimposed 4 frames

Result images of target detection 
of superimposed 4 frames

Frame 224

Frame 225

Frame 226

Figure 9: (e target is gradually emerging from the behind of trees. (e first to third rows correspond to the frames 224, 225, and 226,
respectively. (e first to fourth columns correspond to the original video images, original difference images, images of superimposed 4
frames, and the result images of target detection of superimposed 4 frames, respectively.
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Table 4: Comparison of target detection rates.

Scenes Detection rates of TPFA Detection rates of APFA

A 79.09 (target 1) 100% (target 1)
92.73 (target 2) 100% (target 2)

B 78.89% 98.77%
C 94.98% 99.60%
D 97.60% 100%
E 61.74% 100%

Scene A

APFATPFA

Scene B

Scene C

Scene D

Scene E

Figure 10: Target trajectories. (e first to fifth rows correspond to scenes A, B, C, D, and E, respectively. (e target trajectories in the first
column were obtained by TPFA, and the target trajectories in the second column were obtained by APFA.
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target detection rate of TPFA for target 1 is 79.09%. For
target 2, the TPFA failed to detect it in frames 64 to 71. So,
the target detection rate of TPFA for target 2 is 92.73%. As a
result, for TPFA, in Figure 10, it can be clearly seen that there
are 3 breakpoints on the detected trajectory of target 1, and 1
breakpoint on the detection trajectory of target 2. For the
two targets in scene A, the detection rate of APFA is 100%.

Scene B has a total of 532 frames. In six periods of time, a
total of 488 frames have the real target, and they are frames 1
to 410, 414 to 436, 441 to 469, 498 to 505, 512 to 521, and 524
to 532. (e contrast between targets and their neighborhood
is relatively high for frames 1 to 331, so APFA can detect all
targets of these frames. However, TPFA failed to detect
targets in frames 161, 165, and 190 because the target in
frame 161 is blocked by the fixed vertical bright line and
targets in frames 165 and 190 are interfered by fixed strong
noises. After frame 332, the target flies deeper and closer to
the atmosphere above the cloud, and the atmospheric tur-
bulence noises become more and more complex. (e target
is almost drowned by the turbulence noises, and the target is
sometimes vanished. (erefore, after frame 332, the de-
tection performance of TPFA is extremely unstable, and only
a total of 57 frames can effectively detected out of the total
target. So, for the total 488 frames those containing the target
in scene B, 385 frames can be detected by TPFA. As a result,
for scene B, the detection rate of TPFA is 78.89%. It can also
be seen from Figure 10 that the target trajectory was ob-
tained by TPFA before frame 331 is smooth except that there
are two protrusions at the lower edge due to strong noise
interference in frames 165 and 190. However, the trajectory
after frame 332 becomes divergent, coarse, and fracture,
which directly reflects that the detection performance of
TPFA is extremely unstable. In sharp contrast, even in the
case of strong noise interference and the absence of the
target, the APFA can still achieve a good detection result
after frame 332. For APFA, in those periods that there is a
target, only 6 frames, i.e., frames 371, 377, 378, 384, 513, and
514, cannot detect the target. So, for the total 488 frames
those containing the target in scene B, 482 frames can be
detected by APFA. As a result, for scene B, the detection rate
of APFA is 98.77%. It can be clearly seen from Figure 10 that
the overall detection performance of APFA is much stabler
than that of the TPFA, that is, the target trajectory obtained
by APFA is more continuous and smooth than that of the
TPFA.

Scene C has a total of 521 frames. Except the target in
frames 201 to 223 is completely obscured by trees, the rest of
the 498 frames all have the target in them. In all frames
where there is the target in them, a total of 25 frames, i.e.,

frames 56, 200, 224 to 227, 306 to 310, 338 to 343, 487, 488,
496 to 498, and 519 to 521, failed to detect the target by
TPFA. As a result, for scene C, the target detection rate of
TPFA is 94.98%. For TPFA, it can be seen from Figure 10
that there is an obvious fracture in the target trajectory
because of failure in detecting the target in frames 201 to 227,
and the smoothness of the target trajectory is relatively poor
due to failure in detecting the complete target at each period
when the target is partly obscured by trees. In sharp contrast,
only frames 224 and 225 cannot be accurately detected by
APFA because the target is severely extended, and all the rest
of the frames can be detected. So, the target detection rate of
APFA is 99.60%. Because APFA can well estimate the target
when the target is partially or completely obscured by trees,
it can be seen from Figure 10 that the target trajectory that
was obtained by APFA is much smoother than that was
obtained by the TPFA.

Scene D has a total of 399 frames. Except the target in
frames 103 to 123 which is completely submerged in the
highlight background, the rest of the 375 frames all have the
target in them. In all frames where there is the target in them,
a total of 9 frames, i.e., frames 92, 256, 300 to 303, 349, 377,
and 391, failed to detect the target by TPFA. As a result, for
scene D, the target detection rate of TPFA is 97.60%. For
TPFA, it can be seen from Figure 10 that there is an obvious
fracture in the target trajectory because of failure in detecting
the target in frames 103 to 123. In sharp contrast, not only
APFA can detect all the targets in Scene D, but also can
estimate the target when it is completely submerged in the
highlight background. So, the target detection rate of APFA
is 100%, and it can be seen from Figure 10 that the target
trajectory obtained by APFA is much smoother than that
was obtained by the TPFA.

Scene E has a total of 115 frames, and all have the target
in them. Because of the influence of the noises, a total of 44
frames that are frames 27 to 33, 67 to 83, and 96 to 115 failed
to detect the target by TPFA. (us, for scene E, the target
detection rate of TPFA is 61.74%, and it can be seen from
Figure 10 that there are obvious fractures in the target
trajectory that was obtained by TPFA. In sharp contrast,
because APFA has the robust performance to detect the
target, the target detection rate of APFA is 100% and it can
be seen from Figure 10 that the target trajectory that was
obtained by APFA is much smoother than that was obtained
by the TPFA.

All these experiments were carried out on a PC with the
Windows7 operating system, Intel Core i5 CPU, 3G
memory, and Matlab R2017b. (en, the time consumptions
of APFA for scenes A, B, C, D, and E are given in Table 5.

Table 5: (e time consumptions of APFA for scenes A, B, C, D, and E.

Scenes Total frames Image size Total time Average time per frame
A 110 250∗ 250 23.0560 0.2096
B 532 250∗ 180 201.2024 0.3782
C 521 250∗ 180 160.9369 0.3089
D 399 256∗ 256 108.9669 0.2731
E 115 300∗ 150 33.5340 0.2916
(e time unit is second.
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4. Conclusion

(rough effectively enhancing the energy and compensating
the information of the target and adaptive updating of the
center and radius of the pipeline, the APFA can well improve
the robustness of the pipeline filter against strong noises and
temporary partial or complete occlusion of the target. As a
result, the target detection rate of APFA is significantly
higher than that of the TPFA.(e experimental data of time-
domain energy enhancement of targets of scene B show that
the signal-to-noise ratio gains of targets are increased more
than 2 dB after superimposed 2 and 8 frames, and the av-
erage gray values of the targets are greatly promoted. In
terms of robust performance, experiments also show that
although targets in many frames are overwhelmed by tur-
bulence strong noises such as those after frame 332 in scene
B, APFA can still steadily and effectively detect the target
until the last frame. Even, in scene C, there are a total of 23
frames where the target is completely obscured by trees and a
total of 137 frames where the target is partially obscured by
trees, and in scene D, there are a total of 21 frames where the
target is completely submerged in the highlight background;
however, in these cases, APFA can still steadily and effec-
tively estimate the target. For the five scenes A, B, C, D, and
E, the target detection rates of APFA are 100%, 98.77%,
99.60%, 100%, and 100%, respectively, which are signifi-
cantly higher than those of TPFA.

(e main shortcomings of APFA which are inevitable
are the prediction error and target expansion, which will
affect the stability of the algorithm in serious cases.
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