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In the actual traffic environment, the driver’s aggressive driving behaviors are closely related to the traffic conditions at the next-
nearest grid point at next time step. )e driver adjusts the acceleration of the driving vehicle by predicting the density of the front
grid points. Considering the driver’s aggressive effect and the relative flow difference integral, a novel two-lane lattice hy-
drodynamic model is presented in this paper. )e linear stability method is used to analyze the current stability of the new model,
and the neutral stability curve is obtained. )e nonlinear analysis of the new model is carried out by using the theory of
perturbations, and the mKdV equation describing the density of the blocked area is derived. )e theoretical analysis results are
verified by numerical simulation. From the analysis results, it can be seen that the driver’s aggressive effect and the relative flow
difference integral can improve the stability of traffic flow comprehensively.

1. Introduction

)e rapid improvement of urbanization level and the ex-
plosive growth of household car ownership havemade urban
traffic contradiction more and more prominent and even
become an important factor restricting urban economic
development. Especially since 1990, it is the fastest growing
period of motor vehicles. )e traffic flow is more concen-
trated, unable to move and stop, and the contradiction is
extremely sharp. In order to change the traffic situation,
many big cities began to construct ring roads, large inter-
changes, elevated roads, and metro. Because of the hasty
decision and improper decision-making, they often only pay
attention to local improvement and can only achieve short-
term results. If the city is compared to the human body, then
traffic is equivalent to the flow of human blood. )e flow of
blood is not smooth, accidents occur frequently, the light
cause is short-term paralysis, and the heavy cause is long-

term poor flow and the formation of “dead city,” which will
bring immeasurable losses to the country and people. Traffic
flow theory comes into being under such circumstances.
Furthermore, some researchers [1–3] have broadened the
field of traffic flow research from other perspectives in recent
years.

In the face of many hazards brought by traffic conges-
tion, the construction and development of urban roads
urgently need the support and guidance of theoretical
knowledge, and the theoretical model of traffic flow is ap-
plied. In order to explore the intrinsic mechanism of traffic
congestion, scholars at home and abroad have carried out a
series of studies on the physical phenomena of traffic flow
[4–28]. Based on the characteristics of traffic flow, various
trafficmodels have been developed through research, such as
car-following models [26, 29–35], cellular automata models
[36–41], macro-traffic models [42–47], and lattice hydro-
dynamic model [30, 48–52].
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Lattice hydrodynamic modeling and nonlinear analysis
are important tools for macro-traffic flow simulation and
traffic pressure relief. Lattice hydrodynamics model has been
widely used to simulate the phase transition phenomena in
real traffic because it can describe the macroscopic char-
acteristics of traffic flow. Nagatani [12, 13] discretized the
hydrodynamic model to obtain a simple lattice hydrody-
namic model, which incorporated the optimized velocity
function of themicromodel into themacromodel.)erefore,
the lattice hydrodynamic model has both the characteristics
of macromodel and micromodel, and it is convenient for
simulation calculation and prediction. Based on the lattice
hydrodynamic model of Nagatani [13], many extended
models are proposed to study the nonlinear phenomena in
traffic flow under intelligent transportation environment.
Xue [14] established a one-dimensional traffic flow lattice
hydrodynamic model considering the interaction between
the nearest neighbor and the next-nearest neighbor lattices.
Using the linear stability theory, they deduced the neutral
stability conditions of traffic flow and the mKdV equation
describing the phase transition of traffic congestion by using
the nonlinear analysis method. Considering the influence of
any number of lattice information in front, Ge et al. [15]
proposed an extended lattice hydrodynamic model. Ge and
Cheng [16] further improved the lattice model by combining
“backward looking” effect and deduced the mKdV equation
near the neutral stable line. Considering the optimal traffic
flow, Zhu et al. [17, 18] extended the lattice model and found
that this model can significantly alleviate traffic congestion.
On the basis of previous studies, Peng et al. [19, 20] com-
bined various road information to further promote the study
of lattice hydrodynamics model. Tian et al. [21, 22] con-
sidered different traffic information to further improve and
apply the lattice hydrodynamic model of Nagatani.

Using lane changing rules, Nagatani [53] constructed a
new extended two-lane traffic model with vmax � 1. In recent
years, two-lane traffic flow models [54–66] have been de-
veloped gradually due to the restrictions of single lane being
unable to change lanes and overtaking. In these two-lane
traffic flow models, more attention is paid to the relative
displacement, speed between two adjacent vehicles. How-
ever, in the real traffic flow, the driver’s aggressive driving
behaviors also have a significant impact on the traffic sit-
uation. In real traffic life, the aggressive driving behaviors are
closely related to the starting, braking, overtaking, and lane
changing of driving vehicle. At the same time, the integral
form of flow difference can describe traffic flow more ac-
curately and objectively. In the two-lane lattice hydrody-
namic model, a newmodel is proposed with consideration of
driver’s aggressive effect and flow difference integral.

)is paper consists of the following parts. Firstly, the
development history of traffic flow related models is in-
troduced in Section 1. Based on the existing models, an
extended two-lane lattice hydrodynamic model is proposed
in Section 2. In Section 3, the linear stability analysis of the
new model is presented. In Section 4, the new model is
analyzed by nonlinear analysis method and the mKdV
equation is solved. Numerical simulations are carried out in
Section 5. Finally, the conclusions are provided in Section 6.

2. The Novel Two-Lane Lattice
Hydrodynamic Model

With the rapid development of the modern urban process,
the situation of single lane in the real road environment is
gradually reduced, which makes the study of single lane
traffic model cannot meet the needs of the actual road
traffic. )is contradiction has gradually attracted the at-
tention of traffic flow researchers, and the two-lane traffic
model came into being. Compared with single lane, the
two-lane traffic model can reflect the complexity of the
actual traffic, and more and more academic papers on the
two-lane model gradually increase. But at present, the
research of the two-lane model has a lot of room to expand,
which is the significance of this paper. Figure 1 shows the
diagrammatic sketch of the lane change in a two-lane
expressway traffic flow model, in which continuous two-
lane traffic flow is discretized into two rows of uniform grid
points.

)e direction of the arrow shown in Figure 1 repre-
sents the forward flow direction of traffic flow in actual
traffic operation, and each circle represents a grid point.
When the traffic flow gap between two rows at a grid point
is too large, the traffic flow will be adjusted according to
the actual situation: part of the traffic flow will be
transferred from the large part to the small part of the
traffic flow. As shown in Figure 1, when the traffic flow in
site j − 1 of the second lane is larger than that in site j of
the first lane, a large part of the traffic flow flows from
point j − 1 of the second lane to point j of the first lane. If
the traffic flow in point j of the first lane is larger than that
in point j + 1 of the second lane, some traffic flow will be
transferred from point j to point j + 1. In the course of
lane changing of two-lane traffic flow, we define lane
changing rate as c|ρ20V′(ρ0)|, with dimensionless constant
coefficient represented by c.

In the absence of lane diversion, the conservation
equation of the site j on the first lane is given as

ztρ1,j + ρ0 ρ1,jv1,j − ρ1,j−1v1,j−1 

� c ρ20V′ ρ0( 


 ρ2,j−1 − 2ρ1,j + ρ2,j+1 ,
(1)

and the conservation equation of the site j on the second
lane is given as

ztρ2,j + ρ0 ρ2,jv2,j − ρ2,j−1v2,j−1 

� c ρ20V′ ρ0( 


 ρ1,j−1 − 2ρ2,j + ρ1,j+1 ,
(2)

where ρ1,j and ρ2,j denote the density of the lattice j on the
first lane and the second lane, respectively.
ρ1,jv1,j − ρ1,j−1v1,j−1 represents the relative flux difference
between the lattices j and j − 1 of the first lane. ρ2,jv2,j −

ρ2,j−1v2,j−1 represents the relative flux difference between the
lattices j and j − 1 of the second lane.

By substituting equation (1) into equation (2), the two-
lane continuity equation is obtained as follows:
ztρj + ρ0 ρjvj − ρj−1vj−1  � c ρ20V′ ρ0( 


 ρj−1 − 2ρj + ρj+1 ,

(3)
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where ρ0 is the initial density, ρj � ((ρ1,j + ρ2,j)/2) and
ρjvj � ((ρ1,jv1,j + ρ2,jv1,j)/2).

Assuming that the evolution equation of traffic flow on each
lane is not affected by the lane change proposed byNagatani, the
evolution equation of two-lane traffic is as follows:

zt ρjvj  � aρ0V ρj+1  − aρjvj, (4)

where driver’s sensitivity coefficient is defined as a, and
a � (1/τ). V(ρj+1) in equation (4) represents the optimal
velocity function, and V(ρj+1) � ((V(ρ1,j+1) + V(ρ2,j+1))/2).

)e optimal velocity function is adopted as follows:

V(ρ) �
vmax

2
tanh

2
ρ0

−
ρ
ρ20

−
1
ρc

  + tanh
1
ρc

  , (5)

where vmax � 2 is the maximal velocity and ρc � 4 is the
safety density.

A large number of studies have shown that driver’s habits
and personality will affect traffic flow in varying degrees.
However, at this stage, no scholars have taken the driver’s
aggressive effect into account in two-lane traffic. Based on
this, we take the driver’s aggressive driving behaviors into
two-lane to explore what the specific impact of driver’s ag-
gressive effect will have on two-lane traffic operation. We use
the integral form of flow difference to give the specific density
of the current road. To sum up, a new extended two-lane
model of traffic flow is constructed, and its continuity
equation and the motion equation are listed as follows:

zt ρjvj  � aρ0 (1 − P)V ρj+1(t)  + PV ρj+2 t + t0(   

− aρjvj + aβ
t

t−t0

ρj+1(s)vj+1(s) − ρj(s)vj(s) ds,

(6)

ztρj + ρ0 ρjvj − ρj−1vj−1  � c ρ20V′ ρ0( 


 ρj−1 − 2ρj + ρj+1 ,

(7)

where 
t

t−t0
[ρj+1(s)vj+1(s) − ρj(s)vj(s)] represents the in-

tegral of the flow difference between t − t0 and t, besides,
gives the integral a coefficient β. In actual traffic, compared
with ordinary drivers, some drivers who are confident of
their driving skills will drive vehicles close to their front
because they can quickly predict the driving information of
the front car, adjust, and accelerate in time. P is the
weighting value, 0≤P≤ 0.5, whichmeans the intensity of the
driver’s aggressive effect. As P � 0, this new expanded traffic
model returns to Nagatani’s model [13].

)e dynamic equation of traffic density can be obtained
by eliminating the velocity v in equations (6) and (7). )e
equation is expressed as follows:

aρ20 (1 − P) V ρj+1(t)  − V ρj(t)   + P V ρj+2 t + t0(  

− V ρj+1 t + t0(  

+ z
2
tρj(t) − c ρ20V′ ρ0( 


 ztρj−1 − 2ztρj + ztρj+1  + a ztρj

− ac ρ20V′ ρ0( 


 ρj−1(s) − 2ρj(s) + ρj+1(s) 

− aβ ρj+1(t) − ρj+1 t − t0(  − ρj(t) + ρj t − t0(  

+ aβτc ρ20V′ ρ0( 


 

L

l�1
3ρj(t − lτ) − 3ρj+1(t − lτ)

+ ρj+2(t − lτ) − ρj−1(t − lτ) � 0.

(8)

3. Linear Stability Analysis

In this section, linear analysis is used to discuss the driver’s
aggressive effect, the relative flow difference integral, and the
lane change rate on traffic operation. Obviously, the uniform
traffic flow means constant density ρ0 and constant velocity
V(ρ), so the steady-state solution of the traffic flow for this
new model is given as follows:

ρj(t) � ρ0,

vj(t) � V(ρ),
(9)

yj is assumed to be a small disturbance of steady-state flow
on lattice j, and let

ρj(t) � ρ0 + yj(t). (10)

Inserting equation (10) into equation (8), one obtains

z
2
t yj + aztyj − aβ yj+1 − yj+1 t − t0(  − yj + yj t − t0(  

+ aρ20PV′ ρ0(  yj+2 − yj+1  + aρ20PV′ ρ0( t0 ztyj+2 − ztyj+1 

+ acρ20V′ ρ0(  yj−1 − 2yj + yj+1  + acρ20V′ ρ0(  yj−1 − 2yj + yj+1 

+ aρ20(1 − P)V′ ρ0(  yj+1 − yj  + cρ20V′ ρ0(  ztyj−1 − 2ztyj + ztyj+1 

− aβcρ20V′ ρ0( τ 
L

l�1
3yj(t − lτ) − 3yj+1(t − lτ) + yj+2(t − lτ) − yj−1(t − lτ)  � 0.

(11)

Lane 1

Lane 2

j – 1 j + 1j

j – 1 j + 1j

Figure 1: )e schematic model of traffic flow on a two-lane
highway.
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)e following equation about z is derived by expanding
yj � exp(ikj + zt):

aρ20 (1 − P)V′ ρ0(  e
ik

− 1  + PV′ ρ0(  e
2ik

− e
ik

 

+ Pt0V′ ρ0( z e
2ik

− e
ik

 

+ acρ20V′ ρ0(  e
−ik

− 2 + e
ik

  − aβ e
ik

− e
ik− zt0 − 1 + e

−zt0 

+ z
2

+ az + cρ20V′ ρ0( z e
−ik

− 2 + e
ik

 

− aβτcρ20V′ ρ0(  

L

l�1
e

− lzτ 3 − 3e
ik

+ e
2ik

− e
− ik

  � 0,

(12)

where V′(ρ0) �(dV(ρ)/dρ)|ρ � ρ0, and the sum 
L
l�1 e−lzτ

can be expressed as 
L
l�1 e−lzτ � L. Let

z � z1(ik) + z2(ik)2 + · · ·, in the equation, omit the higher
order terms of ik larger than the second power, we obtain

z1 � −ρ20V′ ρ0( , (13)

z2 � −
ρ20V′ ρ0(  

2

a
− ρ20V′ ρ0( 

1
2

− P − Pt0z1 − c  + βt0z1.

(14)

When the value of z2 is less than 0, the uniform steady-
state flow will be unstable for long-wavelength modes. In
contrast, when the value of z2 is greater than 0, the uniform
steady-state flow will remain stable. After introducing
equation (13) into equation (14), we get the neutral stability
condition is as follows:

a � −
2ρ20V′ ρ0( 

1 − P − Pt0z1 − c + βt0
. (15)

)e stable region of two-lane traffic flow system can be
obtained by satisfying the following condition:

a> −
2ρ20V′ ρ0( 

1 − P − Pt0z1 − c + βt0
. (16)

Figure 2 reveals the phase diagram in the (ρ, a)-plane.
With the change of the influence coefficient of different
parameters, the correlation between the variation and pa-
rameters of the stable and unstable regions can be shown in
Figure 2.

In Figure 2, the solid and dotted lines of color represent
the neutral stability curves presented under different con-
straints. Figure 2(a) shows the neutral stability curves of
three color dotted lines when P � 0.1, c � 0 and β values are
changed to 0, 0.05, and0.1, respectively. )e three solid lines
represent the neutral stability curves when P � 0.1, c � 0
and β is changed to 0, 0.05, and 0.1. Among them, the
unstable region is shown below the curve and the stable
region is shown above the curve. By comparing dotted lines
separately, we can see that the value of β increases gradually,
the area of unstable region decreases gradually, and the
surface value of stable region increases gradually. Similarly,
by comparing the three solid lines in the graph, we deduce
that when P � 0.1 and c � 0.1, changing the value of β, the
value of neutral stability curve decreases gradually, and the

area of unstable region decreases accordingly. )e two lines
with the same color are the neutral stability curves when the
values of P and β are fixed and the values of c are 0 and 0.1,
respectively. By comparing each solid line with the dashed
line, we find that when c � 0.1, the neutral stability curve is
below the neutral stability curve when c � 0. It can be
explained that increasing the lane change rate c has a sta-
bilizing effect on traffic flow.

Figure 2(b) shows the neutral stability curve when the
density difference integral β is 0.05 and P is 0, 0.1, and 0.2,
respectively. )ree color dotted lines are neutral stability
curves with c � 0, and three color solid lines are neutral
stability curves with c � 0.1. It is obvious that increasing the
value of P can gradually expand the stability region by
changing the curve in the graph. Similarly, when comparing
c � 0 and c � 0.1, respectively, the two curves with the same
c value can be seen that when c takes 0.1, the stability region
is larger. We can conclude that increasing lane change rate c

is beneficial to traffic flow stability in a certain range.
)rough the current stability analysis, we can get the neutral
stability curve, and the simulation results can be verified.
Finally, it is concluded that increasing the values of the
driver’s aggressive effect, the relative flow difference integral,
and the lane change rate is helpful to relieve traffic pressure.
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Figure 2: Phase diagram in parameter space (ρ, a) for equation
(16). (a) P � 0.1. (b) β � 0.05.
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4. The mKdV Equation

In this section, the reduced perturbation method is used to
analyze the above model near the critical point (ρc, ac). In
the unstable area of traffic flow, the slow variables X and T

for a small direct scaling parameter ε(0< ε≪ 1) are sup-
posed as follows:

X � ε(j + bt),

T � ε3t,
(17)

where b alleges a constant to be determined.
)e density is defined as follows:

ρj(t) � ρc + εR(X, T). (18)

By introducing equations (17) and (18) into equation (8),
the following nonlinear partial differential expression is
obtained:

ε2 h1zXR(  + ε3h2z
2
XR + ε4 zTR + h3z

3
XR + h4zXR

3
 

+ ε5 h5zXzTR + h6z
4
XR + h7z

2
XR

3
  � 0,

(19)

where the coefficients values hi(i � 1, 2, . . . , 7) contained in
equation (19) are given by

h1 � b + ρ2cV′ ρ0( ,

h2 �
b2

a
+
ρ2cV′ ρ0( 

2
+ Pb + cρ2cV′ ρ0(  + βτL,

h3 �
cbρ2cV′ ρ0( 

a
+
ρ2cV′ ρ0( 

6
− βbτ2 

L

l�1
l +

Pb

2
− Pcρ2cV′ ρ0( 

h4 �
ρ2cV″′ ρ0( 

6
,

h5 �
2b

a
− P,

h6 �
ρ2cV′ ρ0( 

24
+

cρ2cV′ ρ0( 

12
+
βb2τ3

2


L

l�1
l
2

+
βτL

12
−

Pb

6

−
Pcρ2cV′ ρ0( 

2
,

h7 �
ρ2cV″′ ρ0( 

12
,

(20)

where V′ �(dV(ρ)/dρ)|ρ � ρc and V″′ �(d3V(ρ)

/dρ3)|ρ � ρc.
By substituting b � −ρ2cV′(ρc), τ � (1 + ε2)τc into

equation (19), the simplified equation is obtained as follows:

ε4 zTR − g1z
3
XR + g2zXR

3
  + ε5 g3z

2
XR + g4z

4
XR + g5z

2
XR

3
  � 0,

(21)

where the parameter values gi(i � 1, 2, . . . , 5) in equation
(21) are given by

g1 � −
bcρ2cV′ ρ0( 

ac

−
ρ2cV′ ρ0( 

6
+ βbτ2 

L

l�1
l +

Pb

2
+ Pcρ2cV′ ρ0( ,

g2 �
ρ2cV″′ ρ0( 

6
,

g3 � −
ρ2cV′ ρ0( 

2
− Pρ2cV′ ρ0(  − cρ2cV′ ρ0(  + βτL,

g4 �
cρ2cV′ ρ0( 

12
+
ρ2cV′ ρ0( 

24
+
1
2
βb

2τ3 

L

l�1
l
2

+
βτL

12
−

Pb

6

−
Pcρ2cV′ ρ0( 

2

−
2b

ac

− P  ×
cbρ2cV′ ρ0( 

ac

+
ρ2cV′ ρ0( 

6
− βbτ2 

L

l�1
l⎛⎝

+
Pb

2
− Pcρ2cV′ ρ0( ,

g5 �
ρ2cV″′
12

−
ρ2cV″′
6

×
2b

ac

− P .

(22)

In order to derive the regularization equation, the fol-
lowing transformations should be made:

T �
1
g1

T′,

R �

��
g1

g2



R′.

(23)

It is drawn out that the mKdV equation with an O(ε)
correction term is given as follows:

zTR′ � z
3
XR′ − zXR′

3
+ εM R0′ , (24)

where M[R0′] � (g3/g1)z
2
XR′ + (g4/g1)z

4
XR′ + (g1g5/g2)

z2XR′
3. Subsequently, when ignoring the O(ε), the kink-

antikink soliton solutions of the mKdV equation are proved
as follows:

R0′ X, T′(  �
�
c

√
tanh

�
c

2



X − cT′( , (25)

where c means the determined velocity of the kink-antikink
solution. By solving the following integral equation, the
value of c will be obtained:


+∞

−∞

�
c

√

g1g2
g2g3z

2
XR′ + g2g4z

4
XR′ + g1g5z

2
XR′

3
 

tanh
�
c

2



X − cT′(  dX � 0.

(26)

Suppose R′(X, T′) � R0′(X, T′) + εR1′(X, T′) takes ac-
count of O(ε) correction. Among them,
(R0′, M[R0′] ≡ 

+∞
−∞ dX′R0′M[R0′]). With the method
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described in Ref. [48], the general velocity c is obtained as
follows:

c �
5g2g3

2g2g4 − 3g1g5
. (27)

)erefore, the kink-antikink solution of the mKdV
equation near the critical point can be rewritten as follows:

ρj(t) � hc ±

�����������
g1c

g2

τ
τc

− 1 



× tanh

���������
c

2
τ
τc

− 1 



× j + 1 − cg1( 
τ
τc

− 1 t .

(28)

5. Numerical Simulation

In this section, the influence of the driver’s aggressive
driving behaviors and the relative flow difference integral of
traffic flow are verified by numerical simulation [64–66]. In
order to facilitate numerical simulation, equation (8) is
simplified by using difference method as follows:

aβτ2
L(L + 1)

2
Δt ρj+1(t + Δt) − ρj+1(t) − 2ρj(t + Δt) + 2ρj(t) + ρj−1(t + Δt) − ρj−1(t) 

− cρ20V′ ρ0( Δt ρj−1(t + Δt) − ρj−1(t) − 2ρj(t + Δt) + 2ρj(t) + ρj+1(t + Δt) − ρj+1(t) 

− ρj(t + 2Δt) + 2ρj(t + Δt) − ρj(t) − aβτLΔt2 ρj+1(t) − 2ρj(t) + ρj−1(t) 

− acρ20V′ ρ0( Δt2 ρj−1(t) − 2ρj(t) + ρj+1(t) 

+ aPΔt ρj+1(t + Δt) − ρj+1(t) − ρj(t + Δt) + ρj(t) 

− aρ20 V ρj+1(t)  − V ρj(t)   − aΔt ρj(t + Δt) − ρj(t) 

+ aPcρ20V′ ρ0( Δt2 3ρj(t) − 3ρj+1(t) + ρj+2(t) − ρj−1(t)  � 0,

(29)

where the time step Δt is 0.05.
)e initial conditions for this extended traffic lattice

model are chosen as follows:

ρj(1) � ρj(0) �

ρ0, j≠
N

2
,

N

2
+ 1,

ρ0 − σ, j �
N

2
,

ρ0 + σ, j �
N

2
+ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

where the value of N which defined the sum number of the
sites is opted as 100, a � 1.25. ρj(0) � ρ0 � 0.25,
ρj(1) � ρ0 � 0.25, for j≠ 55, 56, ρj(1) � 0.25 − 0.1, for
j � 50, ρj(1) � 0.25 + 0.1, for j � 51, and the value of σ
which defined the initial disturbance is opted as 0.05.

Figures 3(a)–3(d) express the three-phase diagram of the
new expanded two-lane model under the condition of
changing the lane change rate step by step. It shows that
when the values of P and β are fixed and unchanged, the
vibration amplitude of density wave decreases gradually and
the vibration frequency decreases as the value of the lane
change rate c increases from 0 to 0.3. Figure 3(a) reveals
when β and P is equal to 0.05 and 0.15, let c be 0. As can be
seen from Figure 3(a) intuitively and effectively, the density

wave oscillates, ranging from 0.2 to 0.9, and the vibration
frequency is the highest than the other three figures.
Figures 3(b) and 3(c) show the phase diagrams at c � 0.1 and
c � 0.2, respectively. When the value of c is gradually in-
creased to 0.3, the vibration amplitude of density wave is
about 0.3 to 0.7 which is shown in Figure 3(d). )rough the
continuous debugging of numerical simulation, with the
gradual increase of c value, the density wave curve becomes
more and more stable. For the actual traffic flow, this means
that the traffic operation capacity can be enhanced and the
traffic efficiency is greatly improved. Figure 4 is the two-
dimensional phase diagrams with density wave corre-
sponding to Figure 3. )ey finally verify that considering
lane change rate is of positive value to traffic flow. Increasing
the value of c in a certain range can improve the ability of
traffic flow to run smoothly.

Figures 5(a)–5(d) express the three-dimensional phase
diagram of density wave when the values of β and c are fixed
to 0.05 and 0.1, and the values of the coefficient P of the
driver’s aggressive effect are gradually changed. Figure 5(a)
reveals that the curve fluctuation range of density wave
ranges from 0.1 to 0.9 without considering the driver’s
aggressive effect. In Figures 5(b) and 5(c) with the increase of
P value to 0.1 and 0.2, the fluctuation range of density wave
decreases obviously, and the change of vibration frequency is
not significant. When the value of P is increased to 0.3, the
density wave presents a straight line, which means that
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Figure 3: )e evolution of the traffic densities with different c values. (a) c � 0. (b) c � 0.1. (c) c � 0.2. (d) c � 0.3.
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Figure 4: Continued.
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the traffic flow will reach an ideal state without blockage.
Figure 6 is the two-dimensional headway profile phase di-
agram of density wave matching Figure 5. In the two-lane
lattice hydrodynamics model, considering the driver’s ag-
gressive effect, traffic congestion can be effectively alleviated.

Figures 7 and 8 show the three-dimensional phase di-
agram and corresponding two-dimensional phase diagram
when the value of β is gradually increased from 0 to 0.15
when the values of P and c are fixed as 0.1 and 0.1. From
Figures 7(b)–7(d), with the increase of the influence
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Figure 4: )e density profile at t � 10300 with different c values. (a) c � 0. (b) c � 0.1. (c) c � 0.2. (d) c � 0.3.
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Figure 5: )e evolution of the traffic densities with different P values. (a) P � 0. (b) P � 0.1. (c) P � 0.2. (d) P � 0.3.
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Figure 6: )e density profile at t � 10300 with different P values. (a) P � 0. (b) P � 0.1. (c) P � 0.2. (d) P � 0.3.
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Figure 7: Continued.
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Figure 7: )e evolution of the traffic densities with different β values. (a) β � 0. (b) β � 0.05. (c) β � 0.1. (d) β � 0.15.
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Figure 8: )e density profile at t � 10300 with different β values. (a) β � 0. (b) β � 0.05. (c) β � 0.1. (d) β � 0.15.
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parameter value β of the relative flow difference integral, the
density wave tends to be stable. When the value of β is 0.15,
the density wave approximates a straight line. Considering
the influence of the relative flow difference integral has a
positive effect on traffic flow.

)rough numerical simulation, it is proved that con-
sidering the factors of the driver’s aggressive effect, the
relative flow difference integral, and the lane change rate in
two-lane traffic flow model is beneficial to improve traffic
operation. )e numerical simulation results also validate the
correctness of our theoretical results in practical operation.

6. Conclusion

According to the actual traffic environment, a novel two-
lane lattice hydrodynamic model is proposed, which con-
siders the effects of the driver’s aggressive effect and the
relative flow difference integral. )e analytical stability
conditions are obtained by linear stability analysis method,
and the spatial phase diagram of sensitivity coefficient
density is given. Based on the change of the neutral stability
curve in the phase diagram, this paper analyzes the three
influencing factors: driver’s radical effect, relative flow dif-
ference integral, and lane change rate, which play an im-
portant role in improving the stability of traffic flow.
Nonlinear method is used to analyze the model in advance
and the corresponding numerical validation is made. )e
numerical simulation results are consistent with the theo-
retical analysis. In conclusion, it is reasonable to consider the
driver’s aggressive effect and the relative flow difference
integral comprehensively in a two-lane lattice hydrodynamic
model.
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