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In this research, an approach for predicting wind energy in the long term has been developed. +e aim of this prediction is to generate
wind energy profiles for four cities in Palestine based on wind energy profile of another fifth city.+us, wind energy data for four cities,
namely, Nablus city, are used to develop the model; meanwhile, wind energy data for Hebron, Jenin, Ramallah, and Jericho cities are
predicted based on that.+reemachine learning algorithms are used in this research, namely, Cascade-forward neural network, random
forests, and support vector machines.+e developed models have two input variables which are daily average cubic wind speed and the
standard deviation, while the target is daily wind energy. +e R-squared values for the developed Cascade-forward neural network,
random forests, and support vector machines models are found to be 0.9996, 0.9901, and 0.9991, respectively. Meanwhile, RMSE values
for the developed models are found to be 41.1659 kWh, 68.4101 kWh, and 205.10 kWh, respectively.

1. Introduction

Renewable energy sources have become the focus of the
attention of countries and energy companies because of their
sustainable and inexhaustible nature and their availability
everywhere in the world unlike fossil fuels and minerals, and
most importantly, they are not polluting to the environment
[1]. Wind energy is the second largest source of renewable
energy in the world after hydropower and it is one of the
fastest growing energy sources [2]. +e main advantages of
wind energy as an energy source are that it is relatively safe,
environmentally friendly, quick to install, and scalable (a
wind farm can consist of a couple of turbines or hundreds
depending on the needs they cover) and it has a low-carbon
footprint throughout the lifecycle of the project [3, 4].
However, many challenges are facing the exploitation of wind
energy, such as the high initial cost, the impact on wildlife,
noise, and visual pollution (some remote areas suitable for
wind energy need a high cost to be connected to the electrical
network), and the unpredicted amount of energy due to
variation in wind speed and weather conditions.

+e most significant problem facing wind energy is that
the wind does not blow all the time inmost sites.Wind speed

is variable all the time; it may blow for four days in a row and
then sits idle for two days or more [2]. +erefore, wind
energy cannot be available all the time like fossil fuels.
Because of that, wind speed analysis and forecasting must be
done at the location where the wind farm is to be established
to ensure that it will be appropriate to produce energy in a
feasible manner.

Wind energy forecasting is extremely important to select
an appropriate site to install a wind farm capable of pro-
ducing sufficient and profitable amounts of energy. Wind
energy forecasting methods can be divided into two cate-
gories depending on the time range, namely, short-term
forecasting methods and long-term forecasting methods.
Short-term methods are used to predict wind energy over a
short period ranging from an hour to several days, while
long-term methods are used to predict wind energy over a
long period ranging from several days to several years. In the
literature, many methods that rely on statistics or machine
learning have been used to predict wind energy in both short
term and long term.

Numerous researchers have used machine learning to
predict short-term wind energy. In [5], Li et al. proposed a
new effective method for wind power forecasting based on
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the support vector machine model. In this method, the
optimal parameter for the support vector machine model was
optimized using improved dragonfly algorithm. Najeebullah
et al. [6] used an approach that utilizes a combination of
machine learning techniques for regression and feature se-
lection before using enhanced particle swarm optimization
and a hybrid neural network for wind power forecasting using
a dataset consisting of daily wind speed, relative humidity,
temperature, andwind power. Jursa and Rohrig [7] developed
a model based on evolutionary optimization algorithms with
artificial neural networks and nearest neighbor search. +is
model was able to predict wind power on hourly basis.
Amjady et al. [8] used a hybrid machine learning model
consisting of radial basis function, backpropagation neural
networks, and enhanced particle swarm algorithm for wind
power forecasting. +is model has achieved good results
compared to some othermethods. Abhinav et al. [9] proposed
a robust and accuratemodel based onwavelet neural network.
+is model is applicable to all seasons of the year and requires
less historic data compared to other methods in literatures.
Similarly, Chitsaz et al. [10] used wavelet neural network
trained by improved clonal selection algorithm to optimize
the free parameters of the wavelet neural network. Moreover,
Du et al. [11] used three-layer feedforward wavelet neural
network for multistep prediction of wind power time series.
+is model presents excellent results compared to other
methods in literatures. Pousinho et al. [12] proposed a hybrid
approach for wind power forecasting in Portugal by com-
bining particle swarm optimization and adaptive-network-
based fuzzy inference system. Significant improvements in
prediction accuracy can be achieved using this approach,
compared to results obtained from five other methods. A very
short-term wind forecasting method was developed by Potter
and Negnevitsky [13] using an adaptive neurofuzzy inference
system to forecast a wind time series. +is method requires
both wind speed and wind direction as input for the adaptive
neurofuzzy inference system. Lahouar and Ben Hadj Slama
[14] used random forests for hour-ahead wind power fore-
casting in Tunisia.+ismethod is immune to irrelevant inputs
and does not require optimization. Wang et al. [15] proposed
a hybrid model based on Bayesian model averaging and
ensemble learning (BMA-EL) for daily wind forecasting. +is
model can forecast wind power under different meteoro-
logical conditions, with higher precision and reliability.

On the other hand, statistical models have also been used
to predict wind power, and the most important of these
models is ARMA model. Chen and Folly [16] successfully
used the ARMA model to predict wind energy and wind
speed for an hour ahead. +is model has less error in wind
power and wind speed forecasting compared to artificial
neural networks and adaptive neurofuzzy inference systems.
Erdem and Shi [17] used four approaches based on autor-
egressive moving average (ARMA) to predict wind speed
and direction tuple. Results are compared using absolute
average error (MAE) as a measure of prediction quality. +e
component model was found to be better in wind direction
prediction than the traditional-linked ARMA model, while
the opposite was observed for wind speed prediction. Han
et al. [18] proposed two hybrid models based on

autoregressive moving average (ARMA) by adopting the
nonparametric models.+e results of this research show that
nonparametric hybrid models are generally better than other
models and have more robust performance prediction.
Sfetsos in [19] applied autoregressive integrated moving
average (ARIMA) for multistep forecasting of 10 minutes
averaged data and the subsequent averaging to generate
mean hourly predictions. +e result of this model outper-
forms the conventional methods that utilize past mean
hourly wind speed as model input. Kavasseri and See-
tharaman [20] used fractional ARIMA model for wind
power forecasting on day-ahead and two-day-ahead hori-
zons. Model errors were computed and compared to the
persistence models. +e results show a significant im-
provement in prediction accuracy compared to the persis-
tence method. Dupre et al. [21] used the downscaling model
to predict hourly and subhourly wind speed at 100m height
using outputs from the European Centre for Medium-Range
Weather Forecasts (ECMWF). +is model outperforms
ANN, ARMA, and persistence models.

In long-term wind forecasting using machine learning,
Grassi and Vecchio [22] used a two-hidden-layer neural
network trained by backpropagation learning algorithm on
wind data from three different wind farms. +eir model was
able to predict wind power on monthly basis with a high
accuracy. Barbounis and +eocharis [23] suggested using a
locally recurrent neural network optimized by recursive pre-
diction error (RPE) algorithm for long-term wind power and
wind speed forecasting. +is suggested model shows a better
performance and accuracy compared to atmospheric and time
series forecasting models. Samadianfard et al. [24] used a
multilayer perceptron (MLP) optimized by whale optimization
algorithm for long-term wind speed forecasting in Iran. +e
research shows that whale optimization algorithm could im-
prove the accuracy of the MLP model. Carolin Mabel and
Fernandez [25] developed a model based on artificial neural
networks using MATLAB. To predict wind power, this model
requires three inputs: wind speed, relative humidity, and
generation hours. Yan and Ouyang [26] used physical
mechanisms and data mining algorithms to create a hybrid
model for wind power forecasting based on a monthly basis.
Model results show a better performance in terms of accuracy
and cost analysis compared to traditional models. Khan et al.
[27] used a robust method called Cartesian genetic pro-
gramming to develop artificial neural network for wind power
forecasting.+ismodel can forecast wind power fromone hour
up to a year. Dumitru and Gligor [28] proposed a model based
on feedforward artificial neural network for long-term wind
power forecasting in South-East part of Europe.

In long-term wind forecasting using statistical models,
Cadenas and Rivera [29] developed a hybrid model based on
artificial neural network (ANN) and autoregressive inte-
grated moving average (ARIMA) models for wind speed
forecasting. +is hybrid model shows better accuracy
compared to other ANN or ARIMA based models. Kamal
and Jafri [30] used the time series model ARMA for wind
speed prediction. +is model takes into account several
features such as autocorrelation, non-Gaussian distribution,
and diurnal nonstationarity. Liu et al. [31] proposed two
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hybrid models called ARIMA-Kalman and ARIMA-ANN
for wind speed prediction. Results show that bothmodels are
performing well and can be applied to the nonstationary
wind speed. De Alencar et al. [32] used artificial neural
network, autoregressive integrated moving average
(ARIMA), and wavelets hybrid model for wind speed pre-
diction. +is model can be used on short-term, medium-
term, and long-term wind speed prediction.

From the literature, it is clear that the most effective
methods are artificial neural networks as well as support vector
machines. Meanwhile, most of the utilized artificial neural
networks are feedback forward neural network. It is assumed
here in this research that other neural networks may perform
better than feedback artificial neural network such as cascaded
feedback forward artificial neural network. Moreover, the
research examines a new forecasting technology which is
random forest, as such a technology proved its ability in
predicting other renewable energies such as solar energy. +us
there are two main objectives in this research which are
proposing an assessment of three types of learning machines
which are cascaded feedback forward artificial neural networks,
random forest, and support vector machine for predicting
long-termwind speed. In addition, this research aims to predict
wind energy for four cities in Palestine as such a research has
not been done before. +e importance of the second objective
is to have a model that is able to predict wind energy for any
location in Palestine. Such a model will be important for any
investment in the field of wind energy in this country.

2. Proposed Learning Machines

Machine learning is a subfield of artificial intelligence (AI)
that has evolved from pattern recognition and is used to
explore data structure and fit models that users can un-
derstand and use [33]. It answers the question of how to
build a computer program using historical data, solve a
specific problem, and automatically improve program effi-
ciency through experience [33]. Machine learning is related
to the field of mathematical statistics and mathematical
optimization. It is divided into multiple methods such as
supervised learning, unsupervised learning, semisupervised
learning, and reinforcement learning; each method has
specific use cases and its own algorithms.

Supervised learning is a model in which both the required
input and output data are provided. Input and output data are
categorized to provide the basis for learning to process data in
the future. In this research, three supervised learning algo-
rithms will be used, namely, cascade-forward neural network,
random forests, and support vector machines.

2.1. Cascade-Forward Neural Network. Cascaded forward
neural network (CFNN) can be described as a “self-orga-
nizing” neural network.+e CFNN network generates many
hidden layers one after another to learn and evolve from its
basic structure to become a multilayer network. It is called
cascade because it includes a connection to the following
layers from the input and each previous layer. It consists of
three layers: input layer, hidden layer, and output layer.

+e network does not change the neuron values in the
input layer, but it distributes them on hidden and output
layers. A transfer function obtains the final output value by
receiving the sum of the neuron output values multiplied by
its weight [34].

2.2. Random Forest. Random forest is a classification and
regression machine learning technique that works by as-
sembling a multitude of decision trees developed by [35].
Random forest algorithm is a mixture of numerous decision
trees that are generated from the learning data of the pre-
dictor’s samples; these samples are chosen arbitrarily at each
node using the bootstrapping technique.+e random forests
algorithm is based on the CART model approach [36].
However, there are some noteworthy differences. +e first
difference is that the training data is selected arbitrarily while
the best split is computed at each split node of the random
forests. All the trees in the random forest reach the maxi-
mum by using the “no clipping” step.+e input variables can
be ranked based on their significance to the output by
comparing the effect of each input on the model accuracy.
+is comparison is based on the out-of-bag error.

2.3. Support Vector Machines. Support vector machines
(SVMs) are one of the most popular classic machine learning
techniques. One of the most important advantages of the
SVM technique is that it is nonparametric and therefore
does not adopt any prior knowledge about the primary
distribution of data. Another advantage is its distribution
and resiliency and the fact that it can easily handle large
datasets with unknown, complex, and high-dimensional
dependency structures [37]. However, the most important
feature of the SVMs technique is its robustness. +is feature
is very significant because it guarantees this technique to
remain able to work well even with the presence of outliers
or extreme data, regardless of whether these are simple
errors in the data or extreme observations, or data comes
from an extreme value or heavy-tailed distributions [37].

3. Utilized Wind Speed Data

In this research, wind speed data for five Palestinian cities are
used, namely, Nablus, Ramallah, Hebron, Jenin, and Jericho.
+ese data were measured at 10m high and were obtained
from the PVGIS database. Figure 1 shows these data.

3.1. Wind Speed and Installation Height. +e PVGIS wind
speed data are measured at 10m above ground level, which is
lower than the hub height of 50m of the selected turbine.
+erefore, the wind speed at the turbine hub height can be
estimated by using the power law equation with the mea-
sured data as reference input. Power law equation is given by

V

V0
�

H

H0
􏼠 􏼡

a

, (1)
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where V is the wind speed at the hub height, V0 is the
measured wind speed, H is the hub height, H0 is the height
where the speed wasmeasured, and a is a constant that varies
with surface roughness and terrain condition. +is constant
(a) has a typical value of 0.14 for smooth, level, grass-covered
terrain [38].

3.2. Wind Distribution. +e output power of wind turbines
depends on the speed of the wind and air density, but they
are not the only factors. Wind power also depends on wind
speed distribution and wind speed frequency. +e two-pa-
rameterWeibull distribution is the most used distribution in
wind energy studies. It has been found that this distribution
is a good fit with the measured wind speed data.+eWeibull
probability density function is given by

f(v) �
k

c

v

c
􏼒 􏼓

k− 1
e

− (v/c)k

. (2)

And the Weibull cumulative distribution function is
given by

F(v) � 1 − e
− (v/c)k

, (3)

where v is the wind speed, k is Weibull shape parameter, and
c is Weibull scale parameter. Weibull parameters are cal-
culated by fitting the wind speed data to (2) by using an

iterative procedure to minimize the summation of the ab-
solute difference between (2) and the real data. Table 1 shows
Weibull scale parameters and Weibull shape parameters for
the selected cities for wind energy forecasting in this
research.

Figure 2 shows the Weibull probability density function
for these selected cities.

3.3.WindEnergy. Wind energy has been used for thousands
of years in many ways such as windmills, sailing, and wind
turbines. Modern large-scale wind turbines are machines
used to convert kinetic wind energy into mechanical energy,
which is converted into electrical energy using electric
generators [39]. Wind energy is a kinetic energy obtained by
utilizing the kinetic energy of the flowing air. +e available
wind kinetic energy is directly proportional to air mass and
airflow speed. However, it is easier to use air density instead
of air mass to compute available wind energy and actual
wind turbine output energy using (4) [38] and (5) [40],
respectively:

Pw �
1
2
∗ ρ∗A∗V

3
, (4)

Pa �
1
2
∗ ρ∗A∗V

3 ∗Cp, (5)
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Figure 1: Wind speed data for five Palestinian cities.
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where Pw is the available wind power, Pa is the actual output
power generated by the wind turbine, ρ is the air density, A is
the swept area of the blades of the wind turbine, V is wind
speed, and Cp is the power coefficient. +e power coefficient
(Cp) is an indicator of total wind turbine system efficiency,
and it depends on many factors, such as tip angel, blade
shape, and the correlation between wind speed and rotor
speed. According to Carrillo [41] the maximum theoretical
value of the power coefficient (Betz limit) for any turbine is
0.593. However, real turbines cannot achieve this value and
their maximum value is usually around 0.5.

+e output power of a wind turbine is usually repre-
sented through its power curve, where there is a relationship
between wind speed and turbine output power, as shown
below [41]:

Pturbine �

0, v< vci or v> vco,

Pa, vci ≤ v< vr,

Pr, vr ≤ v< vco,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where v is hourly wind speed, vci is turbine cut-in speed, vr is
turbine rated speed, vco is turbine cut-out speed, Pturbine is
turbine output power, Pr is turbine rated power, and Pa is
the nonlinear relationship between turbine power and wind
speed (in (2)).

In this research, a 1MW turbine will be used for wind
power modeling. Figure 3 shows the power curve of this
turbine, and the technical specification of this turbine is
shown in Table 2.

4. Prediction of Wind Speed Data

In this research, training and testing datasets were generated
using datasets obtained from PVGIS database. Figure 1
shows this dataset which contains hourly wind speed data
at 10m height for twelve years for the city of Nablus and one
year for Hebron, Ramallah, Jenin, and Jericho. +e training
dataset for machine learning model was generated based on
Nablus hourly wind speed data, where the inputs in the
training dataset are the daily average cubic wind speed and
the standard deviation, while the target is the daily wind
energy. Similarly, the testing dataset was generated based on
other cities hourly wind speed data.

+e training process for the machine learning model
starts by calculating wind speed at hub height (50m) using
(1), hourly energy using (6), daily energy using (7), daily
average cubic wind speed using (8), and daily standard
deviation using (9). +en, daily average cubic wind speed
and standard deviation are used to train the models to
predict daily wind energy:

E(i) � 􏽘
k�24

k�1
Pa(k), (7)

Vm(i) �
1
24

���������

􏽘

k�24

k�1
V(k)

3
3

􏽶
􏽴

, (8)

SDm(i) �

�������������������

􏽐
k�24
k�1 V(k) − Vm(i)( 􏼁

2

24 − 1

􏽳

. (9)

+e trained models testing process starts by generating
the testing dataset for Hebron, Ramallah, Jenin, and Jericho
in the same way training datasets were generated. Figure 4

Table 1: Weibull parameters for selected cities.

City/Parameter Scale parameter Shape parameter
Nablus 2.40 1.894
Ramallah 2.36 1.924
Jenin 2.92 2.243
Hebron 3.08 1.827
Jericho 3.67 2.129
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Figure 2: Weibull probability density function for selected cities.
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Figure 3: 1MW turbine power curve.

Table 2: 1MW turbine technical specification.

Rated power 1000 kW
Cut-in wind speed 3m/s
Rated wind speed 13m/s
Cut-out wind speed 25m/s
Diameter 53.4m
Rated rotational speed 19 rpm
Length of blade 40m
Hub height 50m
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shows the flowchart of the whole approach used for wind
energy forecasting.

+e accuracy of the proposed model is evaluated based
on the root mean square error (RMSE), mean bias error
(MBE), and coefficient of determination (R2).

MBE provides information about the long-term per-
formance of the proposed method and it shows the average
variance between the predicted values of the energy to the
corresponding values of the actual energy. In the current
prediction, a positive MBE error represents overestimation
of data from datasets and vice versa. MBE can be determined
using the equation below:

MBE �
1
n

􏽘

n

k�1
Ep(k) − Ea(k). (10)

Eventually, RMSE is a measure of the variance of the
energy values from the model around the values of the actual

energy and it provides information on the short-term
performance. RMSE is calculated by

RMSE �

����

1
n

􏽘

n

k�1

􏽶
􏽴

Ep(k) − Ea(k)􏼐 􏼑
2
, (11)

where Ep(k) is the predicted energy, Ea(k) is the actual
energy value, and n is the number of data points.

Eventually,R2 is coefficient for analyzing how a differ-
ence in one or more variables can be explained by a dif-
ference in another variable. R2 can be calculated by

R
2

� 1 −
SSres
SStot

, (12)

where SSres is regression sum of squares and SStot is the sum
of squares of residuals.

Start

Input wind turbine 
specifications

Calculate required wind speed at 
hub height

Calculate daily energy based on 
hourly wind speed

Calculate daily average cubic wind 
speed and standard deviation

Train the ML models using
daily average cubic wind speed 

and standard deviation as inputs 
and daily energy as target

Predict annual wind energy using 
daily wind speed data only

Plot predicted annual energy and 
measured energy on the same graph

Calculate model performance 
(RMSE, MBE, R2)

End

Input hourly wind 
speed data

Figure 4: Wind energy forecasting flowchart.
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5. Results and Discussion

In this research, long-term wind energy has been predicted
using three machine learning algorithms, namely, cascade-
forward neural network (CFNN), random forests (RFs), and
support vector machines (SVM). MATLAB statistics and
machine learning toolbox were used to train and test these
models. Nablus wind speed data was used to train the
models; then these models were tested on wind speed data of
four other cities.

In general, all of the developed models have two
inputs which are daily average cubic wind speed and
standard deviation and one output which is daily wind

energy. +e developed CFNN model consisted of ten
hidden layers and 32 neurons and the network is trained
using Levenberg–Marquardt optimization. As for the
training data, 70% of the data were used for training, 15%
for validation, and 15% for testing. Meanwhile, the data
for the other four cities were not used in all of the
aforementioned process so as to avoid overfitting.
Meanwhile, the proposed RF model consisted of 150 trees
with one leaf each. Finally the kernel function in SVM was
chosen as Quadratic.

According to the results, the cascade-forward neural
network predicted energy throughout the year, with the
highest accuracy followed by SVM with slightly lower

Table 3: RMSE, MBE, and R2 values for the proposed models.

CFNN RFs SVM
RMSE MBE R2 RMSE MBE R2 RMSE MBE R2

Jenin 22.71 2.66 0.9992 26.05 2.96 0.9990 32.64 − 11.23 0.9985
Hebron 58.08 5.64 0.9996 341.52 − 34.56 0.9913 114.65 6.60 0.9989
Jericho 31.08 − 3.40 0.9997 23.71 − 2.42 0.9998 57.70 2.08 0.9993
Ramallah 20.42 − 5.48 0.9995 47.93 − 2.42 0.9971 34.32 − 19.09 0.9991
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Figure 5: CFNN prediction results for wind energy in selected cities in Palestine.
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accuracy, and finally the RFs model. It was noted that the
RFs model could not predict high energy because the
models were trained at relatively low speeds and this model
relies mainly on regression; it cannot predict data outside
its range. Table 3 shows the RMSE, MBE, and R2 for the
three models.

In general, for the CFNN model, the average RMSE is
33.07 kWh which means that the error in predicting any
daily value of wind energy in this location might be up to
this range. +e highest value for of RMSE for the CFNN
was recorded for Hebron city whereas wind energy
potential is the highest; meanwhile the training of the
model was done based on data for Nablus city which has
average wind energy optional. +is affects the accuracy of
the model in predicting high wind energies as such values
were considered outliers for the dataset. However, it does
not help using wind speed data for Hebron city to train
the model instead of Nablus city as the model will be less
accurate in predicting data for other cities. +us, the best
is to develop individual models for each city and nearby
locations. However, in this research the aim was to
develop a general model for all locations in Palestine. On

the other hand, the MBE values for the proposed CFFN
model were varying from an average of 4.15 kWh of
overestimation of wind energy and − 4.44 kWh of un-
derestimation of wind energy. +ese values are very fine
and show an ability of the proposed model to predict
such data. Finally a high value of correlation factor was
noticed for this model and other models, which is quite
logical as the utilized inputs and outputs are highly
correlated.

As for the SMVmodel, the measures show close accuracy
to the proposed CFNN model, while RF model showed the
worst accuracy measures as compared to the other two
models. +is is also expected as RFs are better for classifi-
cation than prediction of nonlinear and highly uncertain
data.

In addition to that, CFNN shows the strongest ability to
predict wind energy for locations with high energy potential
(Hebron city) as compared to other models. Based on that,
CFNN was chosen in this research as the best model for
prediction of wind energy.

Figure 5–7 show the predicted energy by CFNN, RFs,
and SVM, respectively.
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Figure 6: RFs prediction results for wind energy in selected cities in Palestine.
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6. Conclusion

In this research, three learning machines were developed to
predict wind energy in the long term for any location in
Palestine. +ese learning machines were trained by using
wind energy data in four cities in Palestine. Wind energy data
for three cities were used to train the developed models, while
the developed models were utilized to predict wind energy for
the fourth city (Nablus). According to the results, all of the
proposed models were able to predict wind energy in several
other cities with acceptable accuracy. Specifically, the pro-
posed CFNN model was the most accurate model for wind
energy forecasting at different locations. Meanwhile, the
proposed SVM model accuracy was slightly less than the
proposed CFNN model. On the other hand, the accuracy of
the proposed RFmodel was quite far from the other proposed
models (CFNN and SVM) as RF is usually used for classi-
fication more than prediction. However, the accuracy of these
models can be increased effectively by increasing training data
using different locations data with different wind speed
ranges. After all, the accuracy of the CFNN model and other
models was evaluated based on three statistical measures
which are RMSE, MBE, and R2. For CFNNmodel, average of
these values was 30.07 kWh, 4.3 kWh, and 0.999, respectively.
Such a method and analysis are useful for any investment or
research in the field of wind energy in Palestine.

Nomenclature

CFNN: Cascade-forward neural network
RF: Random forest
ANN: Artificial neural network
SVM: Support vector machines
BMA_EL: Bayesianmodel averaging and ensemble learning
ARMA: Autoregressive moving average
MAE: Absolute average error
ECMWF: European centre for medium-range weather

forecasts
PSO: Particle swarm optimization
Pw: Available wind power
Pa: Actual output power
Pturbine: Turbine output power
ρ: Air density
A: Area of the blades
MBE: Mean bias error
R2: Coefficient of determination
MAPE: Mean absolute percentage error
RPE: Recursive prediction error
CART: Classification and regression tree
AI: Artificial intelligence
PVGIS: Photovoltaic geographical information system
V: Wind speed
V0: Measured wind speed
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Figure 7: SVM prediction results for wind energy in selected cities in Palestine.
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H: Hub height
a: Constant varies with surface roughness and

terrain condition
H0: Height where the speed was measured
Pr: Turbine rated power
Cp: Power coefficient
vr: Turbine rated speed
vco: Turbine cut-out speed
RMSE: Root mean square error
SStot: Sum of squares of residuals.
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+e utilized data with editable figures and tabulated files are
available from the authors upon request.
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