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Multiattribute group decision-making (MAGDM) problems are characterized by the large number, uneven levels, and
bounded rationality of decision-makers; multiple attributes and fuzziness of decision problems; and complex group
behaviours. Considering these characteristics, we propose a MAGDM method using a genetic K-means clustering al-
gorithm. First, we briefly review the traditional multiattribute decision-making method based on prospect theory (PT) and
trapezoidal intuitionistic fuzzy numbers (TrIFNs) under the premise of human bounded rationality and uncertain decision
environment. *en, the aggregation model of decision information given by decision-makers is established using the
genetic K-means algorithm in order to determine optimal clustering results. Each clustering center represents decision
information given by decision-makers in each cluster, and the weight of each clustering center is determined by con-
sidering the tightness of decision information within a cluster and the count of decision-makers in each cluster. Finally, the
ranking of schemes is obtained according to the comparison rules of TrIFNs. We design comparison simulation ex-
periments to test the proposed method and the simulation results demonstrate that the proposed method is apprehensible
and feasible to solve MAGDM problems.

1. Introduction

Multiattribute group decision-making (MAGDM) is a
problem in which multiple decision-makers make decisions
on multiple schemes under the premise of multiple attri-
butes [1–3]. *e basis of the MAGDM problem is multi-
attribute decision-making (MADM). MADM is
characterized by bounded rationality of decision-makers as
well as multiple attributes and fuzziness of decision prob-
lems. In addition to the characteristics of the MADM
problem, the characteristics of the MAGDM problem in-
clude a large number and uneven levels of decision-makers
and complex group behaviours.

Prospect theory (PT) can accurately describe and explain
decision-makers’ judgment and choice behaviours and thus
can solve MADM problems under the condition of human
bounded rationality [4, 5]. *e problems of uncertainty of
the decision-making conditions and fuzziness of decision

information exist in many MADM problems, which are
effectively solved by intuitionistic fuzzy decision-making
methods. *e trapezoidal intuitionistic fuzzy number
(TrIFN) [6, 7] is usually used to solve MADM problems with
uncertain decision conditions and fuzzy decision informa-
tion. To solve MADM problems, a method combining PT
with TrIFNs and various derived methods have been widely
used. Reference [8] developed a prospect value determi-
nation method based on multiple reference points under a
trapezoidal intuitionistic fuzzy environment. Reference [9]
solved the MADM problem of wind energy by combining
PT and TrIFNs. Reference [10] proposed an MAGDM
method using the ITFN weighted geometric operator and
hybrid geometric operator to obtain the collective overall
values.

MAGDM problems mainly include the determination
of decision-maker’s weights, consensus analysis, aggre-
gation of decision information, and ranking of schemes.
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Decision-makers’ weights can be determined by methods
such as subjective, objective, and subjective-objective
weighting [11–13]. Pang et al. [14] proposed an adaptive
consensus method for MAGDM based on adaptive ex-
perts’ weights and explicit guidance rules. Sun and Ma
[15] proposed an approach to consensus measurement of
linguistic preference relations. *e aggregation of de-
cision information and ranking of schemes are the two
aspects that can best embody the characteristics of
MAGDM. Chen et al. [16] proposed aggregation oper-
ators based on interval-valued intuitionistic fuzzy
numbers. Andrej [17] proposed a hybrid Delphi and
aggregation–disaggregation procedure of MAGDM.
Shakeel [18] proposed a cubic averaging aggregation
operator. Under the premise of human bounded ratio-
nality and uncertain decision-making environment, the
representative papers that systematically study MAGDM
methods are as follows: Li and Chen [19] proposed a
novel TOPSIS based on PT and TrIFNs, and the aggre-
gation operator and ranking strategy can effectively
obtain the final decision scheme. Yuan and Li [20]
proposed an aggregation operator based on the Choquet
integral and PT. In addition to the above studies,
MAGDM problems can also be solved by methods using
data mining and cluster analysis. Shankar and Kumar
[21] used a K-means clustering algorithm to solve the
MAGDM problem in the field of healthcare systems. Liu
and Chen [22] proposed an improved K-means algo-
rithm to solve the large group decision-making problem.
Zhao [23] proposed an improved K-means clustering
algorithm based on interval similarity measurement to
solve the MAGDM problem. However, existing research
has the following shortcomings: (a) decision information
is still expressed in real numbers, interval numbers, and
language values in some studies, thus leading to poor
adaptability in processing uncertain and fuzzy infor-
mation; (b) the preference of decision-makers is based on
expected utility theory in some studies, which is in-
consistent with the nature of human preference and
judgment based on comparison; (c) some decision-
making methods require decision-makers whose deci-
sion preference largely deviates from the group prefer-
ence to change their decision preference, which incurs
great cost; (d) the aggregation methods of decision in-
formation are too subjective, which cannot objectively
reflect the decision information given by decision-
makers; (e) the existing MAGDM methods based on the
K-means clustering algorithm [24] are easily trapped in
local optimum.

Considering the above shortcomings of the MAGDM
methods based on clustering algorithms, we propose a
MAGDM method using a genetic K-means clustering
algorithm on the basis of PT and TrIFNs. *is paper is
organized as follows. First, we briefly review the
framework of the PT and TrIFN and their operational
rules in Section 2. *en, in Section 3, we propose the
method to solve the MAGDM problem using the genetic
K-means clustering algorithm and propose its details.
Finally, in Section 4, we perform simulations to verify

whether the proposed method is apprehensible and
feasible to solve MAGDM problems. *e proposed
MAGDM method fully reflects the objectivity of deci-
sion-making, realizes the learning of clustering numbers
automatically, and overcomes the shortcomings of
MAGDM methods above.

2. Brief Review of the Prospect Theory and
Intuitionistic Trapezoidal Fuzzy Number

*e traditional method to solve MADM problems is based
on PT and TrIFNs, which lays the foundation of our pro-
posed MADM method. On the basis of the PT framework,
the decision information is expressed in the TrIFN form. In
this section, the PT and the TrIFN are briefly reviewed,
respectively.

2.1. Framework of PT. *e basic unit of PT is the prospect,
which is denoted as f � (x1, p1; x2, p2; . . . ; xn, pn). *e
reference point, which is used to describe the attributes of
MADM, is given according to the subjective feelings of the
decision-maker. xi is the gain or loss value of the ith at-
tribute value compared to the ith attribute value of the
reference point. pi is the probability of xi. *e most im-
portant feature of PT is that it reflects the value of change
rather than the absolute value, which is also consistent with
the fact that decision-makers are more sensitive to change.
*e prospect is evaluated by the prospect value pv(f) as
follows:

pv(f) � 
n

i�1
w pi( v xi( , (1)

where w(pi) and v(xi) are the weight function and the value
function of the ith attribute, respectively. w(pi) and v(xi) are
given by

v xi(  �

xα
i , xi ≥ 0,

−δ −xi( 
β
, xi < 0,

⎧⎪⎨

⎪⎩
(2)

w pi(  �
pi

c

pi
c + 1 − pi( 

c
 

(1/c)
, (3)

where α and β are concave and convex degrees of xi, re-
spectively, with α< 1 and β< 1; δ indicates that the loss
curve is steeper than the gain curve, and δ > 1 indicates that
decision-makers do not accept losses; c is the fitting
parameter.

2.2. TrIFN and Its Operational Rules. Let
a � 〈(a1, a2, a3, a4), (b1, b2, b3, b4); μa, va〉 be a TrIFN. Pa-
rameters a1, a2, a3, a4, b1, b2, b3, and b4 are real numbers that
satisfy the condition b1 ≤ a1 ≤ b2 ≤ a2 ≤ b3 ≤ a3 ≤ b4 ≤ a4. *e
membership function and nonmembership function are,
respectively,
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μa(x) �

x − a1

a2 − a1
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(4)

va(x) �

b2 − x + v a x − b1( 

b2 − b1
, b1 ≤x< b2,

v a, b2 ≤x≤ b3,

x − b3 + v a b4 − x( 

b4 − b3
, b3 ≤x≤ b4,

0, x equals any other value,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where μa ∈ [0, 1], va ∈ [0, 1], and 0≤ μa + va ≤ 1.
Before reviewing operational rules, we set

a1 � 〈(a11, a12, a13, a14), (b11, b12, b13, b14); μa1
, va1

〉 and
a2 � 〈(a21, a22, a23, a24), (b21, b22, b23, b24); μa2

, va2
〉 as two

TrIFNs. *e operational rules of TrIFNs are defined as
follows:

a1 ⊕ a2 �〈 a11 + a21, a12 + a22, a13 + a23, a14 + a24( , b11 + b21, b12 + b22, b13 + b23, b14 + b24( ; μa1
+ μa2

− μa1
μa2

, va1
va2
〉,

(6)

λa1 �
〈 λa11, λa12, λa13, λa14( , λb11, λb12, λb13, λb14( ; 1 − 1 − μa1

 
λ
, va1

λ〉, λ≥ 0,

〈 λa14, λa13, λa12, λa11( , λb14, λb13, λb12, λb11( ; 1 − 1 − μa1
 

−λ
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(7)
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13, b

λ
14 ; μλa1
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λ
〉, λ≥ 0, a

λ
ij > 0, b

λ
ij > 0, (8)

a1 ⊗ a2 �〈 a11a21, a12a22, a13a23, a14a24( , b11b21, b12b22, b13b23, b14b24( ; μa1
μa2

, va1
+ va2

− va1
va2
〉. (9)

*e expected value of a1 is as follows:

EV a1(  �
1
8

μa1
a11 + a12 + a13 + a14( 

+ 1 − va1
  b11 + b12 + b13 + b14( .

(10)

*e score function and accuracy function of a1 are

S a1(  � EV a1(  · μa1
− va1

 , (11)

A a1(  � EV a1(  · μa1
+ va1

 , (12)

where EV(a1) is the expected value of a1.

*e rules for comparing a1 and a2 are as follows: If
S(a1)> S(a2), a1 > a2. If S(a1) � S(a2) and A(a1)>A(a2),
a1 > a2. If S(a1) � S(a2) and A(a1) � A(a2), a1 � a2.

Hamming distance is used as the distance measured
between a1 and a2 as follows:

d a1, a2(  �
1
8



4

j�1
μa1

a1j − μa2
a2j



 + 1 − va1
 b1j − 1 − va2

 b2j



 .

(13)

*e values of attribute and weight are given by decision-
makers in the form of TrIFN.

3. Proposed MAGDM Method

Aggregation of decision information of decision-makers in
one group by using the genetic K-means clustering algo-
rithm is the key to the proposed MAGDM method. *e
decision information set F

l, which is formed by decision
information (provided by decision-makers) of the lth deci-
sion scheme, is partitioned into different clusters and each
cluster center represents the decision information of each
cluster.*e weight of each clustering center is determined by
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considering the tightness of decision information within a
cluster and the count of decision-makers in each cluster.
*en the aggregation results are taken as the basis for
ranking. In the following section, the aggregation of decision
information by using the genetic K-means clustering algo-
rithm and the calculation steps of the proposed method are
introduced.

3.1. Aggregation of Decision Information by Using K-Means
Clustering Algorithm. *e K-means clustering algorithm is
sensitive to the initial cluster centers, cannot determine the
optimal number of clusters, and is easily trapped in local
optima. Genetic algorithms can overcome the shortcomings
of K-means clustering algorithms and realize the automatic
learning of the cluster count. *e decision information
expressed by TrIFNs is clustered by a genetic K-means
clustering algorithm. First, we review the conventional K-
means clustering algorithm as follows. k pieces of decision
information in F

l are randomly selected as the initial cluster
centers. *en, each piece of the remaining decision infor-
mation is assigned to the cluster center of the nearest dis-
tance. *e cluster centers are recalculated to minimize the
squared error criterion E converges:

E
l

� 
k

j�1


f
l

i∈Cl
j

d pv f
l

i , m
l
j  , (14)

where k is the number of clusters, Cl
j is the jth cluster of the

lth decision scheme, ml
j is the cluster center of cluster Cl

j, f
l

i

is the decision information of the lth decision scheme
given by the ith decision-maker, and pv(f

l

i) is the prospect
value of (f

l

i):

pv f
l

i  � 
n

j�1
w p

l
ij v x

l
ij  , (15)

where w(pl
ij) and v(xl

ij)are the weight function and the
value function of the jth attribute in f

l

i, respectively. xl
ij is a

TrIFN and the value function v(xl
ij) is

v x
l
ij  �

d xl
ij, rij , xl

ij ≥ rij,

−δ d xl
ij, rij  

β
, xl

ij < rij,

⎧⎪⎨

⎪⎩
(16)

where rij is the jth reference point given by the ith decision-
maker.

Before clustering the group decision information, the
outliers should be eliminated. *e threshold value of
Hamming distance is denoted as dmax and the threshold
value of exceed dmax is denoted as δ. If the count of
d[pv(f

l

i), pv(f
l

j)]; j � 1, 2, . . . , n more than dmax exceeds δ,
the ith decision information should be eliminated. *e
process of elimination is process of consensus analysis.

*e genetic variant of the K-means clustering algorithm
involves the evolution of chromosomes, and the final result
is obtained by genetic operations such as selection, cross-
over, and mutation. *e steps involved in the genetic K-
means clustering algorithm are as follows:

(a) Real-number encoding is adopted to transform the
cluster centers into genes G1, G2, . . . , Gk on a
chromosome, as shown in Figure 1. *e encoding
values are integers from 1 to n, where n is the number
of decision-makers. *e size of a chromosome varies
with the number of clusters.

(b) *e clustering results should satisfy tightness and
separability requirements. Tightness means that the
schemes within one cluster are as similar as possible,
while separability means that the schemes in dif-
ferent clusters are as different as possible. *erefore,
we define the fitness function fitDl of the genetic K-
means clustering algorithm as

fitD
l

�
Gl

b

b + aEl
, (17)

where a and b are positive constant coefficients and Gl
b is the

sum of the distances between different clusters when dealing
with the lth decision scheme, given as

G
l
b �

2
k(k − 1)



k

i�1


k

j�i+1
mi − mj

�����

�����
2
, (18)

which is used to quantify separability.*efitness function fitDl

indicates that the clustering is better the pieces of decision
information in the same cluster are closer to each other other
(El has a smaller value) and the cluster centers of different
clusters are farther from each other (Gl

b has a larger value).
Using genetic operations including roulette-based se-

lection and single-point crossover (denoted as Pc), we
propose a new mutation operation that leads to the auto-
matic learning of the optimal number of clusters k. *e
population chromosome with the largest fitness value is
selected as the model chromosome of the optimal cluster
number. Other chromosomes in the same population should
learn from this model to achieve better fitness by decreasing
or increasing the number of genes of chromosomes. *e
chromosomes in the initial population have the same length,
a small number of initial clusters are set, and an increasing
trend is assumed when the first mutation occurs. With the
reoccurrence of mutation operation, the offspring chro-
mosomes decrease or increase based on whether their
lengths are longer or shorter than the model chromosome,
respectively. On the one hand, decreasing the number of
genes is achieved by eliminating the nearest genes to cluster
centers of the model chromosome. On the other hand, the
number of genes is increased by adding the farthest schemes
to the cluster centers of the model chromosome.

*e decision information is partitioned into k clusters.
*e weight of decision information in each cluster is de-
termined by considering two factors, namely, the tightness

G1 G2 Gk

Figure 1: Encoding of cluster centers as genes of a chromosome.
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of decision information within a cluster and the count of
decision-makers in each group. Let ct and El

t be the count of
decision-makers and the squared error criterion of decision
information in the tth cluster. *en, the weight μl

t of the tth

cluster of the lth decision scheme is

μl
t �

ct + E
l

t

2
, (19)

where ct and E
l

t are the normalized values of ct and El
t,

respectively.

ct �
ct

n
, (20)

E
l

t �
El

t


k
t�1 El

t

, (21)

where n is the count of decision-makers.
*e aggregation result of the lth decision scheme can be

written as follows.

a
l

� 
t�T

t�1
μl

tC
l
t, (22)

where T is the count of clusters.
*is aggregation method considers both intercluster

information aggregation and intracluster information ag-
gregation, which can fully integrate decision information.
Compared with other MAGDM based on clustering
methods, the proposed MAGDM method can realize the
learning of clustering numbers automatically.

3.2. Calculation Steps of the Proposed MAGDM Method.
*e calculation steps of the proposed MAGDM method are
as follows.

3.2.1. Construction of Decision Information Matrix. Let X
l

and P
l be the attributes and weights of decision information

matrices of the lth decision scheme:

X
l

�

xl
11 xl

12 · · · xl
1m

xl
21 xl

22 · · · xl
2m

⋮ ⋮ ⋮ ⋮

xl
n1 xl

n2 · · · xl
nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

P
l

�

pl
11 pl

12 · · · pl
1m

pl
21 pl

22 · · · pl
2m

⋮ ⋮ ⋮ ⋮
pl

n1 pl
n2 · · · pl

nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

where xl
ij and pl

ij are the jth attribute and the weight of the lth

decision scheme given by the ith decision-maker, n is the
count of decision-makers, and m is the count of attributes.
xl

i � [xl
i1, xl

i2, . . . , xl
im] is called the lth decision scheme given

by the ith decision-maker.

3.2.2. Aggregation of Reference Points. *e reference points
matrix R is given according to the subjective feelings of the
decision-makers as

R �

r11 r12 · · · r1m

r21 r22 · · · r2m

⋮ ⋮ ⋮ ⋮

rn1 rn2 · · · rnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

where rij is the jth reference point given by the ith decision-
maker. *e ordered weighted average (OWA) operator is
applied to aggregate the reference point r given by decision-
makers. TrIFNs of each column in the matrix R are sorted by
comparing rules of TrIFNs (Section 2). *e sorted R is
written as R

s as follows:

R
s

�

rs
11 rs

12 · · · rs
1m

rs
21 rs

22 · · · rs
2m

⋮ ⋮ ⋮ ⋮

rs
n1 rs

n2 · · · rs
nm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

*en, the reference point r is obtained as
r � ⊕ni�1w1r

s
i1,⊕

n
i�1w2r

s
i2, . . . ,⊕ni�1wmr

s
im , (27)

where w � [w1, w2, . . . , wm] is the weighted vector relevant
to OWA.

3.2.3. Determination of the Gain or Loss Values. *e gain or
loss values d(xl

ij, rj) of the jth attribute of the lth decision
scheme given by the ith decision-maker are obtained by
formula (13). *en, the decision information set
F

l
� [f

l

1, . . . , f
l

i, . . . , f
l

n] is obtained, and f
l

i � [d(xl
i1, r1),

pl
i1; d(xl

i2, r2), pl
i2; . . . ; d(xl

im, rm), pl
im] is the prospect used

to express decision information of the lth decision scheme
given by the ith decision-maker.

3.2.4. Computation and Normalization of Prospect Values.
*e prospect value pv l(fi) of f

l

i is obtained by formula (15).
Let pv l(fi) be written as follows:

pv
l fi  �  pv

l
11

fi , pv
l
12

fi , pv
l
13

fi , pv
l
14

fi  , pv
l
21

fi , pv
l
22

fi , pv
l
23

fi , pv
l
24

fi  ; μ
pvl fi( 

, v
pvl fi( 

. (28)
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*e prospect value pvl(fi) is normalized.

pv
l fi  � 

pvl
11

fi  − cl−
11

cl+
11 − cl−

11
,
pvl

12
fi  − cl−

12

cl+
12 − cl−

12
,
pvl

13
fi  − cl−

13

cl+
13 − cl−

13
,
pvl

14
fi  − cl−

14

cl+
14 − cl−

14

⎛⎝ ⎞⎠,

pvl
21

fi  − ζ l−
21

ζ l+
21 − ζ l−

21

,
pvl

22
fi  − ζ l−

22

ζ l+
21 − ζ l−

22

,
pvl

23
fi  − ζ l−

23

ζ l+
23 − ζ l−

23

,
pvl

24
fi  − ζ l−

24

ζ l+
24 − ζ l−

24

⎛⎝ ⎞⎠; μ
pvl fi( 

, v
pvl fi( 

,

(29)

where pvl(fi)is the normalized value of pv l(fi); cl−
1 s, (s �

1, 2, 3, 4) and cl−
2 s are minn

i�1[pv l
1 s(

fi)] and
minn

i�1[pvl2 s(
fi)], respectively; and cl+

1 s and cl+
2 s are

minn
i�1[pvl

1 s(
fi)] and maxn

i�1[pvl
2s(

fi)], respectively.

3.2.5. Consensus Analysis and Aggregation of Decision In-
formation Given by all Decision-Makers. *e population and
the maximum number of iterations are denoted by P and
TM, respectively. *e consensus analysis and aggregation
procedure are the same as those described in Section 3.1.

3.2.6. Ranking of Decision Schemes. *e count of decision
schemes is L. All decision schemes perform Steps 1–5. All
expected values EV(al) of al(l � 1, 2, . . . , L) are computed
according to formula (10). *en, score function S(al) and
accuracy function A(al) values are computed. Ranking of all
decision schemes is done according to the comparing rules
of TrIFNs (Section 2).

4. Simulations and Analyses of Results

4.1. Simulations. We assume that stock investors decide
whether to buy a stock based on gain or loss of stock. *e
stock investors select one of the three stocks
A � A1, A2, A3 . *e attributes of stocks are denoted as
X � x1, x2, x3, x4, x5 , where x1 means big gain, x2 means
small gain, x3 means basically unchanged, x4 means small
loss, and x5 means big loss. Ten decision-makers
D � D1, D2, . . . , D10  are invited to make decisions. *e
values of attributes S evaluated by decision-makers D are
listed in Table 1. *e values of weights
P � p1, p2, p3, p4, p5  and the reference points
R � r1, r2, . . . , r10  provided by decision-makers D are
listed in Tables 2 and 3, respectively. w1, w2, . . . , w10 � 0.1.
dmax is 0.85 and δ is 2 (values of dmax and δ should be given
according to a number of comparative experiments based on
other MAGDM methods). *e parameters of the genetic
clustering algorithm are as follows: the population P is 5, the
maximum number of iterations TM is 8, the genetic
crossover Pc is 0.8, the initial value of k is 2, and the positive
coefficients a and b are 2 and 1.2, respectively. *e genetic
K-means algorithm is executed 20 times independently
(Tables 1–3). We compare our proposed method with the
methods proposed by [20, 22, 23] and [10]. *e parameters
of the other three methods are taken from literature
[10, 20, 22, 23].

4.2. Analyses of Results. Figures 2–4 present the curves of
varying k values (in the experiment with the best clustering
result Gl

b) in aggregation procedures of schemes A1, A2, and
A3, respectively, and they indicate that the values of k in the
genetic K-means clustering algorithm realize automatic
learning. Table 4 presents the ranking and computational
time of four methods.

Zhao [23] uses interval-valued intuitionistic fuzzy
numbers to express the decision information, so we adopted
the parameters and operational details of Zhao’s K-means
clustering algorithm to conduct the experiments in the
present study. Although the ranking of schemes obtained by
this method is the same as our proposed method, there are
two shortcomings of Zhao’s method: first, the decision in-
formation is expressed in the form of interval-valued
intuitionistic fuzzy numbers, and, second, the computa-
tional time is longer than that in our proposed method
because the k values are determined by using the traversing
method.

Liu andChen [22]modify the clustering results on the basis
of the gradient descentmethod. After computation, the ranking
of schemes is different from that of our proposed method. *e
values of G1

b, G2
b, and G3

b obtained by Liu and Chen’s method
are 0.155, 0.163, and 0.146, respectively, whereas those obtained
by our proposed method are 0.326, 0.320, and 0.402, respec-
tively, clearly indicating that our proposed method yields
higher values. *e results indicate that, in Liu and Chen’s
method, the k value is determined before the simulation, which
leads to the lower performance of this clustering method
compared with our proposed method.

Yuan and Li [20] use the framework of the PTand TrIFN
to solve the MAGDM problem. *e preferred scheme is A2,
which is the same as our proposed method, but the alter-
natives are different from those obtained by our proposed
method. *e difference between our proposed method and
Yuan and Li’s method is the aggregation method used. As a
representative MAGDM method, Yuan and Li’s method
comprehensively considers the factors in the MAGDM
problem. *e decision results of all MAGDM methods are
neither absolutely good nor absolutely poor and the quality
of MAGDMmethods depends on whether the factors in the
decision-making process are fully considered. *erefore, we
cannot just compare whether the results of Yuan and Li’s
method and our proposed method are absolutely good or
poor. *e simulation results of these two methods can be
used for mutual reference.

Wu and Cao [10] use the TrIFN weighted geometric
operator and hybrid geometric operator to obtain the
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Table 1: Attributes evaluated by decision-makers.

D A x1 x2 x3 x4 x5

D1

A1
<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.1, 0.3, 0.5, 0.7), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

A2
<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

A3
<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

D2

A1
<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

A2
<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

A3
<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

D3

A1
<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

A2
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

A3
<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

D4

A1
<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

A2
<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A3
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

D5

A1
<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

A2
<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

A3
<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

D6

A1
<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

A2
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

A3
<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

D7

A1
<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

A2
<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A3
<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

D8

A1
<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

A2
<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

A3
<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

D9

A1
<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

A2
<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A3
<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

D10

A1
<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

A2
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

A3
<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>
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Table 2: Weights evaluated by decision-makers.

D A x1 x2 x3 x4 x5

D1

A1
<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

A2
<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A3
<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

D2

A1
<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

A2
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

A3
<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

D3

A1
<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

A2
<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

A3
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

D4

A1
<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

A2
<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A3
<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

D5

A1
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

A2
<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

A3
<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

D6

A1
<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

A2
<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A3
<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

D7

A1
<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

A2
<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A3
<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

D8

A1
<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

A2
<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

A3
<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

D9

A1
<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

A2
<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

A3
<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

D10

A1
<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

A2
<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

A3
<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>
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Table 3: Reference points given by decision-makers.

D A x1 x2 x3 x4 x5

D1

A1
<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

A2
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

A3
<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

D2

A1
<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

A2
<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

A3
<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

D3

A1
<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A2
<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

A3
<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

D4

A1
<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

A2
<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

A3
<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

D5

A1
<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

A2
<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

A3
<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

D6

A1
<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

A2
<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

A3
<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

D7

A1
<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

A2
<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

A3
<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

D8

A1
<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

<(0.2, 0.4, 0.7, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

A2
<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

A3
<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.3, 0.4, 0.6, 0.7), (0.3,
0.4, 0.6, 0.7); 0.7, 0.2>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

D9

A1
<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

A2
<(0.1, 0.2, 0.3, 0.4), (0.1,
0.2, 0.3, 0.4); 0.7, 0.2>

<(0.1, 0.2, 0.4, 0.5), (0.1,
0.2, 0.4, 0.5); 0.7, 0.2>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.9), (0.4,
0.5, 0.7, 0.9); 0.5, 0.4>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

A3
<(0.5, 0.6, 0.7, 0.8), (0.5,
0.6, 0.7, 0.8); 0.4, 0.3>

<(0.5, 0.6, 0.8, 0.9), (0.5,
0.6, 0.8, 0.9); 0.4, 0.3>

<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.3, 0.4, 0.5, 0.6), (0.3,
0.4, 0.5, 0.6); 0.7, 0.2>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

D10

A1
<(0.2, 0.3, 0.6, 0.7), (0.2,
0.3, 0.6, 0.7); 0.5, 0.4>

<(0.2, 0.4, 07, 0.9), (0.2,
0.4, 0.7, 0.9); 0.4, 0.3>

<(0.2, 0.4, 0.6, 0.8), (0.2,
0.4, 0.6, 0.8); 0.4, 0.3>

<(0.3, 0.4, 0.7, 0.8), (0.3,
0.4, 0.7, 0.8); 0.7, 0.2>

<(0.2, 0.3, 0.5, 0.6), (0.2,
0.3, 0.5, 0.6); 0.5, 0.4>

A2
<(0.4, 0.5, 0.6, 0.7), (0.4,
0.5, 0.6, 0.7); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.1, 0.2, 0.5, 0.6), (0.1,
0.2, 0.5, 0.6); 0.7, 0.2>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.3, 0.5, 0.7, 0.9), (0.3,
0.5, 0.7, 0.9); 0.6, 0.3>

A3
<(0.6, 0.7, 0.8, 0.9), (0.6,
0.7, 0.8, 0.9); 0.4, 0.3>

<(0.4, 0.5, 0.7, 0.8), (0.4,
0.5, 0.7, 0.8); 0.5, 0.4>

<(0.1, 0.3, 0.5, 0.7), (0.1,
0.3, 0.5, 0.7); 0.6, 0.3>

<(0.1, 0.3, 0.6, 0.8), (0.1,
0.3, 0.6, 0.8); 0.6, 0.3>

<(0.2, 0.3, 0.4, 0.5), (0.2,
0.3, 0.4, 0.5); 0.5, 0.4>
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collective overall values.*e characteristic of the aggregation
is on the basis of attribute independence and decision-
makers’ risk preference. *e preferred scheme is scheme A2,
which is the same as our proposed method, but the

alternatives are different from those obtained by our pro-
posed method. *e computational time of this method is
medium among the five algorithms.

*e performance of the proposed method is better than
the other methods analysed in this study on the basis of the
clustering concept. In addition, the preferred scheme by our
method is the same as that by Yuan and Li’s method.
Furthermore, the proposed method is apprehensible and
feasible to solve the MAGDM problems. It enriches the
theory of solving MAGDM problems based on clustering
algorithms.

5. Conclusion and Further Research

In this study, we proposed a MAGDM method using a
genetic K-means clustering algorithm. *e simulation re-
sults demonstrate that our proposed method is apprehen-
sible and feasible to solve MAGDM problems. In the future,
we will use the proposed MAGDM method to deal with
other types of decision information, such as (a) trapezoidal
fuzzy numbers in consensus models for MAGDM under
trapezoidal fuzzy numbers environment; (b) hesitant fuzzy
linguistic information in additiveconsensus of hesitant fuzzy
linguistic preference relation with a new expansion principle
for hesitant fuzzy linguistic term sets local, and hesitant
fuzzy linguistic information in feedback mechanism based
on consensus-derived for consensus building in MAGDM
with hesitant fuzzy linguistic preference relations; and (c)
linguistic fuzzy information in algorithms for improving
additive consensus of linguistic preference relations with an
integer optimization model.

Data Availability

*e simulation data used to support the findings of this
study are included within the article.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] C. Alireza, F. Hirofumi, and K. S. Rashed, “Selecting a model
for generating OWA operator weights in MAGDM problems
by maximum entropy membership function,” Computers &
Industrial Engineering, vol. 124, pp. 370–378, 2018.

[2] Z. M. Husseini and M. H. F. Zarandi, “Type-2 fuzzy approach
in multi attribute group decision making problem,” Fuzzy
Logic in Intelligent System Design, vol. 648, pp. 73–81, 2017.

[3] P. Surapati and M. Rama, “VIKOR based MAGDM strategy
with trapezoidal neutrosophic numbers,” Neutrosophic Sets &
Systems, vol. 22, pp. 118–130, 2018.

[4] M. H. Birnbaum, “Empirical evaluation of third-generation
prospect theory,” @eory and Decision, vol. 84, no. 1,
pp. 11–27, 2018.

[5] J. Chudziak, “Certainty equivalent under cumulative prospect
theory,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 27, no. 3, pp. 415–428, 2019.

[6] D. Hunwisai and P. Kumam, “Linear programming model for
solution of matrix game with payoffs trapezoidal intuitionistic

k 
va

lu
e

2 3 4 5 6 7 81
Iterations

1

2

3

4

5

6

Figure 2: Curve of varying k value in the aggregation procedure of
scheme A1.

Table 4: Ranking of schemes and computational time.

Method Ranking of
schemes Computational time (s)

Our proposed method A2 ≻ A1 ≻ A3 18.029
Zhao [23] A2 ≻ A1 ≻ A3 74.332
Liu & Chen [22] A1 ≻ A3 ≻ A2 5.956
Yuan & Li [20] A2 ≻ A3 ≻ A1 19.353
[10] A2 ≻ A3 ≻ A1 33.251

2 3 4 5 6 7 81
Iterations

k 
va

lu
e

1

2

3

4

5

6

Figure 3: Curve of varying k value in the aggregation procedure of
scheme A2.

k 
va

lu
e

2 3 4 5 6 7 81
Iterations

1

2

3

4

5

6

Figure 4: Curve of varying k value in the aggregation procedure of
scheme A3.

10 Mathematical Problems in Engineering



fuzzy number,” Bulletin of Computational Applied Mathe-
matics, vol. 5, no. 1, pp. 9–32, 2016.

[7] V. Lakshmana Gomathi Nayagam, S. Jeevaraj, and
P. Dhanasekaran, “A linear ordering on the class of trape-
zoidal intuitionistic fuzzy numbers,” Expert Systems with
Applications, vol. 60, pp. 269–279, 2016.

[8] X. Li and X. Chen, “Value determination method based on
multiple reference points under a trapezoidal intuitionistic
fuzzy environment,” Applied Soft Computing, vol. 63,
pp. 39–49, 2018.

[9] W. Dong, C. B. Li, and J. H. Yuan, “Research on wind energy
investment decision making: a case study in jilin,” Interna-
tional Journal of Fuzzy Logic Systems, vol. 7, no. 3, pp. 13–20,
2017.

[10] J.Wu andQ.W. Cao, “Same families of geometric aggregation
operators with intuitionistic trapezoidal fuzzy numbers,”
AppliedMathematical Modelling, vol. 37, no. 1-2, pp. 318–327,
2013.

[11] C. Monteiro, M. Machimbarrena, D. De La Prida, and
M. Rychtarikova, “Subjective and objective acoustic perfor-
mance ranking of heavy and light weight walls,” Applied
Acoustics, vol. 110, pp. 268–279, 2016.

[12] A. R. Sutin and A. Terracciano, “Five-factor model personality
traits and the objective and subjective experience of body
weight,” Journal of Personality, vol. 84, no. 1, pp. 102–112,
2016.

[13] X. Wu, L. Chen, S. Pang, and X. Ding, “A paratactic sub-
jective-objective weighting methods and SVM risk assessment
model applied in textile and apparel safety,” International
Journal of Quality & Reliability Management, vol. 32, no. 5,
pp. 472–485, 2015.

[14] J. Pang, J. Liang, and P. Song, “An adaptive consensus method
for multi-attribute group decision making under uncertain
linguistic environment,” Applied Soft Computing, vol. 58,
pp. 339–353, 2017.

[15] B. Z. Sun and W. M. Ma, “An approach to consensus mea-
surement of linguistic preference relations in multi-attribute
group decision making and application,” Omega, vol. 51,
pp. 383–392, 2014.

[16] S.-M. Chen, S.-H. Cheng, and W.-H. Tsai, “Multiple attribute
group decision making based on interval-valued intuitionistic
fuzzy aggregation operators and transformation techniques of
interval-valued intuitionistic fuzzy values,” Information Sci-
ences, vol. 367-368, pp. 418–442, 2016.

[17] B. Andrej, “Application of a hybrid delphi and aggregation-
disaggregation procedure for group decision-making,” EURO
Journal on Decision Processes, vol. 7, no. 1-2, pp. 3–32, 2019.

[18] M. Shakeel, “Cubic averaging aggregation operators with
multiple attributes group decision making problem,” Journal
of Biostatistics and Biometric Applications, vol. 3, no. 1,
pp. 11–19, 2018.

[19] X. Li and X. Chen, “Extension of the TOPSISmethod based on
prospect theory and trapezoidal intuitionistic fuzzy numbers
for group decision making,” Journal of Systems Science and
Systems Engineering, vol. 23, no. 2, pp. 231–247, 2014.

[20] J. H. Yuan and C. B. Li, “Intuitionistic trapezoidal fuzzy group
decision-making based on prospect choquet integral opera-
tor,”Mathematical Problems in Engineering, vol. 2017, Article
ID 2902506, 13 pages, 2017.

[21] A. A. Shankar and K. R. A. Kumar, “Top K-opinion decisions
retrieval in healthcare system,” Computer Science & Infor-
mation Technology, vol. 5, no. 9, pp. 57–65, 2015.

[22] R. Liu and X. H. Chen, “New method of huge group-con-
sensus amendment with learning ability,” Journal of Systems
Engineering and Electronics, vol. 30, no. 5, pp. 847–850, 2008.

[23] J. Y. Zhao, Interval Multi-Attribute Large Group-Decision
Method Based on Clustering Algorithm, Hunan Institute of
Science and Technology, Changsha, China, 2017.

[24] K. Krishna and M. Narasimha Murty, “Genetic K-means
algorithm,” IEEE Transactions on Systems, Man and Cyber-
netics, Part B (Cybernetics), vol. 29, no. 3, pp. 433–439, 1999.

Mathematical Problems in Engineering 11


