
Research Article
Complete Defense Framework to Protect Deep Neural
Networks against Adversarial Examples

Guangling Sun,1 Yuying Su ,1 Chuan Qin,2 Wenbo Xu,1 Xiaofeng Lu ,1

and Andrzej Ceglowski3

1School of Communication and Information Engineering, Shanghai University, Shanghai 20044, China
2School of Optical-Electrical and Computer Engineering, University of Shanghai Science and Technology, Shanghai 200093, China
3Department of Accounting, Monash University, Caulfield East, Melbourne, VIC 3145, Australia

Correspondence should be addressed to Xiaofeng Lu; luxiaofeng@shu.edu.cn

Received 11 January 2020; Revised 27 March 2020; Accepted 16 April 2020; Published 11 May 2020

Academic Editor: Bogdan Smolka

Copyright © 2020 Guangling Sun et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Although Deep Neural Networks (DNNs) have achieved great success on various applications, investigations have increasingly
shown DNNs to be highly vulnerable when adversarial examples are used as input. Here, we present a comprehensive defense
framework to protect DNNs against adversarial examples. First, we present statistical and minor alteration detectors to filter out
adversarial examples contaminated by noticeable and unnoticeable perturbations, respectively.,en, we ensemble the detectors, a
deep Residual Generative Network (ResGN), and an adversarially trained targeted network, to construct a complete defense
framework. In this framework, the ResGN is our previously proposed network which is used to remove adversarial perturbations,
and the adversarially trained targeted network is a network that is learned through adversarial training. Specifically, once the
detectors determine an input example to be adversarial, it is cleaned by ResGN and then classified by the adversarially trained
targeted network; otherwise, it is directly classified by this network. We empirically evaluate the proposed complete defense on
ImageNet dataset.,e results confirm the robustness against current representative attackingmethods including fast gradient sign
method, randomized fast gradient sign method, basic iterative method, universal adversarial perturbations, DeepFool method,
and Carlini & Wagner method.

1. Introduction

Lately, the performance of deep neural networks (DNNs)
on various applications, such as computer vision [1],
natural language processing [2], and speech recognition
[3], has been impressive. However, recent investigations
also revealed that DNNs are fragile and are easily confused
by adversarial examples contaminated by elaborately
designed perturbations [4–7]. Szegedy et al. [4] first crafted
some adversarial examples that are misclassified by DNNs
with high probability. ,ese adversarial examples easily
deceived the targeted network even though they did not
affect human recognition (see Figure 1). Undoubtedly,
these adversarial examples are serious potential threats to
security concerned applications such as autonomous

vehicle systems [8] and face recognition [9]. ,erefore,
improving the robustness of DNNs to adversarial examples
is of crucial importance.

To date, roughly three categories of approaches have
been used to defend against adversarial examples. ,e first is
to ensure that neural networks are robust against adversarial
examples, the second is to reform adversarial examples, and
the third is to detect adversarial examples. With respect to
the first type, one of the most effective strategies is to (re)
train the targeted network with adversarial examples to
obtain an adversarially trained targeted network. However,
each of these approaches has its respective limitations. ,e
first approach cannot effectively defend against adversarial
examples if they have not been learned while training the
network. ,e second approach would inevitably have an
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impact on legitimate examples as they would also be re-
formed. ,e third approach may reject the detected
adversarial examples, which might be unacceptable in cer-
tain scenarios.

To overcome the aforementioned drawbacks, we
propose a complete defense framework that combines the
three types of approaches. It consists of two detectors, a
deep residual generative network (ResGN) [10], and an
adversarially trained targeted network [11]. ,e two de-
tectors detect adversarial examples; ResGN removes or
mitigates adversarial perturbations once examples are
detected as adversarial; and the adversarially trained
targeted network classifies both the legitimate and cleaned
examples (see Figure 2). ,e motivation for developing
the comprehensive defense framework is that it meets the
requirement of accepting all input examples and avoids
altering legitimate examples as far as possible. ,is occurs
simultaneously in that, once the examples are determined
to be legitimate, they are not processed by the ResGN.
Moreover, compared with a nonadversarially trained
targeted network, an adversarially trained targeted net-
work delivers superior performance on escaped adver-
sarial examples and erroneously cleaned legitimate
examples. Even for the cleaned adversarial examples, the

latter network still outperforms the former since it is
impossible for ResGN to perfectly remove the various
perturbations.

On the contrary, we have discovered that the proposed
attacks are implemented along the gradient-based and
optimization-based attacks. Gradient-based attack just
increases or decreases a loss function that depends on the
gradients to seek an adversarial example, while optimi-
zation-based attack directly takes the minimal adversarial
perturbation as one of the objective functions to optimize.
Consequently, in general, the gradient-based attacks will
introduce more visible flaws than the optimization-based
attacks at the same attacking rate. According to their
corresponding perturbations magnitudes, we call them
noticeable perturbations and unnoticeable perturbations,
respectively, in the remainder of the paper. In addition, to
illustrate the distinguishment, we show the two types of
perturbations in Figure 1. Adversarial examples with
noticeable perturbations contain large statistical abnor-
malities that can be readily distinguished from legitimate
ones, whereas unnoticeable perturbations can be readily
destroyed. ,is led us to design a pair of complementary
detectors: a statistical detector and a minor alteration
detector. ,e statistical detector relies on extracting
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Figure 1: ,e illustration of an adversarial example with noticeable and unnoticeable perturbations. (a) ,e legitimate image is classified as
“ringlet butterfly” with 98.1% confidence. (b) and (d) show the noticeable and unnoticeable adversarial perturbations, respectively. ,e
corresponding adversarial images generated by fast gradient sign and Carlini & Wagner methods are misclassified as “starfish” with 97.6%
confidence (c) and “chickadee” with 95.2% confidence (e) Note the different colors in (b) and (d) represent the average pixel values of three
channels of the residual image which is the difference between adversarial and legitimate images. ,e color close to blue means the small
difference and the color close to orange means the large difference so that they can be distinguished between noticeable and unnoticeable
perturbations (the pixel values of legitimate and adversarial images range from 0 to 255).
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statistical features from an input image to distinguish
adversarial image from legitimate one. ,e minor alter-
ation detector relies on crafting minor alterations to an
input image and discovering the difference in output
between the original and altered examples to distinguish
adversarial example from legitimate one. ,is aspect
differs in two respects from our previous work [12]: the
first is that we extract a detection feature from three
channels instead of using the average of three channels;
the other is that minor geometric alterations are per-
formed instead of Gaussian noise corruption on the input
image. ,e improvement in the detection performance
resulting from the two changes is verified by our empirical
results.

We summarize our contributions as follows:

(1) We designed two detectors, a statistical and a minor
alteration detector, which are adaptive to the char-
acteristics of adversarial perturbations and filter out
adversarial examples contaminated by noticeable
and unnoticeable perturbations, respectively.

(2) We used an adversarially trained targeted network to
classify examples. ,us, the two detectors, ResGN,
and the adversarially trained targeted network form a
complete defense framework.

(3) We conducted comprehensive experiments on the
ImageNet dataset [13] to confirm the effectiveness of
the proposed complete defense framework.

,e paper is organized as follows. In Section 2, adver-
sarial attacks and defensive techniques are briefly surveyed.
In Section 3, the proposed complete defense framework is
presented and analyzed. In Section 4, the comprehensive
experiments are described to verify the effectiveness of the
proposed complete defense framework. Section 5 draws the
conclusions.

2. Background

Although attack is opposite to defense, attacking study is
essential to increase the adversarial robustness of networks.

2.1. Attacks. In terms of the knowledge known by the ad-
versary regarding the targeted model, attacks are grouped

into white box, gray box, and black box attacks. In white box
attacks, the adversary knows the structure and parameters of
the targeted network, the training data, and even the de-
fensive scheme of the defender. Of the three categories of
attacks, white box attacks are the most frequently used when
evaluating defensive techniques. In the following, we review
widely used white box attacks.

2.1.1. Fast Gradient Sign Method (FGSM). Goodfellow [5]
developed FGSM. It is a single-step attack that uses the ℓ∞
metric measuring the distance between a legitimate and
perturbed example. Formally, the adversarial example xadv is
obtained as follows:

untargeted : xadv � x + ∈ · sign ∇x J g(x), ytrue( 􏼁( 􏼁, (1)

targeted : xadv � x − ∈ · sign ∇x J g(x), ytarget􏼐 􏼑􏼐 􏼑, (2)

where g(·) is the classification result of the targeted network,
∇x J(· , ·) is the gradient of the cost function J(· , ·) with
respect to x, and the value of ∈ controls the strength of the
perturbation. Although FGSM is efficient, it introduces
noticeable perturbations.

2.1.2. Randomized Fast Gradient Sign Method (R-FGSM).
An improved version of FGSM, R-FGSM, was proposed by
Tramèr [14]. It injects a small amount of random noise into
the legitimate example before performing the FGSM attack.
Specifically, for α<∈, a legitimate example x is corrupted
into xR by the additive Gaussian noise:

xR
� x + α · sign N 0n

, In
( 􏼁( 􏼁, (3)

after which, the FGSM attack is performed on xR, as in
equations (1) and (2).

2.1.3. Basic Iterative Method (BIM). Kurakin et al. [15]
proposed the BIM attack, which is an iterative version of
FGSM. During each iterative cycle, an intermediate result is
yielded by the FGSM attack with a small step size of α. ,e
intermediate result is clipped to ensure that the adversarial
example remains in the ∈-neighborhood of the legitimate
example. For the ith iterative cycle, the adversarial example
is generated as follows:
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Figure 2: An overview of proposed complete defense framework. ,e statistical and minor alteration detectors filter out adversarial
examples and the ResGN cleans the adversarial examples. ,en, the cleaned examples and legitimate examples are classified by the
adversarially trained targeted network.
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xadv0 � x,

untargeted : xadvi+1 � clip∈,x xadvi + α · sign ∇x J g xadvi􏼐 􏼑 , ytrue􏼐 􏼑􏼐 􏼑􏼐 􏼑,

targeted : xadvi+1 � clip∈,x xadvi − α · sign ∇x J g xadvi􏼐 􏼑 , ytarget􏼐 􏼑􏼐 􏼑􏼐 􏼑.

(4)

BIM has a much higher attacking rate than FGSM and it
still causes noticeable perturbations even though fewer vi-
sual flaws occur than those crafted by FGSM.

2.1.4. DeepFool Method (DeepFool). Moosavi-Dezfooli et al.
[16] proposed an iterative attack based on the ℓ2 norm to
compute the minimal distortion for a given example. ,e
attacker assumes that the legitimate example resides in the
region restricted by the decision boundaries of the classifier.
,is algorithm disturbs the example by a small vector. ,en,
the resulting example is taken to the boundary of the
polyhedron, which is obtained by linearizing the boundaries
of the region within which the image resides during each
iterative step. ,e final perturbation is calculated by accu-
mulating the perturbations added to the legitimate example
in each iterative step, which forces the perturbed image to
change its ground truth (GT) label. ,e formulation of
DeepFool is as follows:

z∗ � argminz‖z‖2 s.t. g(x + z )≠g(x). (5)

,e perturbations introduced by DeepFool are unno-
ticeable and the attacking rate is much higher than that of
FGSM and BIM.

2.1.5. Carlini & Wagner Method (CW). In an attempt to
counter defensive distillation, Carlini and Wagner [17] in-
troduced optimization-based adversarial attacks that render
the perturbations quasi-imperceptible by restricting their ℓ2,
ℓ∞ , and ℓ0 norms. ,e researchers demonstrated that dis-
tilled targeted networks almost completely fail against these
attacks. In addition, the adversarial examples generated
using a targeted network without distillation can be trans-
ferred successfully to a network with distillation. ,ese facts
indicate that the perturbations are suitable for black box
attacks. In the remainder of this paper, CW_UTand CW_T
denote untargeted and targeted CW attacks in ℓ2 norms,
respectively.

2.1.6. Universal Adversarial Perturbations (UAP).
Moosavi-Dezfooli et al. [18] developed an attack gener-
ating universal adversarial perturbations that are image-
agnostic. In their problem context, given the targeted
classifier g and data distribution S, the existence of small
universal perturbations ρ whose magnitude is measured
by the ℓp norm with p ∈ [1,∞) and leading to most
misclassified images is examined. ,e problem can be
formulated as follows:

P(g(x)≠g(x + ρ)) ≥ 1 − δ s.t. ‖ρ‖p ≤ ∈,

x ∼ S.
(6)

,e parameter ∈ controls the magnitude of the per-
turbation ρ and δ quantifies the failure rate of fooling the
targeted network for all images sampled from distribution S.
,e UAP attack is implemented iteratively and the iteration
will not terminate until most of the sampled images are
misclassified by the targeted network.

2.2. Defensive Techniques. ,ere is a rich literature relating
to defensive strategies. Here, we outline the major defensive
strategies into five sections.

2.2.1. Adversarial Training. By augmenting training samples
with adversarial examples, adversarial training enhances the
robustness of the network. Goodfellow et al. [5] and Huang
et al. [19] evaluated their adversarial training only on the
MNIST dataset and it is thought that adversarial training
had provided regularization for the DNNs. Kurakin et al.
[11] presented a comprehensive analysis for adversarial
training on the ImageNet dataset. Madry et al. [20] showed
the alteration between retraining and projected gradient
descent (PGD) attack is one of the most effective methods
for adversarial training, in which retraining used the
adversarial examples generated by the PGD attack. Tramèr
et al. [14] proposed “ensemble adversarial training,” in
which the training set included adversarial examples pro-
duced by the trained models itself and pretrained external
models to improve the robustness of the network for the
transferred examples.

2.2.2. Network Distillation. As a training strategy, Hinton
et al. [21] originally designed a distillation technique that
transfers knowledge from a complex network to a simpler
network with the purpose of reducing the size of DNNs. For
distillation, high temperature can increase the vagueness of
softmax output.,e property was applied and Papernot et al.
[22] further proved that high-temperature softmax de-
creased the sensitivity of the model to small perturbation.
,e result is harmful to the adversary as the attack primarily
relies on the sensitivity of model. ,us, they proposed de-
fensive distillation to improve the robustness of the model to
adversarial examples. In their subsequent work, Papernot
and McDaniel [23] solved the numerical instabilities en-
countered in [22] to extend the defensive distillation
method.

2.2.3. Adversarial Examples Reforming. ,is defense re-
forms adversarial examples, aiming at mitigating adversarial
perturbations prior to the targeted network. Gu and Rigazio
[24] proposed a variant of the autoencoder network. At
inference, the network is used to encode adversarial ex-
amples to remove adversarial perturbations. Santhanam and
Grnarova [25] used both the discriminator and the generator
of the generative adversarial network (GAN) to project the
adversarial examples back onto the legitimate data manifold.
In another GAN-based defense method, Samangouei et al.
[26] used the generator to sanitize inputs prior to the tar-
geted classifier. Xie et al. [27] randomly resized the
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adversarial examples and added random padding to the
resized examples to reduce the effects of adversarial
perturbations. Liao et al. [28] proposed high-level rep-
resentation-guided denoiser (HGD) to defend the models
for image classification. ,e HGD was trained by opti-
mizing a loss function that represented the difference
between the target model’s outputs of the clean image and
denoised image. Jia et al. [29] studied a preprocessing
module to reform adversarial examples, termed as
ComDefend, which is composed of a compression con-
volutional neural network and a reconstruction con-
volutional neural network.

2.2.4. Adversarial Examples Detecting. ,e purpose of de-
fense is to filter out adversarial examples. Metzen et al. [30]
learned a small network as an auxiliary part of the original
network to output the probability of the input example
being adversarial. Grosse et al. [31] enabled their model to
classify all adversarial examples into one special class by
augmenting the targeted network with an additional class.
From a Bayesian perspective that the uncertainty of
adversarial data is higher than that of legitimate data,
Feinman et al. [32] deployed a Bayesian neural network to
estimate the uncertainty of input data so as to detect
adversarial input data. Xu et al. [33] introduced feature
squeezing, an approach to detect adversarial examples by
comparing the predictions of the targeted network on the
original input and the squeezed input. Fan et al. [12]
proposed an integrated detection framework comprising
the statistical detector and Gaussian noise injection de-
tector to filter out adversarial examples with different
characteristics of perturbations.

2.2.5. Miscellaneous Approaches. Owing to the great di-
versity of adversarial examples, multiple defense strate-
gies can be integrated to defend against adversarial
examples. PixelDefend [34] and MagNet [35] combine an
adversarial detector and an adversarial reformer to
compose a defense scheme. Akhtar et al. [36] proposed a
defense against UAP. ,ey trained a Perturbation Rec-
tifying Network (PRN) as “preinput” layers to a targeted
model. ,e PRN acts as both the UAP detector and input
image reformer.

3. Proposed Defense Methodology

3.1. Detection of Adversarial Example Based onTwoDetectors.
,e proposed detection method employs both a statistical
detector and minor alteration detector in two consecutive
stages to adapt to different perturbation characteristics.
Specifically, the tasks of the former and latter detectors are to
inspect noticeable and unnoticeable perturbations, respec-
tively. Obviously, the two detectors are complementary. ,e
detection procedure is shown in Figure 3.

3.1.1. Statistical Detector. Unnoticeable perturbations are
almost imperceptible to human vision and their statistical
characteristics are almost identical to those of legitimate
examples. Hence, we construct a positive adversarial
example set produced by FGSM, R-FGSM, BIM, and UAP
attacks and a negative set including adversarial examples
produced by DeepFool, CW_UT, and CW_T attacks, as
well as legitimate examples. Inspired by the Subtractive
Pixel Adjacency Matrix (SPAM) modeled by Markov
process [37], we apply subsets of the transition probability
matrix as the perturbation detection feature. Since SPAM
is capable of highlighting statistical anomalies, and no-
ticeable perturbations definitely introduce statistical anom-
alies to an adversarial image, the examples containing
noticeable perturbations are naturally expected to be de-
tectable. Last, an ensemble of base fisher linear classifiers
undergoes learning to make a decision. During testing, the
SPAM-based feature is extracted from the input image and
then the ensemble classifier outputs the decision.

(1) SPAM-Based Feature Extraction. I � (R,G,B) represents
a color image with a spatial size of m × n, whereR � r(i, j)􏼈 􏼉,
G � g(i, j)􏼈 􏼉, and B � b(i, j)􏼈 􏼉 denote the red, green, and
blue channels, respectively. First, the difference array of the
three channels and eight directions are computed. For in-
stance, for the R channel, the difference array D(i, j)⟶R in
the horizontal direction from left-to-right (⟶ ) is cal-
culated as follows:

D(i, j)
⟶

R � r(i, j) − r(i, j + 1), 1≤ i≤m, 1≤ j≤ n − 1.

(7)

,e features for the other directions are calculated in
the same way. β ∈ ⟶ , ←, ↑, ↓, ↖, ↘, ↙, ↗{ } denotes
eight directions. ,en, the second-order Markov process is
used to model the second-order SPAM to construct a
transition probability matrix. Taking the red channel and
the horizontal direction (⟶ ) as an example, the tran-
sition probability matrix is defined using the following
formula:

M(u, v, w)
⟶

R � p D(i, j + 2)
⟶

R � u | D(i, j + 1)
⟶

R(

� v, D(i, j)
⟶

R � w 􏼁,

(8)

where −T≤ u, v, w ≤T, T is a preset parameter and p

denotes a conditional probability which satisfies
D(i, j + 2)→R � u conditioned on D(i, j + 1)⟶R � v and
D(i, j)→R � w. Since u, v, andw change from −T to T, the
range of each of the parameters is 2T + 1 and the size of
transition probability matrix M is (2T + 1)3, accordingly.
,e transition probability matrices of the other direc-
tions and other channels can be defined in the same way.
To reduce the dimension, the transition probability
matrices of some directions are fused on average as
follows:
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F(u, v, w)
1
R �

1
4

M(u, v, w)
→
R + M(u, v, w)

←
R + M(u, v, w)

↑
R + M(u, v, w)

↓
R􏽨 􏽩,

F(u, v, w)
2
R �

1
4

M(u, v, w)
↖
R + M(u, v, w)

↘
R + M(u, v, w)

↙
R + M(u, v, w)

↗
R􏽨 􏽩.

(9)

,e fused transition probability matrix is used as the
feature. Finally, the features of the three channels are
denoted as FR � F1R F2R􏽨 􏽩, FG � F1G F2G􏽨 􏽩, and
FB � F1B F2B􏽨 􏽩 (the parameters “u, v, w” are omitted). ,e
final feature FM is a joint of FR, FG, and FB.,e dimension of
the features of each channel is 2(2T + 1)3. To obtain an
optimal trade-off between efficiency and performance, we set
T as 3 and the dimension of FM is 686∗ 3� 2058.

To provide an intuitive understanding of SPAM-based
feature extraction, a legitimate image and its corresponding
FGSM attacked adversarial image were selected to illustrate
the significant differences between their FM features (see
Figure 4).

(2) Ensemble Binary Classifiers. Ensemble classifiers [38]
consist of multiple base classifiers independently trained
from a set of positive and negative samples. As a base
classifier, each fisher classifier is trained from a random
subspace of the entire feature space. ,e symbol L stands for
the number of base classifiers. For the ith base classifier, the
corresponding random subspace are represented using
Di, i � 1, . . . , L. ,en, we train a base classifier Bi on fea-
tures of positive and negative samples using the fisher linear
discriminant (FLD). For a test feature y, the decision of the
ith base learner isBi(y(Di)). After collecting all L decisions,
the final classifier output B(y) is formed by combining them
using a majority voting strategy, where 1 stands for positive
class and 0 for negative class:

B(y) �

1, when 􏽐
L

i�1
Bi y Di( )􏼐 􏼑<

L

2
,

0, when 􏽐
L

i�1
Bi y Di( )􏼐 􏼑>

L

2
,

random, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

3.1.2. Minor Alteration Detector. Although the adversarial
examples with noticeable perturbations are filtered out with
a nearly perfect effect by the statistical detector, most of the
adversarial examples with unnoticeable perturbations re-
main undetected. ,us, this section is concerned with
detecting adversarial examples corrupted with unnoticeable
perturbations.

We notice that if a legitimate example undergoes a minor
alteration, the classification result given by the targeted
network would be relatively unchanged, whereas an
adversarial example containing unnoticeable perturbations
after minor transformation would have a significant effect on
the classification result. ,e reason may be that the legiti-
mate example is located on the manifold of its GTclass such
that a slight bias would not influence the result critically.
Nevertheless, an adversarial example with unnoticeable
perturbations would still be close to the manifold of its GT
class, but these perturbations are easily damaged by minor
transformations. ,us, its classification result would most
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Figure 3: An overview of detection of adversarial example. First, the input example is fed into the statistical detector. If the input example is
not determined to be an adversarial example with noticeable perturbations, it will be further analyzed by the minor alteration detector.
Specifically, the input example is altered by fourminor operations and then the original input and its four altered counterparts are all fed into
the targeted network. ,en, the L1 norm difference between two outputs corresponding to the original input and any one of the four
alterations is calculated. Finally, the max value of the four differences is compared with a thresholdT. If the maximum exceeds the threshold,
the input example will be detected as adversarial example with unnoticeable perturbations, otherwise legitimate example.
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probably change once it undergoes minor alterations.
Depending on this observation and the need to adapt to a
range of adversarial perturbation characteristics, we devise
four minor alterations to images and a straightforward yet
effective max fusion rule: taking the max value among four
output differences between the image before and after al-
teration and the output is given by the targeted network. In
terms of the max value, the detector can make a decision. If
the max value is greater than a threshold, the input sample is
classified as an adversarial example with unnoticeable per-
turbations; otherwise, it is a legitimate example. ,is de-
tection process is referred to as a minor alteration detector
(see “Minor alteration detector” in Figure 3). Obviously, the
statistical detector and the minor alteration detector func-
tion in a complementary way to detect adversarial examples.

Specifically, the four alterations operate as follows:

remove&interpolation (ri). Remove a small number of
rows and columns at fixed positions in the image and
then recover the removed rows and columns by in-
terpolation (see Figure 5(a)).
remove&expansion (re). Remove a small peripheral part
and then expand the remaining part to the original
image size (see Figure 5(b)).
rotate-clockwise (rc). Rotate clockwise at a small angle
around the geometric center of the image.
rotate-anticlockwise (ra). Rotate anticlockwise at a
small angle around the geometric center of the image.

Computing the difference is another critical issue, we
choose a prediction probability distribution vector as the
output and use the ℓ1 norm to measure the output difference
d(x, xalt):
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Figure 4: ,e SPAM feature D(i, j)R in eight directions and the final feature FM are illustrated. ,e eight directions are expressed as
↑, ↓,⟶ ,←,↘,↖,↗,↙{ }. ,e difference between the FGSM adversarial example and legitimate example are distinctly observed.
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d x, xalt( 􏼁 � g(x) − g xalt( 􏼁
����

����1, (12)

where g(x) and g(xalt) denote the prediction probability
distribution vectors of targeted network for the original
input x and its minor alteration version xalt, respectively.
Furthermore, the range of d(x, xalt) is from 0 to 2, with a
higher value indicating a greater difference. We expect the
difference to be as small as possible for legitimate input and
as large as possible for the adversarial input. Figure 6 shows
some examples of a legitimate image and adversarial im-
ages produced by DeepFool, CW_UT, and CW_T attacks.
Four altered versions of each image are demonstrated. Both
the corresponding output difference and the max value are
coincident with our expectations. Figure 7 presents seven
histograms of d(x, xalt) for both legitimate examples (red)
and adversarial examples (blue) crafted by the aforemen-
tioned attacks. In the case of the DeepFool, CW_UT, and
CW_T attacks, the difference distributions of legitimate
and adversarial examples can be separated well, whereas for
FGSM, R-FGSM, BIM, and UAP attacks, the difference
distributions considerably overlap. ,ese results indicate
that noticeable perturbations are relatively hard to be
damaged, which is probably attributed to the large dis-
tances of these adversarial examples from their GT
manifolds.

3.2. Ce Deep Residual Generative Network to Clean Adver-
sarial Perturbations. Cleaning adversarial perturbations is
also a feasible defense scheme. In this paper, we utilize our
previously proposed network called ResGN to reform
adversarial examples. ,e network with residual blocks is
conditionally generative and is trained in a supervised
way. ,e supervisions are pairs of legitimate image and
corresponding adversarial image, and the adversarial
images are generated by white box attacking on a certain
targeted network. ,e optimization of ResGN is driven by
minimizing a joint loss composed of pixel loss, texture
loss, and semantic loss, in which the latter two losses
depend on a pretrained network independent of the
targeted network (see Figure 8). ,e specific structure of
ResGN and its detailed training algorithm are referred in
[10].

3.3. Ce Complete Defense Framework. ,us far, we have
discussed two defense methods: adversarial examples de-
tection and adversarial perturbations cleaning. Accordingly,
we can implement three defense patterns: the integration of a
nonadversarially trained targeted network with adversarial
examples detection, adversarial perturbations cleaning, and

both of them (see Figures 9(a)∼9(c)). Apart from the three
patterns, an adversarially trained targeted network is a
well-known defensive technique [10], in which the input
samples are directly classified by such a targeted network
(see Figure 9(d)). Naturally, other defensive options are to
replace the nonadversarially trained targeted network in
Figures 9(a)∼9(c) with its adversarially trained counterpart
to produce three other defense patterns (see Figures 9(e)∼
9(g)). Usually, we refrain from choosing combination 9(a)
and 9(e) as the rejection of input samples is not allowed in
some scenarios. More importantly, the detection module
can prevent most of the legitimate examples from being
cleaned because samples detected to be legitimate would
bypass the cleaning module. Detection is especially
meaningful if legitimate samples form a large percentage of
input samples. However, adversarial examples would also
elude detection. Fortunately, the adversarially trained
network can alleviate the problem because of its strong
robustness to adversarial examples. Moreover, cleaned
legitimate examples slightly deviate from their original
versions and it is not always possible to completely elim-
inate adversarial perturbations because of the diversity of
perturbations. ,ese issues suggest the use of an adver-
sarially trained targeted network rather than one that is
nonadversarially trained. In addition, the joint use of de-
tection and cleaning modules is expected to significantly
boost the performance of the adversarially trained targeted
network alone. ,is led us to combine the two proposed
detectors, the ResGN, and an adversarially trained targeted
network and to construct a complete defense framework
(see Figure 9(g)).

4. Results and Discussion

4.1. Experiment Setup. In our experiments, we used a PC
equipped with an i7-6850K 3.60GHz CPU and a NVIDIA
TITAN X GPU. ,e developing environment is Tensor-
Flow [39]. We chose Inception-v3 [40] and adv-Inception-
v3 [11] as targeted network and adversarially trained
network, respectively. From the ImageNet validation
dataset, 5000 legitimate images correctly classified by the
pretrained Inception-v3 model were selected, in which
4000 images form the training set and 1000 images con-
stitute the testing set. All adversarial examples were gen-
erated from the legitimate images using attacking
implementation from Cleverhans library [41]. Table 1
demonstrates the parameters of these attacking methods
that are mentioned in Section 2.1, and Table 2 shows the
classification accuracy of their corresponding adversarial
examples using Inception-v3.
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Figure 5: Illustration of ri and re alterations.
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Figure 7: Minor alteration detector difference histograms using max fusion rule for legitimate examples (red) and adversarial examples
(blue) generated by FGSM, R-FGSM, BIM, UAP, DeepFool, CW_UT, and CW_T on the training set. ,e horizontal axis represents the
distance between the two vectors of the original input and its corresponding alteration version output by the targeted network (Inception-
v3). ,e vertical axis represents the number of images at a certain distance. (a) FGSM examples. (b) R-FGSM examples. (c) BIM examples.
(d) UAP examples. (e) DeepFool examples. (f ) CW_UT examples. (g) CW_T examples.

Legitimate

DeepFool

0.072 0.035 

1.974

1.362 1.015

1.868 1.729 1.427

CW_UT

CW_T

Original ri re rc ra

0.030 0.027

1.971

0.979 0.780

1.964 1.969

1.101

Figure 6: Minor alterations and output difference demonstration. ,e first column shows four original images including a legitimate image and
three adversarial images crafted by DeepFool, CW_UT, and CW_T. Each of the remaining four columns are corresponding minor alteration
images for the four original images. ,e value below each image is the difference between the outputs of it and its original one using the targeted
network (Inception-v3). ,e image marked with the red box has obtained the max value among the four differences in each row.
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4.2. Results of Adversarial Example Detection

4.2.1. Results of Statistical Detector. ,is experiment was
designed to assess the ability of the statistical detector. First,
we construct seven positive training sets containing the
adversarial examples produced, by using an individual
attacking method and the legitimate examples to compose a
common negative training set. For FGSM, R-FGSM, and
BIM attacks, the attacking strength is ∈ � 32/255 for both the
training and testing sets. Table 3 lists the performance of the
seven statistical detectors on the testing set in terms of True

Positive Rate (TPR) and False Positive Rate (FPR). ,e
results indicate that TPR of the adversarial examples gen-
erated by FGSM, R-FGSM, BIM, and UAP is close to 100%
and FPR of legitimate examples is below 1%. We can
conclude that the adversarial examples crafted by the four
attacks were clearly distinguished from the legitimate ex-
amples. However, for the detectors that the positive set is
composed of adversarial examples crafted by DeepFool,
CW_UT, or CW_T, both TPR and FPR are not satisfied.,e
results imply that SPAM-based feature is not appropriate to
characterize the unnoticeable perturbations.
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image
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image

Residual
generative
network

A
pretrained
network

Cleaned
image Features from

convolutional layer

Softmax

Texture loss

Pixel loss

Semantic lossSoftmax

A
pretrained
network

Features from
convolutional layer

Figure 8: ,e training architecture of ResGN.,e optimization of ResGN is driven by minimizing a joint loss containing pixel loss, texture
loss, and semantic loss. ,e latter two losses are provided by any pretrained network.
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Figure 9: Seven defense patterns.

Table 1: ,e parameters of evaluated attacks.

Attacks FGSM R-FGSM BIM UAP DeepFool CW_UT CW_T
∈ 32/255 32/255 32/255 0.1 — — —
α —— 0.01 1 — — — —
δ — — — 0.8 — — —
Iterations — — 20 400 200 300 300

Table 2: ,e classification accuracy of adversarial examples generated by evaluated attacks on the testing set (%).

Attacks FGSM R-FGSM BIM UAP DeepFool CW_UT CW_T
Accuracy 26.1 12.8 0 3.5 0.2 0.7 1.0
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,ese results motivate us to attempt to separate all
samples into two groups in terms of perturbation signifi-
cance: one group includes FGSM, R-FGSM, BIM, and UAP
adversarial examples with noticeable perturbations and the
other group contains the adversarial examples with unno-
ticeable perturbations produced by DeepFool, CW_UT,
CW_T, and legitimate examples. Accordingly, the former
and the latter groups constitute the positive and negative
training set, respectively. Table 4 lists overall TPR and FPR
values of the testing set which are 99.6% and 0.6%, re-
spectively. ,ese results confirm that the statistical detector
achieves promising performance.

Parameter ∈ in FGSM, R-FGSM, and BIM attacks
controls the attacking strength. In a real setting, attackers
may yield adversarial examples using various attacking
strengths. ,us, we designed this experiment to explore the
transfer ability of the statistical detector. ,e results in
Table 5 show that each detector learned from examples with
∈ performs well on the testing set when ∈ is the same or
larger, whereas the performance decreases when ∈ is weaker
for the testing set. ,us, from the average sight, the detector
learned from samples set with ∈ � (8/255) performs the best
(99.4%) and is supposed to have the best transfer ability. ,e
results validate that more strongly attacked examples are
much easier to detect since the statistical anomaly hidden in
them is more evident than that in more weakly attacked
examples. Although higher transfer ability is obtained at the
cost of a slightly increased FPR (1.7%), we still favor the
detector learned from the sample set with ∈ � 8/255 as the
ultimate statistical detector owing to its satisfactory TPR.

4.2.2. Results of Minor Alteration Detector. ,e performance
of the statistical detector in terms of detecting the adversarial
examples produced by FGSM, R-FGSM, BIM, and UAP is
significantly high. Unfortunately, it was not possible to
reliably distinguish the adversarial examples produced by
DeepFool, CW_UT, and CW_T from legitimate examples.
,is experiment was therefore intended to evaluate the
capability of the minor alteration detector to detect the three
types of adversarial examples with unnoticeable
perturbations.

First, we selected an optimal parameter for each alter-
ation from the candidate optional multiple parameters. We
calculated the AUC value of the ROC curve (ROC-AUC) for
all candidate parameters (see Table 6). ,e value in bold
indicates the top value and the corresponding parameter.
,en, an optimal decision threshold is needed to be de-
termined. Because a detector with high TPR at the cost of
high FPR is meaningless, we chose 5% as the acceptable FPR.
,us, the optimal decision threshold is the value corre-
sponding to 5% FPR. Note that the optimal parameters for

all alterations and the final optimal decision value are de-
rived from training set. ,e performance of the different
single alterations is also compared by evaluating TPR and
FPR for the four alterations, in addition to the max fusion
rule. Table 7 lists that all corresponding thresholds and the
optimal TPR (94.8%) and FPR (4.7%) have been obtained by
the max fusion rule. ,ese results confirm that the max
fusion rule has an advantage over the single alterations.

4.2.3. Results of Combination of Two Detectors. ,e com-
bined results show that the combination of the statistical
detector and the minor alteration detector (shown in
Figure 3) enables all seven types of adversarial examples to
be detected. A promising trade-off between TPR (97.6%)
and FPR (6.3%) (Table 8) was obtained by combining the
two detectors.

We next compare the performance of the combination of
the two detectors with that of the integrated detector [12]
and feature squeezing detector [33]. ,e proposed detector
achieves highest TPR on adversarial examples produced by
FGSM, R-FGSM, BIM, and UAP. However, the performance
of the proposed detector on adversarial examples produced
by DeepFool, CW_UT, and CW_T is slightly weaker than
that of the integrated detector. Although feature squeezing
detector achieves a higher TPR on CW_UT and CW_T
adversarial examples than ours, the proposed detector has
better performance on the other types of adversarial ex-
amples. It is worth mentioning that the proposed detector
obtained a lower FPR (6.3%). In general, the performance of
the proposed detector in terms of detecting adversarial
example is satisfactory.

4.3. Results of Optimization of ResGN. We discovered that
increasing the number of residual blocks improves the
performance of ResGN; nevertheless, it is at the expense of a
considerable increase in the computational complexity.
Considering the need to maintain a balance, we use 24
residual blocks in ResGN. Considering the adaptability of
ResGN, vgg-19 is selected as the pretrained network during
training rather than Inception-v3 or adv-Inception-v3
network. Last, adversarial examples produced by FGSM
attacking method with strength ∈ � 32/255 compose
training set and corresponding legitimate images are GT. A
set of images including four legitimate images, 16 pairs of
adversarial images, and corresponding cleaned images by
optimized ResGN are shown in Figure 10. It can be seen that,
in addition to the adversarial examples crafted by FGSM and
an attacking strength of 32/255, adversarial examples other
than those obtained with FGSM or an attacking strength of
32/255 also reveal satisfactorily cleaned visual effects. ,e
results in Table 9 confirm that ResGN optimized by FGSM

Table 3: Performance of seven statistical detectors (%).

Positive examples FGSM R-FGSM BIM UAP DeepFool CW_UT CW_T
Negative examples Legitimate
TPR 99.8 100 99.8 99.4 85.8 81.9 81.1
FPR 0.5 0.2 0.9 0.6 26.0 25.5 26.6
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adversarial examples with an attacking strength of 32/255
has better performance on adversarial examples.

4.4. Results of the Complete Defense Framework and Com-
parisonwithOtherDefenseMethods. As stated in Section 3.3,

adversarial example detection, adversarial perturbation
cleaning, and an adversarially trained network form a
complete defense framework which is the most powerful
defense pattern. ,is experiment aims to validate this point.
In addition, to observe the relation between the performance

Table 7: Performance of the minor alteration detector (%).

Operation ri re rc ra max
,reshold 0.747 0.682 0.574 0.564 0.993

TPR

DeepFool 91.8 93.4 90.8 91.5 94.7
CW_T 92.3 94.1 91.2 92.4 94.6
CW_UT 92.7 94.1 91.3 92.7 95.0
Overall 92.3 93.9 91.1 92.2 94.8

FPR Legitimate 5.7 6.1 5.5 6.0 4.7

Table 8: Performance of the combination of the two detectors vs. the integrated detector [12] and feature squeezing detector [33] (%).

Detector
TPR

FPR
FGSM R-FGSM BIM UAP DeepFool CW_UT CW_T Average

,e proposed detector 99.8 99.9 99.9 99.5 94.7 94.6 95.1 97.6 6.3
Integrated detector [12] 99.5 99.6 99.5 96.9 96.3 96.1 96.4 97.7 7.1
Feature squeezing detector [33] 56.3 52.3 67.9 88.1 90.4 95.3 97.1 78.2 8.2

Table 4: Performance of the single statistical detector (%).
Positive examples FGSM R-FGSM BIM UAP Overall
TPR 99.9 100 100 98.3 99.6
Negative examples DeepFool CW_UT CW_T Legitimate Overall
FPR 0.6 0.6 0.6 0.7 0.6

Table 5: Evaluation for transfer ability of the statistical detector for various attacking strengths.

Train
Test

TPR (%)
FPR (%)

∈ � 8/255 ∈ � 16/255 ∈ � 24/255 ∈ � 32/255 Average
∈ � 8/255 98.6 99.5 99.6 99.7 99.4 1.7
∈ � 16/255 93.6 99.0 99.4 99.5 97.9 1.5
∈ � 24/255 86.1 97.1 99.3 99.5 95.5 1.4
∈ � 32/255 80.4 95.1 98.2 99.6 93.3 0.6

Table 6: AUC of ROC curve for minor alteration using various parameters on the training set.
Operation ri
Parameter 30 40 50 60 70
ROC-AUC 0.9804 0.9801 0.9827 0.9839 0.9818
Operation re
Parameter 5 10 15 20 25
ROC-AUC 0.9738 0.9775 0.9781 0.9779 0.9753
Operation rc
Parameter 1 2 3 4 5
ROC-AUC 0.9719 0.9793 0.9782 0.9771 0.9766
Operation ra
Parameter 1 2 3 4 5
ROC-AUC 0.9717 0.9796 0.9793 0.9789 0.9777
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and the proportion of legitimate examples in the testing set,
we constructed multiple testing sets composed of various
proportions of legitimate examples and fixed the total
number of testing samples at 1000. ,e proportion was
increased in increments of 10 percent. ,e adversarial ex-
amples contained in each of the testing sets vary with respect
to their type and attacking strength. Furthermore, we
compared the performance of our complete method with
that of the RADOMIZATION [27], HGD [28], and Com-
Defend [29] techniques. In Figure 11, the “accuracy” is
plotted as a function of the “proportion” for the three forms
of defense, details of which are provided in the legend.
Instead of Inception-v3, adv-Inception-v3 was used as
targeted network and its ability to function alone as a form of
defense is shown in Table 10. ,e experimental results in-
dicate that, for detection alone or for a combination of
detection and ResGN, working collaboratively with Incep-
tion-v3 or adv-Inception-v3 yields performance superior to
that of other defense methods; second, the combination of

our proposed defense methods with adv-Inception-v3 im-
proved the performance of adv-Inception-v3 alone re-
markably (see Table 10). ,ese results verify that ResGN is
actually able to meaningfully improve the performance of an
adversarially trained network because it is at least capable of
mitigating adversarial perturbations even though the per-
turbations are impossible to remove perfectly owing to their
diversity. Finally, the performance of the joint use of de-
tection and ResGN with the targeted network is expected to
outperform that of ResGN alone with the targeted network
when the proportion of legitimate examples is relatively
large. Fortunately, most of the input samples are legitimate
in a real setting; hence, the complete defense framework is
actually critical for counteracting adversarial examples.

We discuss the computational complexity of the pro-
posed complete defense framework. Suppose that there are
N samples in total for testing and the percent of adversarial
examples is s. We further assume the number of detected
adversarial examples by the detector is very close to the

FGSM8/255 FGSM16/255 FGSM24/255 FGSM32/255Legitimate

BIM8/255 BIM16/255 BIM24/255 BIM32/255Legitimate

Legitimate UAP DeepFool CW_UT CW_T

R-FGSM8/255 R-FGSM16/255 R-FGSM24/255 R-FGSM32/255Legitimate

Figure 10: A set of images including four legitimate images, 16 pairs of adversarial images (a), and corresponding cleaned images by ResGN (b).

Table 9: Performance of ResGN optimized by FGSM adversarial examples with strength ∈ � 32/255.

Training set Testing set

FGSM ∈ � 32/255

FGSM
∈ � 8/255 ∈ � 16/255 ∈ � 24/255 ∈ � 32/255

80.6 86.3 89.9 93.6
R-FGSM

∈ � 8/255 ∈ � 16/255 ∈ � 24/255 ∈ � 32/255
78.8 81.4 87.2 92.3

BIM
∈ � 8/255 ∈ � 16/255 ∈ � 24/255 ∈ � 32/255

79.3 90.6 86.8 91.2
UAP DeepFool CW_UT CW_T Legitimate Average
90.4 90.6 91.7 90.4 98.1 87.6
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number of genuine adversarial examples. Td, Tc, and Tr

denote the average time of detection, the average time of
adversarial perturbations cleaning, and the average time of
recognition for each sample, respectively. ,en, for the
proposed complete defense, the total time required for
recognizing N samples is N × (Td + s × Tc + Tr). For the
defense excluding detection, the total time required for
recognizing N samples is N × (Tc + Tr). For the complete
defense, we assume a special case. If the s equals to 0, the
required time is N × (Td + Tr). So, in this case, if the de-
tection is more efficient than adversarial perturbation
cleaning, which means Td <Tc, the complete defense will be
more efficient than the defense excluding detection, and vice
versa. In addition, with s increasing, the required time will
increase. In sum, the computational complexity of the
complete defense depends on two factors: the computational
complexity of the detection module and the percent of the
adversarial example. ,e percent of adversarial example is
out of control, so the efficiency of detection is crucial. For
each image, the average required time of our proposed
framework is 1.5 seconds. Specially, the detection module
spends 1.0 seconds. ,erefore, the circumstance that the
detection module in our work has a heavier time con-
sumption than adversarial perturbation cleaning module,
the adversarially trained targeted network calls for a study of
more efficient detectors in the future.

4.5. Ce Complete Defense Aware Attack. We evaluate the
robustness of the complete defense framework in totally
white box setting. ,e adversary is aware of the complete
defense framework and includes them in generating
adversarial examples. ,e entire attacking process is
explained in Algorithm 1. We consider two types of white
box attacks, which are single-step attack FGSM and it-
erative attack BIM. ,e adversarial examples generated by
using them to attack the Inception-v3 and complete de-
fense framework are illustrated in Figure 12. More serious
color or texture distortions are induced by attacking the
complete defense than sole Inception-v3, and the differ-
ences could be observed for FGSM and BIM from the
global and local region level. Table 11 shows the success
rates of FGSM and BIM attacking Inception-v3 and
complete defense framework on the testing set. ,e
success rates of attacking complete defense framework are
much lower than that of Inception-v3. In terms of our
proposed complete defense itself, the success rate of a
single-step attack is higher than that of an iterative attack.
,e adversary almost exclusively attacks the adversarially
trained targeted network using single-step attack due to
the involvement of detection. While in iterative attack, it
is essential for adversary to attack the combination of
adversarial perturbation cleaning and an adversarially
trained targeted network. ,e results confirm that the

Table 10: Classification accuracy of adv-Inception-v3 as targeted network (%).

,e proportion of legitimate examples (%) 0 10 20 30 40 50 60 70 80 90 100 Average
Adv-inception-v3 89.9 90.6 91.2 92.0 92.9 93.6 94.4 95.1 96.4 96.9 97.3 93.7
ResGN+Adv-inception-v3 98.4 98.5 98.7 98.8 99.0 99.1 99.3 99.3 99.4 99.5 99.8 99.1
Detection +ResGN+Adv-inception-v3 98.2 98.4 98.7 98.9 99.1 99.2 99.4 99.5 99.7 99.8 99.9 99.2
Randomization +Adv-inception-v3 89.3 89.7 90.3 91.7 92.3 93.1 93.8 94.3 95.1 95.8 96.2 92.9
HGD+Adv-inception-v3 84.3 84.9 85.8 86.4 87.5 88.3 89.2 90.1 90.5 91.1 92.1 88.2
ComDefend +Adv-inception-v3 89.1 89.6 90.3 90.5 91.1 91.3 91.9 92.3 92.5 93.4 94.6 91.5
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Figure 11: Classification accuracy of Inception-v3 as targeted network.
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Input: a legitimate image xL; adversarial example detection, adversarial perturbation cleaning and an adversarially trained targeted
network denote as Φd, Φ|c|, and Φadv, respectively.
Parameter: N: the max attack iterations (N � 1 especially for single-step attack)

Initialize 􏽢x � xL

for k � 1, . . . , N do
(i) Φd decides 􏽢x whether legitimate or adversarial image

(i) If the decision is legitimate image, 􏽢x is updated by attacking Φadv
(ii) If the decision is adversarial image, 􏽢x is updated by attacking the combination of Φc and Φadv
end

Output an adversarial image xadv � 􏽢x

ALGORITHM 1: ,e complete defense aware attack.

Legitimate (a) (b) (c) (d)

Figure 12: ,e legitimate examples are shown in the left column. (a) ,e adversarial examples are generated by using FGSM to attack
Inception-v3. (b) ,e adversarial examples are generated by using FGSM to attack proposed complete defense framework. (c) ,e
adversarial examples are generated by using BIM to attack Inception-v3. (d) ,e adversarial examples are generated by using BIM to attack
proposed complete defense framework. More serious color or texture distortions are induced by attacking the complete defense than sole
Inception-v3, and the differences could be observed for FGSM from global level (see (b)) and BIM from local region level (see (d)). ,e
differences in local region are marked with the red circle.

Table 11: ,e success rates of FGSM and BIM attacking the Inception-v3 and complete defense framework (%).

Attack FGSM BIM
Targeted network Inception-v3 Complete defense Inception-v3 Complete defense
Success rate 73.9 28.9 100 13.7
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complete defense maintains it robustness in totally white
box setting.

5. Conclusions

We propose a complete defense framework comprising three
modules: adversarial example detection, adversarial per-
turbation cleaning, and adversarially trained targeted net-
work. Specifically, if an input sample is detected to be
adversarial, the sample is cleaned by ResGN and then
classified by the adversarially targeted network. Otherwise,
the sample is directly classified by the adversarially targeted
network. Furthermore, detection is accomplished by two
complementary detectors adaptive to adversarial perturba-
tion characteristics: the statistical detector filters out the
adversarial examples with noticeable perturbations and the
minor alteration detector filters out the adversarial examples
with unnoticeable perturbations. In future work, the pro-
posed complete defense framework is expected to extend to
other applications, such as face recognition. Furthermore,
we aim to dynamically optimize the proposed defense
method to incrementally boost the capability to counteract
adversarial examples.
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,e ImageNet dataset used in the experiments is public.
Please refer to the corresponding project website for
downloading these datasets.,e source code of the proposed
method is available from the corresponding author on
reasonable request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

We would like to thank Editage (http://www.editage.cn) for
English language editing. ,is work was supported by the
Natural Science Foundation of Shanghai under Grant no.
16ZR1411100 and Shanghai Committee of Science and
Technology under Grant no. 19511105503.

References

[1] Z. Zhao, P. Zheng, S. Xu, and X. Wu, “Object detection with
deep learning: a review,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 30, no. 11, pp. 3212–3232,
2019.

[2] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent
trends in deep learning based natural language processing
(review article),” IEEE Computational Intelligence Magazine,
vol. 13, no. 3, pp. 55–75, 2018.

[3] L. Deng, J. Li, J.-T. Huang et al., “Recent advances in deep
learning for speech research at Microsoft,” in Proceedings of
the IEEE International Conference on Acoustics, Speech and
Signal Processing, Vancouver, BC, Canada, May 2013.

[4] C. Szegedy, W. Zaremba, I. Sutskever et al., “Intriguing
properties of neural networks,” in Proceedings of the

International Conference on Learning Representations (ICLR)
Workshop Track, Banff, AB, Canada, April 2014.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in Proceedings of the Int.
Conf. On Learning Representations (ICLR), San Diego, CA,
USA, May 2015.

[6] Y. He, G. Meng, K. Chen, X. Hu, and J. He, “Towards privacy
and security of deep learning systems: a survey,” 2019, https://
arxiv.org/abs/1911.12562v1.

[7] X. Yuan, He Pan, Q. Zhu, and X. Li, “Adversarial Examples:
attacks and defenses for deep learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 9,
pp. 2805–2824, 2019.

[8] K. Eykholt, I. Evtimov, E. Fernandes et al., “Robust physical-
world attacks on deep learning models,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
Lake City, UT, USA, June 2018.

[9] Y. Dong, H. Su, B. Wu et al., “Efficient decision-based black-
box Adversarial attacks on face recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, June 2019.

[10] W. Fan, G. Sun, and X. Dong, “RGN-defense: erasing
adversarial perturbations using deep residual generative
network,” Journal of Electronic Imaging, vol. 28, no. 1, 2019.

[11] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial ma-
chine learning at scale,” in Proceedings of the International
Conference on Learning Representations (ICLR), Toulon,
France, April 2017.

[12] W. Fan, G. Sun, Y. Su, Z. Liu, and X. Lu, “Integration of
statistical detector and Gaussian noise injection detector for
adversarial example detection in deep neural networks,”
Multimedia Tools and Applications, vol. 78, no. 14,
pp. 20409–20429, 2019.

[13] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li, “Imagenet:
a large-scale hierarchical image database,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 248–255, Miami, FL, USA, June 2009.
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