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Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and threat assessment.
Aiming at the problem of low prediction accuracy in traditional trajectory prediction methods, combined with the chaotic
characteristics of the target maneuver trajectory time series, a target maneuver trajectory predictionmodel based on chaotic theory
and improved genetic algorithm-Volterra neural network (IGA-VNN) model is proposed, mathematically deducing and ana-
lyzing the consistency between Volterra functional model and back propagation (BP) neural network in structure. Firstly, the C-C
method is used to reconstruct the phase space of the target trajectory time series, and the maximum Lyapunov exponent of the
time series of the target maneuver trajectory is calculated. It is proved that the time series of the target maneuver trajectory has
chaotic characteristics, so the chaotic method can be used to predict the target trajectory time series.-en, the practicable Volterra
functional model and BP neural network are combined together, learning the advantages of both and overcoming the difficulty in
obtaining the high-order kernel function of the Volterra functional model. At the same time, an adaptive crossover mutation
operator and a combination mutation operator based on the difference degree of gene segments are proposed to improve the
traditional genetic algorithm; the improved genetic algorithm is used to optimize BP neural network, and the optimal initial
weights and thresholds are obtained. Finally, the IGA-VNN model of chaotic time series is applied to the prediction of target
maneuver trajectory time series, and the experimental results show that its estimated performance is obviously superior to other
prediction algorithms.

1. Introduction

Maneuvering trajectory prediction is a process of learning
and reasoning the inherent information contained in the
target’s historical trajectory and then making a reasonable
prediction of the target’s future trajectory. In modern air
combat, it is of great significance to make a reasonable
prediction of the maneuvering trajectory of enemy targets.
According to the OODA (observation, orientation, decision,
and action) cycle theory, the essence of winning an air is to
form an OODA cycle prior to the enemy and accurately
predict the target maneuver trajectory so as to achieve the
purpose of preemption [1].

In recent years, the research on target maneuver tra-
jectory prediction methods can be divided into two cate-
gories. One is the traditional method based on Kalman filter

algorithm, (α/β) filter algorithm, linear regression model,
and particle motion model. In view of the complex and
changeable characteristics of target motion patterns, a
polynomial Kalman filter for the motion trajectory pre-
diction algorithm is proposed for the change of the target
motion mode [2]. Aiming at the problem of missing his-
torical position information of the target, an improved
Kalman filter algorithm with system noise estimation is
proposed to predict the target maneuver trajectory [3].
Owing to general traditional fitting-based trajectory pre-
diction algorithms cannot meet the requirements of high
accuracy and real-time prediction, a dynamic Kalman filter
for trajectory prediction approach is proposed [4]. In order
to solve the problems of high nonlinear, difficult data
processing, and low prediction accuracy in the high-order
motion model of the target, an interactive multimodel
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trajectory prediction algorithm with control variables is
proposed [5]. According to the above analysis, the tradi-
tional prediction method is only applicable to the relatively
simple trajectory prediction of the target motion charac-
teristics. However, in the process of air combat, the target
motion is often a highly nonlinear and complex time se-
quence process, which is also affected by many uncertain
factors. -e traditional trajectory prediction algorithms
cannot reflect the target’s maneuvering characteristics very
well. In addition, the complexity of the trajectory prediction
model is high, the adaptability of the prediction algorithm is
poor, and the prediction accuracy cannot meet the re-
quirements of air combat.

-e other algorithm is a machine learning prediction
algorithm based on intelligent algorithms, which are mainly
based on big data to establish a target maneuvering tra-
jectory prediction model. In view of GRNN’s (generalized
regression neural network) good nonlinear mapping ability,
flexible network structure, and high fault tolerance and
robustness, a trajectory prediction model based on GRNN
neural network is proposed [6]; the target group trajectory is
used to train the BP neural network, establishes a trajectory
prediction model, and realizes the prediction of the flight
trajectory [7]. However, the BP neural network has the
disadvantages of being sensitive to the initial value and not
having the global search ability. In order to solve these
problems, the genetic algorithm and particle swarm opti-
mization algorithm with global search ability are, respec-
tively, used to optimize the neural network weights to
improve the prediction accuracy [8, 9]. In addition, the
essence of target maneuver trajectory prediction is the time
series prediction problem, which is highly nonlinear and
time-varying.-e theory and practice show that the Volterra
functional model can well represent the nonlinear system
and be used to accurately predict the time series. However,
the solution of the kernel function of the higher-order
Volterra functional model is the bottleneck of its application.
Due to the good adaptability, parallelism and fault tolerance
of BP neural network, and the ability to approximate any
nonlinear function, the Volterra functional model and BP
neural network have the same structure [10–12]. -erefore,
in this paper, a target maneuver trajectory prediction model
based on BP neural network and Volterra series is proposed.
In this paper, the theory of phase space reconstruction is
used to reconstruct the time series of the target’s maneu-
vering trajectory, and the small data method is used to prove
that the time series of the target’s maneuvering trajectory has
chaotic characteristics. -en, the mathematical equivalence
between the BP neural network model and the Volterra
functional model is proved by theoretical analysis. Secondly,
combining the chaotic characteristics of the target maneuver
trajectory time series, an IGA-VNN target maneuver tra-
jectory time series prediction model based on chaos theory is
established. -e model combines the advantages of the
Volterra functional model and BP neural network and
overcomes the difficulty of the Volterra series model in
determining higher-order kernel function and the blindness
of BP neural network modeling, and an improved genetic
algorithm is proposed to optimize the weights and

thresholds of VNN networks simultaneously. Finally, the
performance of the prediction model proposed in this paper
is verified by simulation. -e simulation results show that
the model can accurately and rapidly predict the maneu-
vering trajectory of the target, which provides a new way to
solve the problem of trajectory prediction.

2. Dynamics Theory of Chaotic System

2.1. Phase Space Reconstruction %eory. PSRT (phase space
reconstruction theory) is an effective method to analyze
nonlinear time series, and it is the basis for determining and
predicting chaotic characteristics of time series. -e basic
idea of phase space reconstruction theory is to regard time
series as the component generated by nonlinear dynamic
series. According to Takens theorem [13, 14], for a chaotic
time series, when the embedding dimension m and attractor
dimension D of the phase space reconstruction meet the
condition of m≥ 2D + 1, the attractor of the original time
series can be replaced in the reconstructed phase space. At
the same time, the time series after phase space recon-
struction is topologically equivalent to the original system on
the basis of differential homeomorphism [15]. If there is a
time series x(i), i � 1, 2, . . . , N{ }, the time series recon-
structed by phase space can be expressed as follows:

X � X1 X2 · · · XM􏼂 􏼃
T

�

x(1) x(2) · · · x(M)

x(1 + τ) x(2 + τ) · · · x(M + τ)

⋮ ⋮ ⋱ ⋮

x[1 +(m − 1)τ] x[2 +(m − 1)τ] · · · x[M +(m − 1)τ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(1)

where N is the length of the time series; m is the embedding
dimension; τ is the delay time; and M � N − (m − 1)τ.

In the process of reconstructing phase space, the de-
termination of time delay and embedding dimension plays a
crucial role in the quality of phase space reconstruction. If
the embedding dimension is too low, the self-interaction of
attractors will appear; if the parameter is too high, the
distance between points will be too far. If the time delay is
too small, the correlation between the adjacent points of the
reconstructed attractor is too strong, and the analysis of the
attractor is easily interfered by noise; if the parameter is too
large, the originally close vectors will also be far away,
resulting in an uncertain system state [16]. -erefore, it is
very important to determine reasonable time delay and
embedding dimension for phase space reconstruction.

2.2.C-CMethod. -e traditional calculation method regards
the embedding dimension and time delay as two indepen-
dent parameters, which need to be calculated independently.
-e research in recent years shows that the embedding
dimension and time delay are interrelated. -e determi-
nation of time delay should not be independent of the
embedding dimension but should be determined by com-
bining the time window τw � (m − 1)τ.
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In this paper, the C-C method [15] is used to determine
the time delay and embedding dimension. -e C-C method
uses the correlation integral of time series to form statistics,
which reflects the correlation of nonlinear time series. Based
on the relationship between time delay and statistics, the
time window and time delay can be calculated simulta-
neously so that the embedding dimension can be deter-
mined. -e correlation integral is defined as follows:

C(m, r, t) �
2

M(M − 1)
􏽘

1≤i≤j≤M
H r − dij􏼐 􏼑,

dij � Xi − Xj

�����

�����,

(2)

where M is the number of phase points; r is the size of
neighborhood radius; dij is the Euclidean distance between
two phase points in phase space; and H(z) is the Heaviside
unit function, which is defined as follows:

H(z) �
1, z> 0,

0, z≤ 0.
􏼨 (3)

Dividing time series x(i), i � 1, 2, . . . , N{ } into t inde-
pendent subtime series, the length of the subtime series is
INT(N/t), where INT is an integer function. For t disjoint
subtime series, the test statistic S(m, N, r, t) and ΔS(m, t)

can be expressed as follows:

S(m, N, r, t) �
1
t

􏽘

t

s�1
Cs m,

N

t
, r, t􏼒 􏼓 − C

m
s 1,

N

t
, r, t􏼒 􏼓􏼔 􏼕,

S �
1

M · J
􏽘

M

m�1
􏽘

J

j�1
S m, rj, t􏼐 􏼑,

(4)

where J is the number of r.
In order to express the relationship between S(m, N, r, t)

and r, the difference ΔS(m, t) between the maximum and
minimum values of the two radius is expressed as follows:

ΔS(m, t) � max S m, rj, t􏼐 􏼑􏽮 􏽯 − min S m, rj, t􏼐 􏼑􏽮 􏽯. (5)

According to Brock mathematical statistical conclusions
[16], in general, we can obtain the range values of m and r as
m � 2, 3, 4, 5, rj � (jσ/2), and j � 1, 2, 3, 4, where σ is the
standard deviation of the time series.-e three test statistical
variables are defined as follows:

S(t) �
1
16

􏽘

5

m�2
􏽘

4

j�1
S m, rj, t􏼐 􏼑,

ΔS(t) �
1
4

􏽘

5

m�2
ΔS(m, t),

Scor(t) � ΔS(t) +|S(t)|,

(6)

where the time delay τ is the time corresponding to the first
minimum of ΔS(t) or the time corresponding to the first zero
of S(t). When Scor(t) obtains the minimum value, the cor-
responding time is the time window τw.-e C-Cmethod uses
statistical theory to obtain the time delay and embedding

dimension. -e calculation is simple, the calculation amount
is small, and it has strong anti-interference ability.

Based on the theoretical analysis of PSR in Section 2.1,
the C-C method is used to reconstruct the phase space of the
three-dimensional coordinate time series of the target ma-
neuver trajectory. -e test statistics ΔS(t), S(t), and Scor(t)

calculated by the C-C method are shown in Figures 1–3. It
can be seen from Figure 1 that the first minimum point of
ΔS(t) is τx � 19, and the minimum point of Scor(t) is
τx

w � 126. -en, based on the embedded time window
equation τw � (m − 1)τ, the optimal embedded dimension
is mx

opt � 7. As can be seen from Figure 2, the first minimum
point of ΔS(t) is τy � 25, and the minimum point of Scor(t)

is τy
w � 181. -en, based on the embedded time window

equation τw � (m − 1)τ, the optimal embedded dimension
is m

opt
y � 8. Similarly, as can be seen from Figure 3, the first

minimum point of ΔS(t) is τz � 21, and the minimum point
of Scor(t) is τz

w � 157. -en, based on the embedded time
window equation τw � (m − 1)τ, the optimal embedded
dimension is mz

opt � 8. -e determination of the above
parameters provides a basis for proving that the target
maneuver trajectory prediction system has chaotic
characteristics.

2.3. Calculation of Maximum Lyapunov Exponent.
Butterfly effect is the basic form of the chaos system; that is,
chaos is sensitive to the initial value. -e trajectories gen-
erated by two initial values with little difference will show
exponential separation with time. Lyapunov exponent is the
eigenvalue of the chaotic system after averaging on the
trajectories of the whole attractor [14]. Among them, the
largest Lyapunov index can quantitatively describe the
separation of orbits generated by two very close initial values
as time goes by. It is theoretically proved in [17] that as long
as the maximum Lyapunov exponent λ satisfies λ> 0, the
system has chaotic characteristics.

-e small data is one of the most commonly used
methods to calculate the maximum Lyapunov exponent of
the chaotic system. -e specific calculation steps are as
follows:

Step 1: perform fast Fourier transform on the time
series x(i), i � 1, 2, . . . , N{ } to determine the average
period P.
Step 2: use the C-C method to determine time delay τ
and embedding dimension m and reconstruct phase
space of time series Yj|j � 1, 2, . . . , M􏽮 􏽯.
Step 3: find the closest phase point Y􏽢j

to each phase
point Yj in the phase space after time series recon-
struction and limit the short-term separation, namely:

dj(0) � min Yj − Y􏽢j

������

������, |j − 􏽢j|>p. (7)

Step 4: for each phase point Yj in the phase space,
calculate the distance dj(i) after j discrete-time steps of
the adjacent point pair:
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dj(i) � min Yj+i − Y􏽢j+i

������

������, i � 1, 2, . . . , min(M − j, M − 􏽢j).

(8)

Step 5: for each discrete time step i, calculate the av-
erage y(j) of all ln dj(i):

y(j) �
1

qh
􏽘

q

i�1
lndj(i), (9)

where q is the number that dj(i) is nonzero. -e least
square method is used to make the regression line, and
the slope of the line is the largest Lyapunov exponent λ.
-is method makes full use of the spatial evolution
information of time series, which is more reliable for
small data groups, less computation, and easy to
operate.

Based on the theoretical analysis of the small data
method in Section 2.3, the small data method is used to
analyze the chaotic characteristics of the three-dimensional
coordinate time series of the target maneuver trajectory. -e
least square fitting curve of the target maneuver trajectory
time series and the corresponding slope changes are shown
in Figures 4–6. Based on the small data method, the max-
imum Lyapunov exponent of the target maneuver trajectory
in X-direction time series, Y-direction time series, and Z-
direction time series is calculated as LX

y � 0.0011,
LY

y � 0.0042, and LZ
y � 0.004682, respectively. It can be seen

from the above that the maximum Lyapunov exponents of
the three-dimensional coordinate time series of the target’s
maneuvering trajectory are all positive numbers, which
shows that the time series of the target’s maneuvering tra-
jectory has chaotic characteristics.

3. Volterra Functional Model of
Nonlinear System

-e Volterra filter is usually used in signal processing and
model recognition of the nonlinear system [18], and the
nonlinear expression ability is good, so the Volterra func-
tional model can realize accurate prediction of chaotic time
series. For nonlinear systems, the discretized Volterra
functional model can be expressed as follows:
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Figure 3: Statistics curves of the C-C method to reconstruct the Z-
direction trajectory time series.
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Figure 1: Statistics curves of the C-C method to reconstruct the X-
direction trajectory time series.
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Figure 2: Statistics curves of the C-C method to reconstruct the Y-
direction trajectory time series.
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y(k) � 􏽘
k

i�1
􏽘

∞

l1,l2,...,li

hi l1, l2, . . . , li( 􏼁 · x k − l1( 􏼁 · x k − l2( 􏼁 · · · x k − li( 􏼁,

(10)

where i, li, k ∈ R; x(k − li) is the input of the system; y(k) is
the output of the system, which is the state of the system at
the next moment; and hi(l1, l2, . . . , li) is the Volterra kernel
function of order i.

In theory, the discrete Volterra functional model can
accurately predict the nonlinear time series. When the
Volterra filter is used to predict the time series, because it is
difficult for the functional model to solve the higher-order
kernel function, the second-order or third-order truncation
form of the Volterra functional model will be used in

general, but this will greatly reduce the prediction accuracy
and performance of the model [19–21]. In addition, the
Volterra functional model has limited memory ability.
When time point k − k0 is far away from the time point k, the
input x(k − k0) will not affect the output. Based on the above
analysis, the practical Volterra functional model adopted in
this paper is as follows:

y(k) � h0 + 􏽘

m− 1

l1�0
h1 l1( 􏼁x k − l1τ( 􏼁

+ 􏽘
m− 1

l1�0
􏽘

m− 1

l2�0
h2 l1, l2( 􏼁x k − l1τ( 􏼁x k − l2τ( 􏼁 + · · · + 􏽘

m− 1

l1�0
􏽘

m− 1

l2�0
· · ·

+ 􏽘
m− 1

lm�0
hm l1, l2, . . . , lm( 􏼁x k − l1τ( 􏼁x k − l2τ( 􏼁 · · · x k − lmτ( 􏼁,

(11)

where m is the memory length of the Volterra functional
system, that is, the minimum embedding space dimension of
the phase space reconstruction of the target maneuver
trajectory time series, and τ is the time delay.

Based on equation (11), it is possible to accurately predict
the target maneuver trajectory. -rough the above analysis,
we can know that different time series have different
characteristics, and the time delay and embedding dimen-
sion determined by the C-C method are also different.
-erefore, the Volterra functional series prediction model
used in the prediction of the three-dimensional coordinates
of the target’s maneuvering trajectory is different.

4. Prediction Model of Chaotic Time Series
Based on VNN

4.1. Model Equivalence Analysis. -e m dimensional input,
single hidden layer, and single output BP neural network are
established, and its structure is shown in Figure 7. -e input
vector of the BP neural network is
XT(k) � [xk,0, xk,1, . . . , xk,n, . . . , xk,m− 1], and the input is
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Figure 4: Fitted curve by the least square method and the cor-
responding slope changes of the X-direction trajectory time series.
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obtained by x(k) through phase space reconstruction the-
ory, where xk,m � x(k − m). -e output of the lth unit of the
hidden layer is as follows:

Zl,k � Sl Ul,k􏼐 􏼑, l � 1, 2, . . . , L. (12)

-e discrete convolution Ul,k of system input time series
is expressed by

Ul,k � 􏽘
m− 1

n�0
wl,nxk,n. (13)

-e incentive function Sl(·) of the hidden layer of BP
neural network is Sigmoid function and is expressed by

Sl Ul,k􏼐 􏼑 �
1

1 − exp − λ Ul,k − θl􏼐 􏼑􏼐 􏼑
, (14)

where wl,n is the weight between the input layer and the
hidden layer; rl is the weight between the hidden layer and
the output layer; and λ is a fixed value, and the parameter
indicates the transfer slope from the input layer to the
hidden layer.

-e Taylor series expansion of each output of the hidden
layer at the threshold θl can be expressed by

Zl,k � Sl Ul,k􏼐 􏼑 � 􏽘
∞

i�0
di θl( 􏼁 Ul,k􏼐 􏼑

i
, (15)

where di(θl) is the coefficient after the output of the hidden
layer is expanded into a series form. -e coefficient is a
function of the hidden layer threshold BB of the BP neural
network and is related to the excitation function of the
hidden layer. -e output of BP neural network is expressed
in the form of linear summation. Based on Taylor series, the
output of BP neural network can be expressed as follows:

y(k) � 􏽘
L

l�1
rlZl,k � 􏽘

L

l�1
rl 􏽘

∞

i�0
di θl( 􏼁U

i
l,k

⎡⎣ ⎤⎦

� 􏽘
L

l�1
rl 􏽘

∞

i�0
di θl( 􏼁 􏽘

m− 1

n1�0
· · · 􏽘

m− 1

ni�0
wl,n1

· · · wl,ni
xl,n1

· · · xl,ni
􏽨 􏽩.

(16)

On the other hand, if the Volterra kernel function is
expanded in the form of basis function bn(z)􏼈 􏼉, the de-
formed Volterra functional model can be obtained from the
practical functional model, as shown in Figure 8.

In Figure 8, Vl(k) is the weighted sum of the input time
series of the Volterra series model, that is, discrete convo-
lution, which can be expressed as follows:

Vl(k) � 􏽘
m− 1

z�0
bl,zxk,z. (17)

At the same time, the output of the system can be
expressed in the polynomial form as follows:

y(k) � f V1(k), . . . , Vl(k), . . . , VL(k)( 􏼁

� c0 + 􏽘

m− 1

l0�0
c1 l0( 􏼁V1(k) + 􏽘

m− 1

l0�0
􏽘

m− 1

l2�0
c2 l1, l2( 􏼁 · Vl1

(k)Vl2
(k) + · · ·

+ 􏽘

m− 1

l0�0
􏽘

m− 1

l2�0
· · · 􏽘

m− 1

lm�0
cm l1, l2, . . . , lm( 􏼁 · Vl1

(k)Vl2
(k) · · · Vlm

(k),

(18)

where cm(l1, l2, . . . , lm) is the expanded polynomial coeffi-
cient. Selecting the appropriate basis function bl,z can make
the error between each coefficient of the polynomial
f(V1(k), . . . , Vl(k), . . . , VL(k)) and the corresponding
kernel function of the model in the Volterra series approach
zero. Based on this, the Volterra series kernel function can be
expressed as follows:

h1(z) � 􏽘
m− 1

l�0
c1(l)bl,z,

h2 z1, z2( 􏼁 � 􏽘
m− 1

l1�0
􏽘

m− 1

l2�0
c2 l1, l2( 􏼁bl1 ,z1

bl2 ,z2
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(19)

-rough the analysis of equations (13) and (17), we can
see that there are implicit variables (Ul,k, Vl(k)) in the
expressions and they are all discrete convolutions of the
input time series.

If the basis function bn(z)􏼈 􏼉 in the practical Volterra
functional model can be found, equation (18) can be
expressed as the linear weighting of the Sigmoid function:

f V1(k), . . . , Vl(k), . . . , VL(k)( 􏼁 � 􏽘
L

l�1
rlSl Vl(k)( 􏼁. (20)

Comparing equations (16) and (17), it can be seen that
there is an equivalent relationship between Volterra func-
tional series model and BP neural network model, and the
two models are completely consistent in theory. -e mul-
tivariable function is linearly weighted by the univariate
function gl(Vl(k))􏼈 􏼉 and can be expressed as follows:

f V1(k), . . . , Vl(k), . . . , VL(k)( 􏼁 � 􏽘
L

l�1
rlgl Vl(k)( 􏼁, (21)

where the univariate function gl(Vl(k))􏼈 􏼉 can be expressed
in any form.

4.2. PredictionModel of TargetManeuver Trajectory Based on
VNN. In Section 4.1, the equivalence between BP neural net-
work and practical Volterra functional model is proved theo-
retically. Based on the equivalence between the two models,
combinedwith BP neural network andVolterra series functional
model, a time series prediction model of target maneuvering
trajectory based on VNN is proposed. -e model structure is
shown in Figure 9. In the prediction model, the input vector
XT � [x(k), x(k + τ), . . . , x(k + (m − 1)τ)] of the prediction
model is obtained by PSR. -e convolution Vl(k) of target
maneuvering trajectory time series can be expressed as follows:
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Vl(k) � 􏽘
m− 1

j�0
wl,jx(k + jτ). (22)

In the model, the polynomial function
gl(·)(l � 1, 2, . . . , L) is selected as the excitation function,
and it can be expressed as follows:

gl(·) � a0,l + a1,lx + a2,lx
2

+ · · · + ai,lx
i
+ · · · , (23)

where ai,l is the coefficient of the polynomial expression.-e
output expression of the VNN model of target maneuvering
trajectory time series can be obtained as follows:

y(k) � 􏽘
L

l�1
rlgl Vl(k)( 􏼁 � 􏽘

L

l�1
􏽘

∞

i�0
rlai,l Vl(k)( 􏼁

i

� 􏽘
L

l�1
􏽘

∞

i�0
rlai,l 􏽘

m− 1

j�0
wl,jx(k + jτ)⎛⎝ ⎞⎠

i

,

(24)

where y(k) is the output of the system, which is the ma-
neuver trajectory of the target at the next moment, and x is
the input of the system, which is the historical trajectory of
the target.

Based on the above theoretical analysis, the ith order
Volterra series kernel function can be expressed as follows:

hi z1, z2, . . . , zi( 􏼁 � 􏽘
L

l�1
rlai,lwl,z1

wl,z2
· · · wl,zi

. (25)

-e weights wl,n and rl and thresholds θl of the VNN
model are obtained by training, and gl(Vl(k))􏼈 􏼉 is expanded
by Taylor series at the threshold. Finally, the kernel functions
of each order of the model can be obtained according to
equation (25).

5. Chaos Adaptive Genetic Algorithm

5.1. Fitness Function. Fitness function is used to guide the
evolutionary search process of the adaptive algorithm, and
the design of fitness function is closely related to the con-
vergence speed and accuracy of the algorithm. In general, the
fitness function is derived from the objective function. In
order to reduce the prediction error of the VNN model, in
this paper, an improved GA is proposed to optimize the
model parameters, and the optimization problem belongs to

the minimum optimization problem, so the fitness function
of the algorithm can be defined as follows:

F(Ch) �
1
n

􏽘

n

l�1
􏽢yl − yl( 􏼁

2
, (26)

where n is the number of training samples of the algorithm;
yl is the predicted value of the lth sample; 􏽢yl is the expected
value of the lth sample; and F(Ch) represents the average
prediction error when the parameters decoded by chro-
mosome Ch are used as model parameters.

5.2. Selection Operator. In the selection operation of the
genetic algorithm, roulette and optimal individual retention
strategies are used to select the mating group [22]. When the
roulette method is used to perform the selection operation,
the probability of each chromosome being selected is pos-
itively correlated with its function fitness. pj is the proba-
bility that the jth individual is selected, which is expressed by

fj �
k

F Chj􏼐 􏼑
,

pj �
fj

􏽐
M
j�1 fj

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where fj is the function fitness value of the jth chromo-
some; M is the size of the population; k is the correlation
coefficient; and F(Chj) can be calculated based on the fitness
function defined above.

5.3. Adaptive Crossover Operator Based on the Difference
Degree of Chromosome Gene Fragments. Crossover opera-
tion is a crucial operator in traditional genetic algorithms,
which directly affects the convergence speed and global
convergence ability of genetic algorithms.

-e crossover operation of traditional genetic algorithms
is based on random selection mechanism. When there is a
high degree of similarity between the selected chromosomal
gene fragments, according to biological genetics theory,
inbreeding will greatly reduce the probability of new indi-
viduals appearing; that is, it is most likely to be a meaningless
crossover operation, which causes the convergence speed of
the algorithm to slow down and the phenomenon of pre-
mature emergence. In order to improve the convergence
speed and global convergence ability of the algorithm, in-
spired by the principle of excellent gene fragment cloning,
crossover operation is carried out based on the differences
between gene fragments. Based on the degree of difference
between chromosomal gene fragments, the crossover
probability of chromosomal gene fragments is determined,
and the gene fragments are selected for crossover operation
so as to achieve the purpose of reduced inbreeding and
invalid crossover operations.

In this paper, a continuous gene segment with a length L

in the chromosome is defined as a chromosome gene seg-
ment, and the starting position of the chromosome gene
segment is defined as a cross point.

U1,k

Ul,k

UL,k

xk,0

xk,n

xk,m−1

w1,0

wl,0wL,0

w1,n

wl,n
wL,n

w1,m–1 wl,m−1
wL,m−1

Z1,k
S1 (·)

Zl,k Σ
Sl (·)

ZL,k
SL (·)

y (k)

Figure 7: -e structure of three-layer neural networks.
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During the crossover operation, the length of the
chromosomal gene fragment needs to be determined.
According to the length coefficient and the randomly de-
termined length ratio of the gene fragment, the length of the
gene fragment can be obtained:

Lfragment � u1LchromI, (28)

where I is the chromosomal gene segment length coefficient;
Lchrom is the total length of the chromosomal gene segment;
and u1 is the ratio of the chromosomal gene segment length,
which is a random number in the range of [0, 1]. Chro-
mosome gene segment coefficient is a parameter that con-
trols the length of gene segment from the whole. At the same
time, based on the overall control, the random length ratio
u1 is introduced and effectively increases the diversity of
crossover operations.

In the crossover operation based on the difference
degree of gene fragments, the gene fragment length coef-
ficient directly affects the convergence of the algorithm. In
the early stage of the algorithm, the larger value of the gene
fragment length coefficient is helpful to expand the search
space of the population and avoid the premature algorithm;
in the latter part of the algorithm, the algorithm should
focus on local search to speed up the convergence rate of
the algorithm, so the value of the gene fragment length
coefficient should be smaller. Based on this, an adaptive
gene fragment length coefficient is constructed, and it can
be expressed as follows:

I � Imin − Imax( 􏼁
t

Tmax
􏼠 􏼡

2

− 2
t

Tmax
􏼠 􏼡 + 1⎡⎣ ⎤⎦ + Imax, (29)

where Imin is the minimum value of the gene fragment
length coefficient; Imax is the maximum value of the gene
fragment length coefficient; t is the current iteration number
of the algorithm; and Tmax is the maximum iteration
number.

-e coding length coefficient I of the gene fragment
decreases nonlinearly with the number of iterations of the
algorithm. -e specific steps of the crossover operation

based on the improvement of the difference degree of the
gene fragment are as follows:

Step 1: determine the maximum Imax and minimum
Imin length coefficients of gene fragments and generate
a random number u1 ∈ [0, 1]. According to the
number of iterations of the current algorithm and the
maximum number of iterations initially set by the
algorithm, the gene fragment length is calculated by
equation (29).
Step 2: using the roulette method to randomly select
individual parents x(1) � (x

(1)
1 ,

x
(1)
2 , . . . , x(1)

n ) andx(2) � (x
(2)
1 , x

(2)
2 , . . . , x(2)

n ).
Step 3: calculate the degree of difference between gene
fragments of length Lfragment corresponding to parents
x(1) and x(2), calculate the probability of crossover by
determining the degree of difference between gene
fragments, and select the intersection of gene fragments
according to the probability of crossover of gene
fragments. -e gene fragment difference degree and
crossover probability can be expressed as follows:

D(i) �

�������������������

1
L

􏽘

(i+1)∗L− 1

j�i

x
(1)
i − x

(2)
i􏼐 􏼑

2

􏽶
􏽴

; i � 0, 1, . . . , INT
n

L
􏼒 􏼓,

P(i) �
D(i)

􏽐
INT(n/L)
j�0 D(j)

; i � 0, 1, . . . , INT
n

L
􏼒 􏼓,

(30)

where D(i) is the difference degree of the i-th gene
fragment of the parent individual;D(j) is the difference
degree of the j-th gene fragment of the parent indi-
vidual; x

(1)
i and x

(2)
i are the gene encoding at the i-th

gene position of the parent individual; and INT is the
rounding function.
Step 4: generate a random number u2 ∈ [0, 1] and get
the individual y(1) � (y

(1)
1 , y

(1)
2 , . . . , y(1)

n ) and
y(2) � (y

(2)
1 , y

(2)
2 , . . . , y(2)

n ) of the offspring from the
parent x(1) � (x

(1)
1 , x

(1)
2 , . . . , x(1)

n ) and

V1 (k)

Vl (k)

VL (k)

xk,0

xk,n

xk,m–1

b1,0

bl,0bL,0

b1,n

bl,nbL,n

b1,m–1
bl,m–1

bL,m–1

f (V1 (k),···,Vl (k),···,VL (k)) Vl (k)

Figure 8: Series Volterra model after deformation.
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Figure 9: Volterra neural network model of chaotic time series.
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x(2) � (x
(2)
1 , x

(2)
2 , . . . , x(2)

n ) through the cross, which
can be expressed as follows:

y
(1)
i �

u2 x
(2)
i − x

(1)
i􏼐 􏼑 + x

(1)
i , i ∈ istart, istart + Lfragment − 1􏼐 􏼑,

x
(1)
i , i ∉ istart, istart + Lfragment − 1􏼐 􏼑,

⎧⎪⎨

⎪⎩

y
(2)
i �

u2 x
(1)
i − x

(2)
i􏼐 􏼑 + x

(2)
i , i ∈ istart, istart + Lfragment − 1􏼐 􏼑,

x
(2)
i , i ∉ istart, istart + Lfragment − 1􏼐 􏼑,

⎧⎪⎨

⎪⎩

(31)

where i is the gene position encoded by the gene and
istart is the gene position where the starting point on the
gene fragment is located.

5.4. Mutation Operation. -e mutation probability pm di-
rectly affects the mutation of population. -e appropriate
mutation of individuals can keep the population diversity
and prevent the algorithm from falling into local optimum.
However, if the mutation probability pm is too large, the
algorithm is similar to random search and loses the genetic
evolution characteristics. In this paper, the mutation
probability is improved from two aspects of the genetic
evolution algebra and the fitness function value of individual
population, and the mutation probability pm is updated
adaptively, which is computed by

p
i
m �

pmax + pmax − pmin( 􏼁
t

2Tmax
+

fi − favg􏼐 􏼑

2 fmax − favg􏼐 􏼑
⎛⎝ ⎞⎠, fi ≥favg,

pmin, fi <favg,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(32)

where pmax is the maximummutation probability; pmin is the
minimum mutation probability; fi is the fitness value of the
ith individual; and favg is the average of individual fitness of
the current population.

-e existing mutation operators are mainly divided into
two categories: one is the mutation operator with strong local
search ability [23, 24], such as Gauss mutation operator; the
other is the mutation operator with strong global search
ability [24], such as Cauchy mutation operator. For the op-
timization problem with less extreme points, mutation op-
erators with strong local search ability should be used; for the
optimization problem with more extreme points, mutation
operators with strong global search ability should be used, and
if mutation operators with strong local search ability are used,
it is easy to fall into local optimal value. In summary, it is
difficult for a single mutation operator to take into account
both global search and local search capabilities. -erefore, a
combination mutation operator is proposed in this paper.

In this paper, three kinds of mutation operators are used:
the local search ability of the first mutation operator in-
creases with the increase in the number of iterations; the
global search ability of the second mutation operator is
strong; and the local search ability of the third mutation
operator is strong. -e combination of the three mutation

operators can make the mutation operation take into ac-
count both the global and local search ability. -e combined
mutation operator method can be described as follows:

(1) Adaptive mutation operator:

Xi
′ � Xi + λ1 ∗

b
T

− a
T

􏼐 􏼑

t
, (33)

where Xi
′ is the offspring individual after mutation; a

and b are the upper and lower limits of the variable
values; and λ1 � (λ11, λ12, . . . , λ1m), where
λ11, λ12, . . . , λ1m is a random number in the range of
[− 1, 1].

(2) Cauchy mutation operator:

Xi
′ � Xi + Cauchy(0, 1), (34)

where Cauchy(0, 1) is the standard Cauchy
distribution.

(3) Gaussian mutation operator:

Xi
′ � Xi + N μ, δ2􏼐 􏼑, (35)

where μ is the mean value in the normal distribution,
and generally the value is μ � Xi; δ

2 is the variance of
the normal distribution, and this parameter is calcu-
lated by

δ2 �
Xbest − Xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

6
, (36)

where Xbest is the best individual in the population.
(4) Switching method of the combination mutation

operator:

mod(t) �

0, Adaptivemutation,

1, Cauchymutation,

2, Gaussianmutation,

⎧⎪⎪⎨

⎪⎪⎩
(37)

where mod is the function to find the remainder.

-e first mutation operator has a strong global search
ability at the beginning of the iteration; with the increase in
the number of iterations, the local search capability of the
algorithm gradually increases. But, when the number of
iterations increases to a certain value, it almost loses the
function of mutation. When the number of iterations is not
very large, the effect of this mutation operator is obvious.
-e second mutation operator is Cauchy mutation. Com-
pared with the normal mutation operator, the Cauchy
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mutation operator will produce larger mutation step length,
so it will make the algorithm have better global search ability.
-e third mutation operator is normal mutation. -e
normal mutation operator focuses on searching a local area
near the original individual. -e local search ability is better,
but the ability to guide the individual to jump out of the local
better solution is weak, which is not conducive to global
convergence. -erefore, the combined mutation operator
takes into account both the global exploration capability and
the local search capability, which enables GA to quickly
converge to the global optimal solution.

5.5. %e IGA-VNN Model Learning Algorithm for Target
Maneuver Trajectory Time Series. Firstly, based on the PSR
theory, the C-C method is used to determine the optimal
time delay t and time window τw, and then the optimal
embedding dimension is determined by the relationship
τw � (m − 1)τ between time delay and time window. Sec-
ondly, the small data method is used to calculate the
maximum Lyapunov exponents of the target maneuvering
trajectory time series, the chaotic characteristics of target
maneuver trajectory time series is judged, and the time series
of the target maneuver trajectory is reconstructed according
to the obtained embedding dimension τ and delay time m.
-en, the VNNmodel structure is determined. According to
the embedding dimension obtained by the C-C method, the
number of neurons in the input layer is determined as m;
according to the empirical formula [25], the number of
nodes in the hidden layer is determined as L; according to
the sample characteristics, the number of neurons in the
output layer is determined as one, and a chaotic time series
IGA-VNN prediction model with m − L − 1 network
structure is established. Finally, the IGA-VNN model is
constructed to obtain the kernel functions of each order of
the Volterra series, and the specific execution steps are as
follows:

Step 1: the C-C method is used to determine the time
delay τ and embedding dimension m of the phase space
reconstruction. Based on this, the target maneuvering
trajectory time series is reconstructed and M � N −

(m − 1)τ phase space vectors are obtained.
Step 2: according to Figure 9, the input vector of the
IGA-VNN predictionmodel with m − L − 1 structure is
XT, the output of prediction model is y(k), and the
weights of the hidden layer and output layer are W �

(wi,j)L×m(j � 1, 2, . . . , m) and rl, respectively.
Step 3: the improved genetic algorithm is used to
optimize the network parameters in the IGA-VNN
target maneuver trajectory time series prediction
model. -e specific optimization steps are as follows:

Firstly, according to the characteristics of the genetic
algorithm, the network parameters including the
connection weights and thresholds between input
layer and hidden layer and hidden layer and output
layer are real coded to form chromosomes, and the
population size of the genetic algorithm is determined

simultaneously. Secondly, the fitness function is de-
termined, and it can be expressed as follows:

F � k(e(k + 1) − 􏽥x(k + 1)), (38)

where e(k + 1) is the expected output of the network
and 􏽥x(k + 1) is the predicted output of the network.
-en, selection, crossover, and mutation operations are
carried out to generate a new generation of population.
Finally, the fitness value of the evolved population is
calculated, and the above operations are repeated until
the condition |Fl+1 − Fl|< ε is met, and then the optimal
initial weight and threshold value of the network are
obtained; otherwise, the previous step is returned until
the iteration end condition is met.
Step 4: based on the weights and thresholds obtained in
Steps 1, 2, and 3, combined with equation (10), the
IGA-VNN prediction model is used to predict the
target maneuver trajectory time series.
Step 5: calculate the prediction error E of the network,
and it can be expressed as follows:

E �
1
2

􏽘

N′

k�1
(y(k) − 􏽥y(k))

2
, (39)

where y(k) is the real value and 􏽥y(k) is the predicted
value.
In this paper, we set the maximum error Emax of
network prediction as 0.025. If the condition E<Emax is
met, the calculation will be stopped, and the network
weight matrix W � (wl,j)L×m and weight coefficient rl

obtained after training will be stored. -e kernel
functions hi(l1, l2, . . . , li) of each order in the Volterra
model are calculated with polynomial coefficients
ai,l(i � 1, 2, . . . , m); otherwise, the next step is taken.
Step 6: based on the gradient descent method, the local
gradient δl(k) and the correction of the network weight
Δwl,j(k) of the IGA-VNN prediction model of chaotic
time series are calculated, respectively. -is can be
calculated as follows:

δl(k) � −
zE

zy(k)
gl
′ Vl(k)( 􏼁,

Δwl,j(k) � αΔwl,j(k − 1) + ηδl(k)y(k),

(40)

where αΔwl,j(k − 1) is the introduced moving vector
and 0< α< 1 and η is the learning step.
Step 7: correct the weights and thresholds of the net-
work and train the prediction network again, calculate
the error between the predicted output of the network
and the true value of the sample, and repeat the training
until the condition E<Emax is satisfied. After the
training is completed, the weight matrix of the network
is stored, and the Taylor series coefficients are
decomposed at the threshold θl simultaneously, and
then the Taylor expansion coefficient di(θl) can be
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obtained. Because the output excitation function is in
the form of polynomials, di(θl) � ai,l can be obtained
through mathematical analysis. At this time, the kernel
functions of each order of the Volterra series can be
obtained by substituting the coefficients of the Taylor
expansion into equation (11).

5.6. %e Framework of the Target Maneuver Trajectory
Forecast Mode. -e flowchart of the proposed target ma-
neuver trajectory prediction model in this paper is depicted
in Figure 10, which consists of four modules: (a) pre-
processing module; (b) the IGA-VNN model learning al-
gorithmmodule; (c) the whole prediction algorithmmodule;
and (d) evaluation module. Furthermore, the detailed ex-
planation is listed as follows:

(a) Preprocessing module: In order to determine if
there is chaotic character of the target maneuver
trajectory time series, the small data quantity
method is used to calculate the maximum Lyapunov
exponent. In addition, the C-C method is used to
determine the input forms of the proposed target
maneuver trajectory forecast model. -en, the
normalization method is applied.

(b) -e IGA-VNN model learning algorithm module: In
view of the shortcomings of the genetic optimization
algorithm, a strategy of the adaptive crossover mu-
tation operator and combination mutation operator
based on difference degree of gene fragments is
proposed in this module. In addition, the improved
genetic optimization algorithm is applied to optimize
the parameter of the VNN model.

(c) -e whole prediction algorithm module: combining
phase space reconstruction and the Volterra adap-
tive filter, a novel target maneuver trajectory fore-
cast model is proposed. -e IGA-VNN model is
developed in this paper to search for the optimal
kernel functions of each order of the Volterra
adaptive filter which is conducive to enhance the
forecast accuracy.

(D) Evaluation module: four metrics which are Rmse
(root mean square error), Mae (mean absolute er-
ror), Mape (mean absolute percent error), and Cor
(correlation coefficient) are used as evaluating in-
dicators in this paper.

6. Simulation Experiment

6.1. Experimental Data Source and Simulation Scenarios.
In order to verify the effectiveness and accuracy of the target
maneuver trajectory prediction model, in this paper, 4000
consecutive sets of flight confrontation training data are
intercepted from the air combat simulation system, and the
data contain the target’s three-dimensional coordinates and
pitch angle and yaw angle data. A complete air combat
confrontation is shown in Figure 11, the initial

confrontation scenario is shown in Table 1, and the three-
dimensional coordinate components of the target flight
trajectory are shown in Figure 12.

6.2. Experimental Data Processing. When using the IGA-
VNN prediction model to predict the chaotic target ma-
neuver trajectory time series, in order to obtain better
prediction performance, it is necessary to normalize and
inverse normalize the historical data [26]. Assuming that
X � (x1, x2, . . . , xN), X ∈ RN is the original data of the
target maneuver trajectory time series, and the normaliza-
tion processing can be described as follows:

x(t)′ �
x(t) − xmin

xmax − xmin
, t � 1, 2, . . . , N, (41)

where N is the length of the target maneuvering trajectory
time series; x(t) is the original value of the historical tra-
jectory; x(t)′ is the normalized value; xmin is the minimum
values in the historical trajectory; and xmax is the maximum
values in the historical trajectory.

Assuming that the output of the IGA-VNN target ma-
neuvering trajectory prediction model is
Y � (y1, y2, . . . , yN) andY ∈ [0, 1], the antinormalization
processing can be expressed as follows:

y(t)′ � y(t) ymax − ymin( 􏼁 + ymin, t � 1, 2, . . . , N,

(42)

where y(t) is the model output; y(t)′ is the output after
inverse normalization; ymin is the minimum values in the
model output; and ymax is the maximum values in the model
output.

6.3. Simulation Experiment Settings. In order to evaluate the
performance of the target maneuvering trajectory prediction
model, in this paper, the concept of multistep prediction is
introduced [27]. Multistep prediction has a high use value in
the aspects of perception situation and threat assessment.
Multistep prediction of target maneuvering trajectory means
that, based on the existing target historical trajectory data,
the model can not only predict the target trajectory at the
next moment but also predict the target trajectory at mul-
tiple moments in the future. -e structure of the multistep
prediction model is shown in Figure 13.

Based on the one-step prediction model, the single-step
prediction result x(k + 1) is used to update the input vector
p of the multistep prediction model, and
p � x(k + 1) x(k) · · · x(k − m + 1)􏼂 􏼃

T, and the predic-
tion value at k + 2 time can be obtained by calling the
Volterra series prediction model. In this way, the input
vector is updated repeatedly, and the Volterra one-step
prediction model is called recursively, so the output value at
any time in the future can be predicted theoretically.

In this paper, four prediction models are used to predict
the target maneuvering trajectory time series in one step, two
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Figure 10: Continued.
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steps, four steps, and six steps, respectively.-e specific steps
are as follows.

Firstly, N − (m − 1)τ phase space vectors are obtained
through phase space reconstruction, andM vectors are selected
as training samples from the phase space vectors. After the
training, the network parameters obtained by the training are
stored. -en, the chaotic time series IGA-VNN prediction

model, GA-VNN prediction model, RBF prediction model,
second-order Volterra functional prediction model, and BP
neural network predictionmodel are used tomake 1, 2, 4, and 6
step predictions on the targetmaneuver trajectory, respectively.

Finally, in order to quantify and compare the prediction
accuracy and effectiveness of the four prediction algorithms,
this paper uses root mean square error Rmse, mean absolute

Evaluation module

(1) Mean absolute percentage error

(2) Root mean square deviation

(3) Mean square error

(4) Correlation coefficient

Mape = 1/nΣn

t=1|(y
~(k) – y(k))/y~(k)|

Rmse = √(1/nΣn

t=1 (y
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t=1(y
~(k) – y~–)·(y(k) – y–))/n·σ(y~)·σ(y))

(d)

Figure 10: -e flowchart of the proposed target maneuver trajectory prediction model.
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Figure 11: A complete air combat trajectory map.

Table 1: -e scenarios for maneuver trajectories.

Scenario [1] Initial condition Velocity (m/s) Pitch (rad) Roll (rad) Yaw (rad) Distance (m)
Fighter (0, 0, 8569) 214.19 − 0.7837 2.5941 1.4825 64411.44Target (-64259, -4360, 9327) 248.76 0.0017 0.4744 1.4971
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error Mae, mean absolute percentage error Mape, and cor-
relation coefficient Cor as evaluation indicators:

Rmse �
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1
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􏽘
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n
t�1[􏽥y(k) − 􏽥y] · [y(k) − y]

n · σ(􏽥y) · σ(y)
,

(43)

where n is the number of the sample, 􏽥y is the actual value,
that is, the true position of the target at the next moment; y is
the predicted value, that is, the predicted position of the
target at the next moment; σ(y) is the standard deviation of
y; 􏽥y is the average value of 􏽥y; and σ(􏽥y) is the standard
deviation of 􏽥y.

6.4. Analysis of Simulation Experiment Results

6.4.1. Predictive Performance Comparison of the Six Models.
Based on PSR, phase space reconstruction is performed on
the target maneuver trajectory samples to obtain the input
and output vectors of the prediction model. In this paper,
IGA-VNN prediction model, GA-VNN prediction model,
RBF prediction model, second-order Volterra functional
prediction model, and BP neural network prediction model
are used to predict the three-dimensional coordinates of the
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target’s maneuvering trajectory in one step, two steps, four
steps, and six steps, respectively. -e prediction results are
shown in Figures 14–16, and the comparison results of target
maneuvering trajectory prediction are shown in
Figures 17–20, and the comparison results of target ma-
neuvering trajectory prediction error are shown in
Figures 21–23.

In order to more intuitively see the prediction accuracy
of each model, the forecasting evaluation indicators of each
model are calculated as shown in Tables 2–4.

6.4.2. Results Analysis. By comparing and analyzing the
prediction performance of different models in Tables 2–4,
the following conclusions can be drawn:

(1) When performing multistep prediction on the target
maneuver trajectory time series, the prediction
performance of the chaotic time series IGA-VNN
model is the best with the same prediction steps.
Because the Volterra functional model can represent
most nonlinear systems, it can accurately predict
chaotic time series. However, the solution of high-
order Volterra kernel function is the bottleneck of its
application. In this paper, we establish the IGA-VNN
model to determine the kernel functions of Volterra
series, so that Volterra series can predict the target
maneuver trajectory well.

(2) RBF neural network prediction model, second-order
Volterra functional prediction model, and BP neural
network prediction model show different prediction
performance in different prediction steps and dif-
ferent coordinate directions of the target, which
shows that the adaptability and robustness of these
three prediction algorithms are poor, and the per-
formance of the IGA-VNN prediction model is
superior than that of these three prediction algo-
rithms in this respect. In this paper, the phase space
reconstruction theory is adopted to reconstruct the
time series of target maneuver trajectory, which
makes full use of the information contained in the
time series of target maneuver trajectory so that the
prediction accuracy is improved.

(3) Combined with the prediction error comparison
charts in Figures 14–16, it can be seen that the same
prediction algorithm’s single-step prediction results
for the three coordinates of the target maneuver
trajectory are better than the 2-step prediction re-
sults; the 2-step prediction results are better than the
4-step prediction results; and the 4-step prediction
results are better than 6-step prediction results.
-erefore, it can be seen that for the same prediction
model, the prediction performance of the model will
also decline with the increase in prediction steps. In

the multistep prediction of the target maneuver
trajectory, as the number of prediction steps in-
creases, the cumulative error of the prediction will
continue to increase, so the prediction accuracy will
also decrease.

By comparing and analyzing the differences between
the four models in the multistep prediction principle of
target maneuver trajectory time series, the root cause of
these differences can be further analyzed. BP neural net-
work is based on sample data to train the network so as to
realize the prediction of the future state. -e important
factors that affect the precision and prediction accuracy of
the BP neural network are the subjectivity and blindness of
its variable selection, which leads to the addition of extra
irrelevant variables or ignoring important variables. In
addition, BP neural network is sensitive to initial value and
easy to fall into local minimum. -e Volterra functional
model essentially uses the chaotic characteristics of target
maneuvering trajectory time series to predict the nonlinear
system by training and fitting the trajectory of the chaotic
attractor. -e model is implemented by the multiplication-
coupled form of the second-order Volterra series, which
avoids the difficulty of solving the kernel function caused
by the higher-order Volterra series and improves the
prediction accuracy of the model. In addition, the Volterra
filter uses the linear adaptive algorithm to adjust the filter
parameters, and this dynamic property can improve the
adaptability and accuracy of prediction and reduce the
training time.

-e IGA-VNN prediction model based on chaos
theory combines the discrete Volterra functional model,
BP neural network, and the chaotic characteristics of the
target maneuvering trajectory time series and uses the
chaotic characteristics, causality, and memory function
[25] of the target maneuvering trajectory time series to
determine the truncation order and truncation term
number of the Volterra functional model so as to es-
tablish an accurate Volterra functional model. At the
same time, the equivalence of BP neural network and
Volterra functional model is used to solve the problem of
high-order kernel function of the Volterra functional
model, and the global searching ability of the improved
genetic algorithm is used to avoid falling into local
minimum when optimizing the VNN model. In con-
clusion, the IGA-VNN prediction model based on chaos
theory reasonably uses the advantages of the Volterra
functional model and BP neural network and effectively
solves the problem of subjectivity in BP neural network
modeling and the difficulty in the Volterra functional
model solving high-order kernel function, making the
performance of the algorithm in multistep prediction
better than that of the single BP neural network and
Volterra functional model.
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Figure 14: -e curves of (a) 1-step , (b) 2-step , (c) 4-step, and (d) 6-step X-coordinate prediction results.
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Figure 15: -e curves of (a) 1-step, (b) 2-step, (c) 4-step, and (d) 6-step Y-coordinate prediction results.
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Figure 16: -e curves of (a) 1-step, (b) 2-step, (c) 4-step, and (d) 6-step Z-coordinate prediction results.

Mathematical Problems in Engineering 17



3700
–2.6

3720

3740

3760

Z 
(m

)

3780

–2.5 7000

3800

Three-dimensional simulation comparison

×104
X (m)

3820

6500

Y (m)
–2.4 6000

5500–2.3 5000

BP

Volterra

RBF

IGA-VNN

GA-VNN

Actual trajectory

Figure 17: Comparison of one-step prediction results of target
maneuvering trajectory.

Three-dimensional simulation comparison

BP

Volterra

RBF

IGA-VNN

GA-VNN

Actual trajectory

3700
–2.6

3720

3740Z 
(m

) 3760

3780

–2.5

3800

7000×104

X (m)
6500–2.4

Y (m)
60005500–2.3 5000

Figure 18: Comparison of two-step prediction results of target
maneuvering trajectory.

3680–2.6

3700

3720

3740

3760

Z 
(m

)

3780

3800

3820

Three-dimensional simulation comparison

7000–2.5 6500
×104

X (m)
6000

Y (m)

–2.4 55005000–2.3 4500

BP

Volterra

RBF

IGA-VNN

GA-VNN

Actual trajectory
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Figure 21: -e curves of (a) 1-step, (b) 2-step, (c) 4-step, and (d) 6-step X-coordinate prediction error.
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Figure 22: Continued.
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Figure 22: -e curves of (a) 1-step, (b) 2-step, (c) 4-step, and (d) 6-step Y-coordinate prediction error.
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Figure 23: -e curves of (a) 1-step, (b) 2-step, (c) 4-step, and (d) 6-step Z-coordinate prediction error.
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Table 2: Target X-coordinate multistep prediction performance comparison of four different prediction methods.

Prediction step Algorithm RMSE MAE MAPE COR

1

BP 31.2054 5.2515 0.0011 0.9987
IGA-VNN 25.0554 4.2594 7.3741∗ e − 04 0.9984
GA-VNN 46.6161 6.2959 0.0016 0.9983
Volterra 88.0949 9.2494 0.0035 0.9985
RBF 65.5883 7.4046 0.0023 0.9987

2

BP 58.2029 7.1255 0.0021 0.9972
IGA-VNN 43.1102 5.6694 0.0013 0.9969
GA-VNN 51.5107 6.6589 0.0018 0.9961
Volterra 103.4790 9.4192 0.0036 0.9920
RBF 103.9374 8.9800 0.0033 0.9888

4

BP 100.8075 9.0122 0.0032 0.9983
IGA-VNN 64.8278 7.2519 0.0021 0.9952
GA-VNN 130.0170 10.6018 0.0046 0.9935
Volterra 227.3807 12.1373 0.0059 0.9816
RBF 171.4466 11.3985 0.0053 0.9636

6

BP 151.8142 11.9705 0.0058 0.9978
IGA-VNN 115.1146 9.7368 0.0038 0.9866
Volterra 200.2440 13.0592 0.0070 0.9980
RBF 238.1826 13.9321 0.0079 0.9531

Table 3: Target Y-coordinate multistep prediction performance comparison of four different prediction methods.

Prediction step Algorithm RMSE MAE MAPE COR

1

BP 48.0217 3.9851 0.0069 0.9965
IGA-VNN 15.6534 3.4766 0.0022 0.9987
GA-VNN 30.7653 5.2296 0.0047 0.9970
Volterra 40.5759 5.9218 0.0061 0.9971
RBF 48.8712 6.3457 0.0073 0.9974

2

BP 99.3602 8.6527 0.0139 0.9913
IGA-VNN 23.0582 4.2662 0.0033 0.9980
GA-VNN 57.3526 6.6614 0.0078 0.9932
Volterra 59.8836 7.1030 0.0089 0.9948
RBF 70.9127 7.8841 0.0109 0.9899

4

BP 123.7001 10.4490 0.0188 0.9851
IGA-VNN 35.4839 5.5817 0.0056 0.9976
GA-VNN 119.9039 9.9738 0.0175 0.9752
Volterra 148.4173 10.9043 0.0221 0.9904
RBF 119.6835 9.2310 0.0159 0.9798

6

BP 161.1386 11.6505 0.0236 0.9685
IGA-VNN 44.4239 6.4155 0.0073 0.9952
GA-VNN 158.5973 11.4905 0.0242 0.9846
Volterra 189.8012 12.7370 0.0295 0.9880
RBF 159.7916 10.9816 0.0203 0.9618

Table 4: Target Z-coordinate multistep prediction performance comparison of four different prediction methods.

Prediction step Algorithm RMSE MAE MAPE COR

1

BP 3.8168 1.8070 8.7264∗ e − 04 0.9959
IGA-VNN 1.4914 1.0943 3.2070∗ e − 04 0.9984
GA-VNN 3.5207 1.7437 8.1077∗ e − 04 0.9958
Volterra 2.0636 1.3294 4.7240∗ e − 04 0.9937
RBF 5.0411 2.0680 0.0011 0.9720

2

BP 7.6877 2.6837 0.0019 0.9881
IGA-VNN 4.9893 2.1206 0.0012 0.9968
GA-VNN 4.9718 2.2086 0.0013 0.9957
Volterra 6.2689 2.4025 0.0015 0.9479
RBF 7.9969 2.3284 0.0018 0.9572
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7. Conclusions

In this paper, a VNN network model is designed by
analyzing the chaotic characteristics of the target ma-
neuver trajectory time series, and the IGA-VNN pre-
diction model of target maneuver trajectory based on
chaos theory is proposed, and then the target maneuver
trajectory time series is predicted in multiple steps. -e
prediction method proposed in this paper combines the
advantages of the Volterra functional model and BP
neural network algorithm, overcomes the blindness in
building BP neural network, and solves the difficulties in
determining the higher-order kernel function of the
Volterra functional model, which has certain theoretical
application value.

(1) In this paper, the C-C method is used to reconstruct
the phase space of the target maneuver trajectory,
and the chaotic characteristic of the target maneuver
trajectory time series is proved by the method of
small data volume.

(2) In this paper, the IGA-VNN target trajectory
prediction model based on chaos theory is con-
structed. -e model solves the problem of solving
the higher-order kernel function of the Volterra
functional model and realizes the accurate pre-
diction of target maneuvering trajectory. In
multistep prediction, the prediction performance
of the model is better than that of the single BP
neural network and Volterra functional prediction
model.

(3) -e IGA-VNN prediction model based on chaos
theory proposed in this paper combines the chaotic
characteristics of the target maneuver trajectory
time series to determine the dimension of the input
vector of the prediction network. It makes the
truncation term and truncation order of the
Volterra functional model have clear physical
meaning, avoids the blindness brought by sub-
jective determination of parameters, and improves
the practical value of the model.

(4) In addition, in order to realize the application value
of the IGA-VNN prediction model of chaotic time
series, the realization of its hardware is also the focus
of future research.
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