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In this paper, a disturbance observer-based complementary fractional-order sliding mode control (CFOSMC) scheme is proposed
for the permanent magnet synchronous motor (PMSM) drive system. First, to reconstruct the load disturbance and parameter
variations, a nonlinear disturbance observer is designed. Next, a disturbance observer-based fractional-order sliding mode with a
saturation function control law is designed to reduce the chattering problem in the existing fractional-order sliding mode control
(FOSMC) method. Furthermore, to reduce the thickness of the boundary layer, a CFOSMC scheme is designed. By using the
fractional-order Lyapunov stability theorem, the existence condition and the chattering problem are analyzed. Compared with the
existing FOSMC, the obtained CFOSMC law does not contain any high-order derivatives of tracking error, which is easier to
implement. Finally, the numerical simulations and experimental results are provided to show the superiority of the proposed
method. To improve the performance of the permanent magnet synchronous motor (PMSM) drive system in terms of tracking
rapidity, accuracy, and robustness, a complementary fractional-order sliding mode control (CFOSMC) scheme with disturbance
observer is proposed in this paper.

1. Introduction

Permanent magnet synchronous motor (PMSM) has many
applications in industries due to its excellent features such as
superpower density, high torque to current ratio, fast re-
sponse, and low noise [1, 2]. However, the PMSM is a typical
multivariable coupled high nonlinear system, and its per-
formance is sensitive to external load disturbances and
parameter uncertainties. Over the last decades, various
design methods have been developed, such as robust control
[3], predictive control [4], adaptive control [5], and neural
network control [6].

Recently, to improve the control performances in PMSM
diver systems, much attention has been given to the dis-
turbance observer-based (DOB) control method. In [7], a
DOB state feedback controller was designed for the PMSM
system. On the basis of this paper, a sensorless control
method for PMSM drive was developed in [8]. In [9], a
generalized predictive current control method combined

with sliding mode disturbance compensation was proposed
to satisfy the requirement of fast response and strong ro-
bustness. By combining the adaptive sliding mode control
with sliding mode disturbance observer, a hybrid control
strategy was proposed in [10]. In [11], a new estimation
method of sensor faults and unknown disturbance in current
measurement circuits for the PMSM drive system was
presented. However, the above-proposed DOB control
schemes only focus on the load torque disturbance but lack
the estimation of parameter uncertainties.

To counteract the disturbances and uncertainties, sliding
mode control (SMC) is a powerful nonlinear control
technique, which has been widely used for speed and po-
sition control of the PMSM system [12]. To estimate the
immeasurable mechanical parameters of PMSM, an intel-
ligent second-order SMC using a wavelet fuzzy neural
network estimator was proposed in [13]. Considering the
time-varying characteristic and the high-bandwidth prop-
erty of the uncertainties and disturbances in a PMSM drive
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system, a disturbance observer-based SMC scheme was
introduced in [14]. To estimate the online stator resistance, a
new sliding mode observer for sensorless SMC was pre-
sented in [15]. To further improve the performance of the
SMC, a robust SMC scheme based on a rapid nonlinear
tracking differentiator was proposed in [16]. +e second-
order SMC design problem was discussed in [17], in which a
novel saturation function was used. Based on the conven-
tional SMC, adding a generalized error sliding surface, the
complementary sliding mode control (CSMC) was proposed
for the fault-tolerant control of a six-phase PMSM drive
system in [18]. +e complementary sliding mode control
method based on Elman neural network was proposed in
[19], which can not only reduce the system state to the
sliding surface time but also guarantee the system tracking
accuracy. Considering that the control system in a PMSM
has uncertainties and disturbances, in [20], an adaptive
switching gain was proposed. Comparisons of experimental
results show that the proposed method has a faster ad-
justment process than SMC. In [21], a disturbance observer-
based CSMC design method was proposed for the PMSM
control system of the mine traction electric locomotive.

As we all know, one obvious disadvantage of the SMC
method is the chattering phenomenon caused by discon-
tinuous control law and frequent switching action near the
sliding surface. Besides, the upper bound of lumped dis-
turbances is not easy to be determined, which could worsen
the chattering phenomenon of SMC strategy. Recently, to
overcome these drawbacks, some fractional-order sliding
mode control (FOSMC) schemes have been widely adopted
to weaken the chattering phenomenon and deal with ex-
ternal disturbances. An FOSMC scheme based on param-
eters auto-tuning for the velocity control of PMSM was
proposed in [22]. A robust FOSMC was proposed for the
position control of PMSM in [23]. By selecting a proper
fractional-order and designing a fractional-order sliding
surface, the proposed FOSMC is distinctly more excellent
than that of the conventional SMC. To investigate the po-
sition regulation problem of PMSM subject to parameter
uncertainties and external disturbances, an FOSMC was
proposed and the finite-time stability of the closed-loop
system was obtained in [24]. Based on the fractional stability
theory, a sliding mode control scheme for synchronization
of fractional PMSM was developed in [25]. A novel FOSMC
for a class of integer-order systems with mismatched dis-
turbances was proposed in [26]. In [27], a disturbance
observer-based composite supertwisting sliding mode
control was designed for the PMSM speed regulation
problem. To improve the convergence rate over the existing
sliding mode control method for the trajectory tracking
control, an adaptive fast nonsingular integral terminal SMC
method was proposed in [28, 29].

Note that the above SMC-based control methods for the
PMSM driver system can deal with mismatched disturbance
and have better control performance with faster response
speed, lower overshoot, and less chattering effect than the
traditional control strategy. However, the high-order deriv-
ative of the tracking error (or the reference signal) was usually
used in the sliding model controller [19, 20, 22]. From a

practical point of view, it is difficult to implement. On the
other hand, there is still room for improvement when it comes
to the chattering phenomenon in classic FOSMC. +is ob-
servation motivates our current study. In this paper, we
mainly investigate a modified FOSMC scheme with a load
disturbance observer for the speed control of PMSM. +e
main contributions are as follows: (1) to estimate the load
disturbance and parameter uncertainties, a nonlinear dis-
turbance observer is constructed and the asymptotic stability
condition for observation error is also obtained; (2) to reduce
the chattering phenomenon in the existing FOSMCmethod, a
disturbance observer-based fractional-order sliding mode
with saturation function control law is designed; and (3) to
reduce the thickness of boundary layer, a CFOSMC law with
disturbance observer is proposed. +e tracking performance
and robustness of the proposed method are also analyzed and
compared with the conventional FOSMC scheme.

+e rest of this paper is organized as follows: in Section 2,
the mathematic model of PMSM and problem formulation
are presented. +e nonlinear disturbance observer design
and stability analysis are derived in Section 3. In Section 4,
the conventional FOSMC for the PMSM drive system is
improved and the disturbance observer-based CFOSMC
method is derived. +e effectiveness of the proposed algo-
rithm is illustrated in Section 5 through numerical simu-
lations and experiment examples. Finally, some conclusions
are drawn in Section 6.

2. Mathematical Model of PMSM and
Problem Formulation

+e mathematics model of a PMSM can be described in the
rotor rotating reference frame as follows [10, 22, 23]:

u
∗
q � Rsi

∗
q + _λq + ωfλd,

u
∗
d � Rsi

∗
d + _λdq + ωfλq,

λq � Lqi
∗
q ,

λd � Ldi
∗
d + LmIdf ,

ωf � npω
∗
r ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where u∗d, u∗q are the d, q-axis stator voltages; i∗d, i∗q are the
d, q-axis stator currents; λd, λq are the d, q-axis stator flux
linkages; and Ld, Lq are the d, q-axis stator inductances.
While ωf and ω∗r are the inverter frequency and rotor speed,
respectively, Lm is the d-axis mutual inductance; Idf is the
equivalent d-axis magnetizing current; np is the number of
pole pairs; and Rs is the stator resistance.

+e electric torque is stated as

Te � 3np

LmIdf i
∗
q + Ld − Lq􏼐 􏼑i

∗
q i
∗
d􏽨 􏽩

2
. (2)

Motor dynamics is presented as

Te � J _ωr + Bmωr + Tl, (3)

where Tl is the load torque, Bm is the viscous friction co-
efficient, and J is the moment of inertia.
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By using the field-oriented mechanism with id � 0
[10, 22], we can simplify the electric torque as

Te � k
∗
pi
∗
q �

3npLmIdf

2
i
∗
q . (4)

Substituting (3) into (4), one can obtain the state
equation of servo drive:

_ωr � − aωr + biq − c,

a �
Bm

J
, b �

k
∗
p

J
, c �

Tl

J
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

Considering the uncertainties and time-invariant pa-
rameters, we can rewrite (5) as

_ωr � − (a + Δa)ωr +(b + Δb)iq − (c + Δc), (6)

where Δa,Δb,Δc are the time-invariant parameters.
+e tracking error e(t), in terms of the desired reference

speed ω∗r (t) and the measured actual output speed ωr(t), is
defined as

e(t) � ω∗r (t) − ωr(t). (7)

+e time derivative of e(t) is

_e(t) � − ae(t) − biq(t) + ϕ(t) + d,

ϕ(t) � aω∗r (t) + c + _ω∗r (t),

d � Δaωr(t) − Δbiq(t) + Δc,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where d is time-variant uncertainties such as mechanical
parameter variations, friction force, load disturbances, speed
distortion, and current harmonics. It is assumed that

|d|≤Λ(> 0), lim
t⟶∞

_d � d
∗
, (9)

where d∗ is a constant.
In this paper, the control objective is to find a suitable

FOSMC input i∗q (t) such that the output speed ωr(t) can
track the desired reference speed ω∗r (t) asymptotically in the
presence of any arbitrary initial conditions and uncertainties.

3. Disturbance Observer Design

To estimate time-variant lumped uncertainties and load
torque disturbance, we use the following nonlinear distur-
bance observer [30]:

_p(t) � − l􏽢d + l[ ae(t) + biq(t) − ϕ(t) ],

􏽢d � p(t) + le(t),

⎧⎪⎨

⎪⎩
(10)

where 􏽢d is the estimation of d and l> 0 is the observer gain.
Estimation error of the disturbance observer is defined as

􏽥d � 􏽢d − d, (11)

and error dynamics of disturbance observer is governed by

_􏽥d �
_􏽢d − _d. (12)

It can be derived from (10)–(12) that
_􏽥d � − l􏽥d − _d. (13)

Since l> 0 and limt⟶∞
_d � d∗, we have

limt⟶∞
􏽥d � − (d∗/l).

Now, we give the following result.

Lemma 1. For nonlinear system (8), suppose that the dis-
turbance observer is formulated as (10); then, the disturbance
estimation error 􏽥d is bounded.

Remark 1. It follows from Lemma 1 that the observer gain l

can change the bound of the disturbance estimation error.
Clearly, it should be selected as large enough.

4. Disturbance Observer-Based CFOSMC
Scheme Design

Considering that the disturbance observer (10) can estimate
the load torque disturbance accurately, we will replace dwith
􏽢d in the following synthesis.

4.1. Traditional FOSMC. Fractional calculus is a general-
ization of integer-order integration and differentiation to
noninteger-order ones. Let Dα denote the fractional-order
derivative, which is defined as in Definition 1.

Definition 1 (see [31]). +e Caputo derivative is defined by

D
α
f(t) �

1
Γ(n − α)

􏽚
t

t0

(t − τ)
− α+n− 1

f
(n)

(τ)dτ, (14)

where n is the first integer which is not less than α, that is,
α ∈ [ n − 1, n ). Γ(·) is the well-known Gamma function,
which is defined by Γ(z) � 􏽒

∞
0 e− ztz− 1dt .

Definition 2 (see [31]). +e definition of the fractional
integral is described by

D
− α

f(t) �
1
Γ(α)

􏽚
t

t0

(t − τ)
α− 1

f(τ)dτ, α> 0. (15)

To proceed with the discussion, the following lemmas
will be used.

Lemma 2 (see [32]). Autonomous system is as follows:

D
α
x(t) � Ax(t), (16)

with x(t0) � x0 and 0< α< 1, is asymptotically stable if and
only if |arg(spec(A))| > (απ/2), where spec(A) is the spectrum
(set of all eigenvalues) of A. Also, the state vector x(t) decays
towards 0 and meets the condition
‖x(t)‖ <Mt− α, t> 0, M> 0.

Lemma 3 (see [33]). Let x(t) ∈ Rn be a vector of a dif-
ferentiable function. ;en, for any time instant t≥ t0, the
following relationship holds:
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1
2
D

α
( x

T
(t)Px(t) )≤x

T
(t)PD

α
x(t), ∀α ∈ (0, 1], (17)

where P ∈ Rn×n is a positive definite matrix.

Lemma 4 (see [34]). Let x(t) � 0 be an equilibrium point
for the nonautonomous fractional-order system
Dαx(t) � f(x(t), t), where f(x(t), t) is locally Lipschitz in
x(t). Assume that there exists a Lyapunov candidate
V(x(t), t) satisfying

α1‖x(t)‖
a
2 ≤V(x(t), t)≤ α2‖x(t)‖

ab
2 ,

D
β
V(x(t), t)≤ − α3‖x(t)‖

ab
2 ,

(18)

where α1, α2, α3, a, and b are positive constants and β ∈ (0, 1).
;en, the equilibrium point is Mittag–Leffler stable.

Remark 2 Mittag–Leffler stability implies asymptotic sta-
bility [34].

Clearly, the fractional-order operator has more degrees
of freedom than that with integer order. It is likely that a
better performance can be obtained with the proper choice
of order [22, 23].

As presented in [22, 23], a traditional fractional-order
sliding surface S can be chosen as

S � λe(t) + D
α
e(t), (19)

where λ> 0 and 0< α< 1.
Taking the time derivative on both sides of (19) and using

􏽢d to estimate d, we have
_S � λ _e(t) + D

α+1
e(t)

� λ − ae(t) − biq(t) + ϕ(t) + 􏽢d􏼐 􏼑 + D
α+1

e(t).
(20)

+e equivalent control law can be selected as

iq � ueq �
1
λb

− aλe(t) + λϕ(t) + λ􏽢d + D
α+1

e(t)􏼐 􏼑. (21)

As usual, we adopt the following approach law [22]:
_S � εS + ρsgn(S), (22)

where ε> 0, ρ> 0, and sgn(·) denotes the sign function,
which is defined as

sgn(S) �

1, S≥ 0,

0, S � 0,

− 1, S< 0.

⎧⎪⎪⎨

⎪⎪⎩
(23)

From (21) and (22), the final controller can be designed
as

iq � ueq + uv

� ueq + εS + ρsgn(S)

�
1
λb

− ae(t) + ϕ(t) + 􏽢d + D
α+1

e􏼐 􏼑

+ εS + ρsgn(S).

(24)

When the sliding mode occurs, system (19) can be
represented as

D
α
e(t) � − λe(t). (25)

+us, by Lemma 2, system (25) is asymptotic stable.

Remark 3. As pointed out in Lemma 2, the state e(t) of the
fractional-order system (25) decays towards 0 like t− α. But,
in the case of the integer-order system, it decays towards 0
like e− t. It means that the energy transfer is slower with
fractional-order sliding surface than that with integer-order
one [22, 23].+erefore, the fractional-order sliding surface is
smoother compared with the integer-order one. As a result,
the chattering can be better attenuated with a fractional-
order controller.

Remark 4. It is worth pointing out that if d � 0, then
the fractional-order sliding mode controller (24) is reduced
to

iq � ueq + uv

� ueq + εS + ρsgn(S)

�
1
λb

− ae(t) + ϕ(t) + D
α+1

e􏼐 􏼑

+ εS + ρsgn(S),

(26)

which is the same as the one proposed in [22].
It can be seen that the sgn(·) function is involved in (26).

As pointed out in [23], the chattering phenomenon will be
caused. In the following, a saturation function sat(·) is
adopted to further reduce the chattering problem, which is
described as follows:

sat(S) �

1, S≥Φ,

S

Φ
, − Φ< S<Φ,

− 1, S≤ − Φ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

where Φ> 0 denotes the thickness of the boundary layer.
Clearly, when the saturation function is used, the final
controller (24) can be modified as

iq �
1
λb

− ae(t) + ϕ(t) + 􏽢d + D
α+1

e(t)􏼐 􏼑

+ εS + ρ sat(S).

(28)

+e Lyapunov function is defined as

V(t) �
1
2
S
2
. (29)

Calculating the derivation of (29) and invoking (20) and
(28), it yields

4 Mathematical Problems in Engineering



_V(t) � S _S

� S λ _e(t) + D
α+1

e(t)􏼐 􏼑

� Sλ − ae(t) − biq(t) + ϕ(t) + 􏽢d􏼐 􏼑 + D
α+1

e

� − εS2 − S sat
S

Φ
􏼒 􏼓≤ 0.

(30)

According to the Lyapunov stability theorem, the
reaching condition of the sliding mode controller is satisfied,
which indicates that the system will converge to the
switching manifold asymptotically.

Remark 5. Note that the high-order derivativeDα+1e is used
in fractional-order sliding model controller (24) and (28).
From a practical point of view, it is difficult to implement.

Remark 6. From (19) and (27), it can be seen that the sliding
mode surface S will finally maintain on the steady state of
|S|≤Φ. +at is, the closed-loop system is in a steady state
with |e(t)|≤ (Φ/λ). +ough the large Φ can reduce the
chattering mostly, it also can increase the ultimate bound of
the tracking error e(t). To trade off the chattering and
control performance, conservative λ and Φ are always se-
lected by trial and error.

4.2. Disturbance Observer-Based CFOSMC. As stated in
Remark 6, there exists a boundary layer Φ of S in a steady
state. In this state, the boundary layer is also the tracking
error boundary layer for a given λ. In this section, to further
reduce the thickness of the boundary layer, a complementary
fractional-order sliding mode controller is designed.

Borrowed from [18–20], the complementary fractional-
order sliding mode surface is defined as

S � Sg + Sc, (31)

where

Sg � D
α
e(t) + 2λe(t) + λ2D− α

e(t), λ> 0, (32)

Sc � D
α
e(t) − λ2D− α

e(t), λ> 0. (33)

Taking the α order time derivation on both sides of (32)
and (33), respectively, we have

D
α
Sg � D

2α
e(t) + 2λDα

e(t) + λ2e(t), (34)

D
α
Sc � D

2α
e(t) − λ2e(t). (35)

From (31) to (35), we can obtain

S � Sg + Sc � 2 D
α
e(t) + λe(t)( 􏼁, (36)

D
α
Sg − D

α
Sc � 2λ D

α
e(t) + λe(t)( 􏼁 � λS. (37)

+e Lyapunov function candidate is chosen as

Vc(t) �
1
2

S
2
g + S

2
c􏼐 􏼑. (38)

Taking the α order derivative of (38) and using Lemma 3
as well as (32) to (37), we have

D
α
Vc(t)≤ SgD

α
Sg + ScD

α
Sc

≤ SgD
α
Sg + Sc D

α
Sg − λSc􏼐 􏼑

� Sg + Sc􏼐 􏼑 D
α
Sg − λSc􏼐 􏼑

� S D
2α

e(t) + 2λDα
e(t) + λ2e(t) − λSc􏼐 􏼑

� S D
2α− 1

_e(t) + 2λDα
e(t) + λ2e(t) − λSc􏼐 􏼑

� S D
2α− 1

− ae(t) − biq(t) + ϕ(t) + 􏽢d(t)􏼐 􏼑􏽨

+ 2λDα
e(t) + λ2e(t) − λSc􏽩.

(39)

+erefore, if the complementary fractional-order sliding
mode controller is designed as

iq � ieq + iv, (40)

where

ieq �
1
b

(− ae(t) + ϕ(t) + 􏽢d(t)) + 2λD1− α
e(t)􏽨

+ λ2D1− 2α
e(t) − λD1− 2α

Sc􏽩,

(41)

iv �
ρ
b
D

1− 2αsat (S), ρ> 0, (42)

then

D
α
Vc(t)≤ − ρS sat(S)≤ 0, (43)

which means that S will approach zero in a finite-time
duration and the system is globally stable.

Remark 7. Note that the CFOSMC scheme (41) can be
rewritten as

ieq �
1
b

(− ae(t) + ϕ(t) + 􏽢d(t)) + 2λD1− α
e(t)􏽨

+λ2D1− 2α
e(t) − λ D

1− α
e(t) − λ2D1− 3α

e(t)􏼐 􏼑􏽩.

(44)

Since 0< α< 1, the highest order derivative of e(t) in
controller (44) is less than 1, which is easier to implement in
practice than FOSMC (24) and (28).

Remark 8. When (1/3)< α< 1, the fractional-order differ-
entiation of e(t) is contained in controller (44). It can be
viewed as a low-pass filter and reduce the amplitude of high-
frequency fluctuations of e(t) [23]. When α � (1/2), espe-
cially, controller (44) is a fractional-order PI(1/2)D(1/2)

controller. As we all know, fractional-order PID is a trade-off
between higher precision (provided by a higher order of
integrator) and stability (provided by a higher order of
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differentiator). Hence, CFOSMC (41) is more smoother than
the conventional FOSMC (24) and (28). On the other hand,
there are several parameters in the fractional-order sliding
mode controller (42). As we all know, one of the difficulties
in SMC-based controller design is the determination of the
controller parameters. In this paper, we obtained them by
trial and error. In fact, even with the effort and knowledge of
the control designer, it can not guarantee that the set of
parameters is optimal.

Remark 9. When the system is in a steady state, the sliding
surface function S will finally maintain on the state of |S|≤Φ.
From (27) and (36), we can see that the closed-loop system is
in a steady state with |e(t)| ≤ (Φ/2λ). Compared with dis-
turbance observer-based FOSMC with saturation function,
CFOSMC (41) can eliminate the chattering problem further.

5. Simulations and Experiments

In this section, the numerical example and experimental
results are presented to demonstrate the validity of the
proposed method.

5.1. Numerical Simulation Results. +e configuration of the
overall simulation control system is shown in Figure 1, in
which DO-FOSMC means the disturbance based FOSMC
with saturation function (controller (28)), and DO-
CFOSMC is the proposed disturbance observer-based
CFOSMC (controller (40)). +e performances of the pro-
posed DO-CFOSMC are analyzed and compared with that
of DO-FOSMC.

+e parameters of the PMSM system are set as follows:
rated power P � 10KW, pole pairs is p � 3, friction factor is
B � 0.001 (N · m · s/rad), stator inductance is L � 0.0153H,
rotor moment of inertia is J � 0.0021 kg · m2, permanent
magnet flux is ϕf � 0.82wb, and stator resistance is
R � 0.56Ω. +e parameters of DO-CFOSMC and DO-
FOSMC are selected as l � 5,Φ � 0.01, λ � 8000, ρ � 3000.
From the simulation results, we found that the best selection

range for the fractional-order of the proposed FOSMC
method is α ∈ 0.50 0.60􏼂 􏼃. In the following, we set α � 0.50.

+e initial rotation speed of the motor is given as
rf1 � 1200 r/min. When t � 0.6 s, the rotation speed is set
to rf2 � 1000 r/min. +e initial load torque of the motor
is 0N · m while t � 0.8 s, and the load torque is 10N · m,
which can be viewed as an external disturbance.

+e numerical simulation results are shown in
Figures 2–4. Figure 2(a) indicates the actual speed responses
of the proposed DO-CFOSMC and conventional DO-
FOSMC in the presence of the above load disturbance.
Figure 2(b) shows the rotation speed response when the
PMSMmotor just started. In the time t � 0.6 s, the reference
rotation speed has a sudden change. +e rotation speed
response is depicted in Figure 2(c). Figure 2(d) shows the
rotation speed response at t � 0.8 s, in this time, the external
disturbance load is added suddenly. From Figure 2, it can be
seen that the output can both track precisely the reference
input signal. But, under the DO-FOSMC method, the speed
response is faster and more stable, whereas the chatter
amplitude occurring in conventional DO-FOSMC is bigger
than that in DO-CFOSMC.

With respect to the DO-FOSMC method, the three-
phase current of the stator is shown in Figure 3. +e current
frequency is inversely proportional to the rotation speed,
while the current amplitude is proportional to the rotation
torque and changes rapidly as the load torque varies. +e
variation of electromagnetic torque is shown in Figure 4 as
the speed and load torque change. It can be indicated that the
motor has a faster and small overshoot torque response with
the DO-CFOSMC than that in DO-FOSMC.

In order to evaluate the robustness of the proposed DO-
CFOSMC scheme under parameter variations, numerical
simulations are also carried out. +e tested PMSM electric
parameters are the mutual inductance Lm � 0.0158, viscous
friction coefficient fm � 0.006 and stator resistance
Rm � 0.75. +e parameters of the controllers (DO-CFOSMC
and DO-FOSMC) are set the same as before.

Figure 5 shows a comparison of the speed responses
between the proposed DO-CFOSMC and conventional DO-
FOSMC methods under parameter variations. It is observed
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Figure 1: Block diagram of the PMSM position control system.
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that both controllers can make the output speed track the
desired reference speed accurately. But the DO-CFOSMC
can realize the closed-loop system more robust to parameter
variations and guarantee a better tracking performance.

According to the above numerical simulations, the ef-
fectiveness of the proposed DO-CFOSMC scheme with
respect to the rejection of external disturbance and pa-
rameter variations has been verified. +e results show that
the proposed DO-CFOSMC scheme gives better tracking
performances than that of the conventional DO-FOSMC.

5.2. Experimental Results. To further investigate the effec-
tiveness of the proposed control scheme, some real-time
experiments are carried out. +e PMSM speed control

platform is illustrated in Figure 6. +e main chip of the
inverter adopts the TMS320F28335 digital signal processor
(DSP).

+e initial rotation speed of the motor is 0 r/min, and the
rotation speed is 800 r/min at 4 s.+e load torque of the motor
is 0Nm. Figures 7(a) and 7(b) show the dynamic responses of
the speed and torque, respectively. From Figure 7(a), it can be
seen that the DO-CFOSMC method has a smaller overshoot
and a shorter settling time than that of the conventional DO-
FOSMC method. Figure 7(b) shows that when the PMSM
motor just started, the maximum load torque under the DO-
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Figure 2: Rotation speed responses.
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FOSMC method is 9Nm, whereas the DO-CFOSMC method
reduces it to 7Nm.Moreover, the adjustment time required for
the load torque to return to its original value decreases ob-
viously with the DO-CFOSMC method.

When a load disturbance torque Tl � 14Nm is added
and removed suddenly at 0.8 s and 1.2 s, respectively, the
dynamic responses of the speed and torque are shown in

Figures 8 and 9, respectively. From these figures, we can see
that, under the DO-CFOSMC method, the fluctuation
maximum values of the speed and torque are smaller, while
the recovering time against load disturbance is shorter than
that of the conventional DO-FOSMC method.

+e above experimental results show that the DO-
CFOSMC method achieves a smaller fluctuation
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overshoot with respect to the rotation speed response. In
addition, the DO-CFOSMC method guarantees that the
adjustment time required for the load torque to return to
its original value is smaller than that with the DO-FOSMC
method. +erefore, the proposed DO-CFOSMC scheme
exhibits a satisfactory tracking rapidity, accuracy, and
robustness.

6. Conclusion

In this paper, in order to improve the antidisturbance
capability of the PMSM drive system, a disturbance ob-
server-based CFOSMC method has been presented, in
which a nonlinear observer was employed to estimate the
model uncertainties and load disturbance, while the
CFOSMC scheme was utilized to improve the

performance of the PMSM in terms of the tracking ra-
pidity, accuracy, and robustness. Both numerical simu-
lations and experimental results have shown the
effectiveness of the proposed method. Our future work
includes adaptive nonsingular integral terminal CFOSMC
with disturbance observer for PMSM. Moreover, the fuzzy
logic inference scheme to tune the gains of switching
control law will also be included.
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