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*e fourth-order nonlinear Sivashinsky equation is often used to simulate a planar solid-liquid interface for a binary alloy. In this
paper, we study the high accuracy analysis of the nonconforming mixed finite element method (MFEM for short) for this
equation. Firstly, by use of the special property of the nonconforming EQrot

1 element (see Lemma 1), the superclose estimates of
order O(h2 + Δt) in the brokenH1-norm for the original variable u and intermediate variable p are deduced for the back-Euler (B-
E for short) fully-discrete scheme. Secondly, the global superconvergence results of order O(h2 + Δt) for the two variables are
derived through interpolation postprocessing technique. Finally, a numerical example is provided to illustrate validity and
efficiency of our theoretical analysis and method.

1. Introduction

Under certain conditions, the dilute binary alloy will solidify,
at which point the solid-liquid interface is unstable and has a
cellular structure. When the solute rejection coefficient is
close to unity, near the stability threshold, the characteristic
cell size may significantly be beyond the diffusion width of
the solidification zone. *e Sivashinsky equation describes
the dynamic of the onset and stabilization of the cellular
structure, which is considered as the following fourth-order
nonlinear equation [1, 2]:

ut + Δ2u + αu � Δf(u), (X, t) ∈ Ω ×(0, T],

u � Δu � 0, (X, t) ∈ zΩ ×(0, T],

u(X, 0) � u0(X), X ∈ Ω,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where Ω is the interior of the rectangle [0, a] × [0, b],
X � (x, y), T> 0, a> 0, b> 0, α> 0 are fixed constants,
u0(X) is a given smooth function, and f(u) � (1/2)u2 − 2u.
Due to the nonlinearity of this equation, it is very difficult to
find out the true solution.*us, a lot of numerical simulation
methods have been considered for (1), such as the finite
difference method, finite element method (FEM for short),

and region decomposition method. For one-dimensional
case, Benammou and Omrani [3] studied the FEM and
obtained the convergence analysis of the original variable u

in L2-norm; Momani [4] presented a numerical scheme
based on the region decomposition method; and Omrani
and Reza and Kenan [5, 6] provided two kinds of finite
difference schemes and proved the uniqueness and con-
vergence, respectively. For two-dimensional case, Denet [7]
gave the stability of the solution under the rectangular re-
gion; Rouis and Omrani [8] proposed a linearized three-level
difference scheme; and Ilati and Dehghan [9] derived an
error analysis by a meshless method based on radial point
interpolation technique.

As it is known to all that in regard to the fourth-order
problem, the conforming Galerkin finite element (FE for
short) approximation space belongs to H2(Ω), and FE so-
lution in turn shall be C1-continuous. *is leads to the
higher degree of piecewise polynomials, and the related
computation is complicated and difficult (both triangular
Bell element and rectangular Bogner–Fox–Schmit element
[10] are typical examples). *e MFEM is an optimal choice
to overcome the above deficiencies, which transforms a
fourth-order problem into 2 coupled second-order problems
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by introducing an intermediate variable; thus, the low-order
elements can be used to solve. *e nonconforming MFEM
brings down the smoothness requirement on FE solution
compared to the conforming case. Readers with more in-
terests may refer [11–15] and the references listed. For
problem (1), Omrani [1] developed the convergence analysis
of the corresponding variables in the semidiscrete and fully-
discrete schemes by using conforming MFEM; however,
situation involving nonconformingMFEMwas not available
till now.

It is also well known that the superconvergence analysis
is an important approach to improve the precision of FE
solution. More precisely, based on the so-called integral
identity technique, the order of error in H1-norm between
FE approximation uh and the interpolation of the exact
solution Ihu is much better than that of u and Ihu; this
fascinating characteristic is called superclose. *e global
superconvergence will then be investigated by adding a
simple postprocessing without changing the existing FE
program. Meanwhile, superconvergence is critical in prac-
tical engineering numerical calculation and has always been
a research hotspot. To find out more applications, readers
may refer [12, 15–23]. As far as our knowledge is concerned,
research on superconvergence for Sivashinsky equation is
yet to be found.

*e main purpose of this article is to develop a non-
conforming MFE scheme for problem (1), and the superclose
and superconvergence results of the original variable u and
auxiliary variable p in the broken H1-norm are obtained for
the B-E fully-discrete scheme. *e outline is organized as
follows: in Section 2, the MFE spaces and variational for-
mulation are introduced. In Section 3, based on the special
property of the nonconforming EQrot

1 element (when
u ∈ H3(Ω), the consistency error is of order O(h2) which is
one order higher than the interpolation error), the superclose
results for the above two variables are deduced. In Section 4,
the global superconvergence properties are derived with the
help of interpolation postprocessing technique. In Section 5, a
numerical example is given to verify the theoretical analysis.
In the last section, a brief conclusion is drawn.

*roughout this article, C denotes a positive constant
that may take different values at different places but remains

independent of the subdivision parameter h and time step
Δt. Meanwhile, we use the notations as in [10] for the
Sobolev spaces Wm,p(Ω) with norm ‖·‖m,p and seminorm
|·|m,p, where m and p are nonnegative integer numbers.
Especially, for p � 2, p will be omitted in the above norms
and seminorms. Furthermore, we define the space Lp(a, b; Y)

with the norm ‖Φ‖Lp(0,T;Y) � 
T

0 ‖Φ(·, t)‖
p
Ydt (1≤p<∞)

and ‖Φ‖L∞(0,T;Y) � ess sup0<t<T‖Φ(·, t)‖Y (p �∞).

2. TheMFESpaces andVariational Formulation

Let Ω be a rectangular domain with edges parallel to the
coordinate axes, Th be a rectangular subdivision of Ω which
need not satisfy the regular condition [10]. For all K ∈ Th,
K � [xK − hxK

, xK + hxK
] × [yK − hyK

, yK + hyK
], assume

that the barycenter of K by (xK, yK), and the four vertices
and four sides are zi, li � zizi+1 (mod4)(i � 1, 2, 3, 4), re-
spectively. hK � max hxK

, hyK
 , h � maxK∈Th

hK.

*e nonconforming EQrot
1 element space [17–21, 24, 25]

is defined by

Vh � vh: vh|K ∈ span 1, x, y, x
2
, y

2
 ,

∀K ∈ Th, 
F

vh ds � 0, F ⊂ zK,
(2)

where [vh] stands for the jump of vh across the boundary F

and [vh] � vh if F ⊂ zΩ.
*en, we denote the norm on Vh as

‖·‖h � (K∈Th
|·|21,K)1/2.

*e corresponding interpolation operator is defined as
Ih: v ∈ V � H1

0(Ω)⟶ Ihv ∈ Vh, Ih ∣ K � IK, satisfying


li

v − IKv( ds � 0,


K

v − IKv( dx dy � 0,

i � 1, 2, 3, 4,∀K ∈ Th.

(3)

Let p � f(u) − Δu; then, the mixed variational formu-
lation for (1) is find (u, p) ∈ V × V such that

ut, v(  +(∇p,∇v) + α(u, v) � 0, ∀v ∈ V,

(p, q) − (∇u,∇q) � (f(u), q), ∀q ∈ V,

u(X, 0) � u0(X), p(X, 0) � p0(X) � f u0(X)(  − Δu0(X),

⎧⎪⎪⎨

⎪⎪⎩
(4)

where (u, v) � Ωuvdx dy.

3. Superclose Analysis for the Fully-Discrete
Approximation Scheme

In this section, the superclose analysis for the B-E fully-
discrete scheme will be studied.

Let tn | tn � nΔt; n � 0, 1, 2, . . . , N  be a uniform par-
tition of [0, T] with the time step Δt � (T/N). For a given
continuous function u on [0, T], we define that
un � u(X, tn), z tu

n � un − un− 1/Δt.
*e following lemma is introduced first which is im-

portant in the superclose analysis.
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Lemma 1 (see [18]). For all vh ∈ Vh, we get

u − Ihu
����

����0 + h u − Ihu
����

����h
≤Ch

2
‖u‖2, u ∈ H

2
(Ω), (5)

∇ u − Ihu( ,∇vh( h � 0, (6)

vh

����
����0≤C vh

����
����h

, (7)


K


zK

zu

zn
vhds≤Ch

2
‖u‖3 vh

����
����h

, u ∈ H
3
(Ω), (8)

where (u, v)h � K
K

uvdx dy.

*en, the B-E fully-discrete approximation scheme for
(4) is find (Un

h, Pn
h) ∈ Vh × Vh such that

z tU
n
h, vh  + ∇Pn

h,∇vh( h + α Un
h, vh(  � 0, ∀vh ∈ Vh,

Pn
h, qh(  − ∇Un

h,∇qh( h � f Un
h( , qh( , ∀qh ∈ Vh,

U0
h � Ihu0, P0

h � Ihp0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

*e existence and uniqueness of the solution for
problem (9) can be found in [1].

Next focus will be placed on the superclose of
‖Un

h − Ihun‖h and ‖Pn
h − Ihpn‖h.

Theorem 1. Let (un, pn) and (Un
h, Pn

h) be the solutions of (4)
and (9), respectively, u, p∈ L∞(0,T;H3(Ω)),ut, pt∈ L2(0,T;

H3(Ω)), andutt∈ L2(0,T;H2(Ω)); then, for n � 0, 1, 2, . . . ,N,
we have

U
n
h − Ihu

n
����

����h
+ P

n
h − Ihp

n
����

����h
≤C h

2
+ Δt . (10)

Proof. Let un − Un
h � (un − Ihun) + (Ihun − Un

h) :� θn+

ρn, pn− Pn
h � (pn − Ihpn) + (Ihpn − Pn

h): � ξn
+ ηn.

*e error equations can be derived from (1), (6), and (9):

z tρ
n
, vh  + ∇ηn

,∇vh( h + α ρn
, vh(  � − z tθ

n
, vh  − α θn

, vh(  + 
K


zK

zpn

zn
vhds − R

n
1, vh( , (11a)

ηn
, qh(  − ∇ρn

,∇qh( h � − ξn
, qh(  + f u

n
(  − f U

n
h( , qh(  − 

K


zK

zun

zn
qhds, (11b)

where Rn
1 � un

t − z tu
n � (1/Δt) 

tn

tn− 1
(τ − tn− 1)utt(τ)dτ. Firstly, taking vh � ηn in (11a) and qh � z tρn in (11b) and

then subtracting them, there holds

∇ρn
,∇z tρ

n
 

h
+ ηn

����
����
2
h

� − z tθ
n
, ηn

  − α ρn
, ηn

(  − α θn
, ηn

(  + 
K


zK

zpn

zn
ηnds − R

n
1, η

n
( 

+ ξn
, z tρ

n
  − f u

n
(  − f U

n
h( , z tρ

n
  + 

K


zK

zun

zn
ρtds

� 
8

i�1
Ai.

(12)

It is easy to verify that

∇z tρ
n
,∇ρn

)h≥
1
2Δt

ρn
����

����
2
h

− ρn− 1����
����
2
h

 , A5


 � R
n
1, η

n
( 


≤CΔt 
tn

tn− 1

utt

����
����
2
0dτ +

1
6
ηn

����
����
2
h
. (13)

By virtue of Lemma 1, we arrive at
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A1 + A2 + A3


 � z tθ
n
, ηn

  + α ρn
, ηn

(  + α θn
, ηn

( 




≤Ch
4 1
Δt


tn

tn− 1

ut

����
����
2
2dτ + u

n
����

����
2
2  + C ρn

����
����
2
h

+
1
6
ηn

����
����
2
h
,

(14)

A4


 � 
K


zK

zpn

zn
ηnds




≤Ch

4
p

n
����

����
2
3 +

1
6
ηn

����
����
2
h
. (15)

By using the derivative transfer technique and (5), there
holds

A6 + A8


 � ξn
, z tρ

n
  + 

K


zK

zun

zn
z tρ

n
ds





� z t 
K


zK

zun

zn
ρnds⎛⎝ ⎞⎠ + ξn

, z tρ
n

 



− 
K


zK

z z tu
n 

zn
ρn− 1ds



≤Ch
4 1
Δt


tn

tn− 1

ut

����
����
2
3dτ + p

n
����

����
2
2  + C ρn− 1����

����
2
h

+ ε ‖z tρ
n
‖
2
0 + z t 

K


zK

zun

zn
ρnds⎛⎝ ⎞⎠




.

(16)

In order to estimate A7, the following assumption is
given which will be proved later:

U
n
h

����
����0,∞ <M, n � 0, 1, 2, . . . , N, (17)

where M � 1 + ‖u‖L∞(0,T;L∞(Ω)).
*en, we have

A7


 � f u
n

(  − f U
n
h( , z tρ

n
 

� −
1
2

u
n

( 
2

− U
n
h( 

2
 , z tρ

n
  + 2 u

n
− U

n
h, z tρ

n
 

� −
1
2

θn
+ ρn

(  u
n

+ U
n
h( , z tρ

n
  + 2 θn

+ ρn
, z tρ

n
 

≤C θn
+ ρn

����
����0 u

n
+ U

n
h

����
����0,∞ z tρ

n
����

����0 + C θn
+ ρn

����
����0 z tρ

n
����

����0

≤Ch
4

u
n

����
����
2
2 + ε z tρ

n
����

����
2
0 + C ρn

����
����
2
h
.

(18)

Substituting (13)–(18) into (12), we get

1
2Δt

ρn
����

����
2
h

− ρn− 1����
����
2
h

  +
1
2
ηn

����
����
2
h

≤Ch
4

p
n

����
����
2
3 + u

n
����

����
2
2 +

1
Δt


tn

tn− 1

ut

����
����
2
3dτ 

+ C ρn
����

����
2
h

+ C ρn− 1����
����
2
h

+ ε z tρ
n

����
����
2
0

+ z t 
K


zK

zun

zn
ρnds⎛⎝ ⎞⎠




.

(19)

Multiplying by 2Δt and then summing up the above
inequality, by applying discrete Gronwall’s lemma, we can
obtain

ρn
����

����
2
h

+ 2Δt 
n

i�1
ηi

����
����
2
h
≤C h

4
+(Δt)2  + 4εΔt 

n

i�1
z tρ

i
‖
2
0.

�����

(20)

Secondly, taking the difference between two time levels n

and n − 1 of (11b) reduces to

z tη
n
, qh  − ∇z tρ

n
,∇qh 

h
� − z tξ

n
, qh 

+ z t f u
n

(  − f U
n
h( ( , qh  − 

K


zK

z z tu
n 

zn
qhds.

(21)

Choosing vh � z tρn in (11a) and qh � ηn in (21) and then
adding them, we can get

z tρ
n

����
����
2
0 + z tη

n
, ηn

  + α z tρ
n
, ρn

 

� − z tθ
n
, z tρ

n
  − α θn

, z tρ
n

  + 
K


zK

zpn

zn
z tρ

nds

− R
n
1, z tρ

n
  − z tξ

n
, ηn

  + z t f u
n

(  − f U
n
h( ( , ηn

 

− 
K


zK

z z tu
n 

zn
ηnds

� 
7

i�1
Bi.

(22)

It is not difficult to verify that

z tη
n
, ηn

 ≥
1
2Δt

ηn
����

����
2
0 − ηn− 1����

����
2
0 ,

α z tρ
n
, ρn

 ≥
α
2Δt

ρn
����

����
2
0 − ρn− 1����

����
2
0 ,

B4


 � R
n
1, z tρ

n
 


≤CΔt 
tn

tn− 1

utt

����
����
2
0dτ +

1
6

z tρ
n
‖
2
0.

�����

(23)
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By (5) and (17), there holds

B1 + B2 + B5


 � z tθ
n
, z tρ

n
  + α θn

, z tρ
n

  + z tξ
n
, ηn

 




≤Ch
4 1
Δt


tn

tn− 1

ut

����
����
2
2 + pt

����
����
2
2 dτ + u

n
����

����
2
2  +

1
6

z tρ
n

����
����
2
0 + C ηn

����
����
2
0,

(24)

B6


 � z t f u
n

(  − f U
n
h( ( , ηn

 




� z tu
n θn + θn− 1

2
+
ρn + ρn− 1

2
  +

Un
h + Un− 1

h

2
z tθ

n
+ z tρ

n
 , ηn

  − 2 z tθ
n

+ z tρ
n

 , ηn
 

≤Ch
4

u
n

����
����
2
2 + u

n− 1����
����
2
2 +

1
Δt


tn

tn− 1

ut

����
����
2
2dτ  +

1
6

z tρ
n
‖
2
0 + C ρn

����
����
2
0 + C ρn− 1����

����
2
h

+ C ηn
����

����
2
0.

�����

(25)

From derivative transfer technique and (8), it can be
proved that

B3


 � 
K


zK

zpn

zn
z tρ

nds





� z t 
K


zK

zpn

zn
ρnds⎛⎝ ⎞⎠ − 

K


zK

z z tp
n 

zn
ρn− 1ds

≤
Ch4

Δt


tn

tn− 1

pt

����
����
2
3dτ + C ρn− 1����

����
2
h

+ z t 
K


zK

zpn

zn
ρnds⎛⎝ ⎞⎠,

(26)

B7


 � 
K


zK

z z tu
n 

zn
ηnds




≤

Ch4

Δt


tn

tn− 1

ut

����
����
2
3dτ + ηn

����
����
2
h
.

(27)

*en, substituting (23)–(27) into (22) reduces to
1
2

z tρ
n

����
����
2
0 +

α
2Δt

ρn
����

����
2
0 − ρn− 1����

����
2
0  +

1
2Δt

ηn
����

����
2
0 − ηn− 1����

����
2
0 

≤Ch
4 1
Δt


tn

tn− 1

ut

����
����
2
3 + pt

����
����
2
3 dτ + u

n
����

����
2
2 + u

n− 1����
����
2
2 

+ C(Δt) 
tn

tn− 1

utt

����
����
2
0dτ + z t 

K


zK

zpn

zn
ρnds⎛⎝ ⎞⎠

+ C ηn
����

����
2
0 + C ρn

����
����
2
0 + ηn

����
����
2
h

+ C ρn− 1����
����
2
h
.

(28)

Multiplying by 2Δt and summing up the above in-
equality and then plugging (28) into (20), by discrete
Gronwall’s lemma again, choosing appropriate Δt and ε> 0
such that 1 − CεΔt> 0, by applying (8) and noting that
ρ0 � 0, η0 � 0, we can obtain

Δt 
n

i�1
‖z tρ

i
‖
2
0 + ρn

����
����
2
h

+ Δt 
n

i�1
ηi

����
����
2
h
≤C h

4
+(Δt)2 . (29)

At last, choosing vh � z tηn in (11a) and qh � z tρn in (21)
and then substituting them, it yields

∇z tη
n
,∇ηn

 
h

+ z tρ
n

����
����
2
h

� − z tθ
n
, z tη

n
  − α θn

, z tη
n

 

− α ρn
, z tη

n
  + 

K


zK

zpn

zn
z tη

nds

− R
n
1, z tη

n
  + z tξ

n
, z tρ

n
 

− z t f u
n

(  − f U
n
h( ( , z tρ

n
 

+ 
K


zK

z z tu
n 

zn
z tρ

nds

� 
8

i�1
Di.

(30)

Similar to the estimates of (20) and (29), we have
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∇z tη
n
,∇ηn

)h≥
1
2Δt

ηn
����

����
2
h

− ηn− 1����
����
2
h

 , (31)

D1 + D2


 � z tθ
n
, z tη

n
  + α θn

, z tη
n

 




� z t z tθ
n
, ηn

  + αz t θn
, ηn

(  − z t z tθ
n

 , ηn− 1
  − α z tθ

n
, ηn− 1

 




≤ z t z tθ
n
, ηn

  + α θn
, ηn

(  


 +
Ch4

Δt


tn

tn− 2

utt

����
����
2
2dτ + 

tn

tn− 1

ut

����
����
2
2dτ  + C ηn− 1����

����
2
0,

(32)

D3 + D4 + D5


 � − α ρn
, z tη

n
  + 

K


zK

zpn

zn
z tη

nds − R
n
1, z tη

n
 





≤ z t − α ρn
, ηn

(  + 
K


zK

zpn

zn
ηnds − R

n
1, ηn

( ⎡⎣ ⎤⎦




+ C z tρ

n
����

����
2
0 + C z tR

n
1

����
����
2
0 +

Ch4

Δt


tn

tn− 1

pt

����
����
2
3dτ + C ηn− 1����

����
2
h
,

(33)

D6 + D7


 � z tξ
n
, z tρ

n
  − z t f u

n
(  − f U

n
h( ( , z tρ

n
 





≤Ch
4 1
Δt


tn

tn− 1

pt

����
����
2
2 + ut

����
����
2
2 dτ + u

n
����

����
2
2 + u

n− 1����
����
2
2  + C z tρ

n
‖
2
0 + C ρn

����
����
2
0 + C ρn− 1����

����
2
0,

�����

(34)

D8


 � 
K


zK

z z tu
n 

zn
z tρ

nds




≤

Ch4

Δt


tn

tn− 1

ut

����
����
2
3dτ +

1
2

z tρ
n
‖
2
h.

����� (35)

Substituting (31)–(35) into (30), we have

1
2Δt

ηn
����

����
2
h

− ηn− 1����
����
2
h

 ≤Ch
4 1
Δt


tn

tn− 1

pt

����
����
2
3 + ut

����
����
2
3 + utt

����
����
2
2 dτ + u

n
����

����
2
2 + u

n− 1����
����
2
2 

+ z t z tθ
n
, ηn

  + α θn
, ηn

(  − α ρn
, ηn

(  + 
K


zK

zpn

zn
ηnds − R

n
1, η

n
( ⎡⎣ ⎤⎦





+ C z tρ
n
‖
2
0 + C ρn

����
����
2
0 + C ρn− 1����

����
2
0.

�����

(36)

Multiplying by 2Δt and summing up the above in-
equality, by discrete Gronwall’s lemma and (29), there holds

ηn
����

����
2
h

+ Δt 

n

i�1
z tρ

i
‖
2
h ≤C h

4
+(Δt)2 .

����� (37)

With (29) and (37), the proof is completed.
Finally, we use mathematical induction to verify as-

sumption (15) which is similar to the technique used in
[22, 23, 26].

Let μn:� un − Un
h. Initially, when n � 0, we have

‖μ0‖0,∞ � ‖u0 − Ihu0‖0,∞≤Ch< 1, and the assumption is
true.

Furthermore, we assume that when n � k − 1, there
holds ‖μk− 1‖0,∞ < 1. *en, by *eorem 1, we have
‖Uk− 1

h − Ihuk− 1‖h≤C(h2 + Δt).
Additionally, we consider the situation at n � k. We

know that ‖μ(t)‖0,∞ is continuous function about time t, so
there exists δ > 0, for ∀ϵ> 0; when |tk− 1 − tk| � Δt< δ, there
holds

μk− 1
�����

�����0,∞
− μk

�����

�����0,∞



< ϵ. (38)

Taking ϵ � Δt in (38), we have
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μk
�����

�����0,∞
≤ μk− 1

�����

�����0,∞
+ Δt≤ U

k− 1
h − Ihu

k− 1
�����

�����0,∞

+ u
k− 1

− Ihu
k− 1

�����

�����0,∞
+ Δt

≤Ch
− 1

U
k− 1
h − Ihu

k− 1
�����

�����0
+ Ch u

k− 1


1,∞
+ Δt

≤C h
− 1Δt + h  + Ch + Δt< 1.

(39)

In the last step of (39), we need the time step Δt and
space step h satisfy the condition Δt � O(h1+α)(0< α≤ 1).
Above all, choose appropriate h1 to make thatChα

1 < 1, which
ends the proof. □

4. Superconvergence Analysis for the Fully-
Discrete Approximation Scheme

To obtain the superconvergence results, we combine the
adjacent four elements K1, K2, K3, and K4 into a big element
K, i.e., K � ∪4i�1Ki (see Figure 1). *e corresponding sub-
division is defined by T2h.

*en, construct the interpolation postprocessing oper-
ator I2h on K as in [27–29] which satisfies

I2hu ∣ K ∈ P2(
K),


Li

I2hu − u( ds � 0, i � 1, 2, 3, 4,∀K ∈ T2h,


K1∪K3

I2hu − u( dx dy � 0,


K2∪K4

I2hu − u( dx dy � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

where P2(
K) denotes the space of polynomial on K with

degree less than or equal to 2 and Li (i � 1, 2, 3, 4) are the
four sides of K.

From [27], the interpolation postprocessing operator I2h

satisfies

I2hIhu � I2hu,

I2hu − u
����

����h
≤Ch

2
‖u‖3,

I2hvh

����
����h
≤C vh

����
����h

,

∀vh ∈ Vh.

(41)

Theorem 2. Under the assumption of 4eorem 1, there holds

u
n

− I2hU
n
h

����
����h

+ p
n

− I2hP
n
h

����
����h
≤C h

2
+ Δt . (42)

Proof. From triangle inequality, (10), and (41), there holds

u
n

− I2hU
n
h

����
����h

� u
n

− I2hIhu
n

+ I2hIhu
n

− I2hU
n
h

����
����h

≤ u
n

− I2hu
n

����
����h

+ C Ihu
n

− U
n
h

����
����h
≤C h

2
+ Δt .

(43)

*e superconvergence result of p can be obtained
similarly, which completes the proof. □

Remark 1.

(i) From the analysis of *eorems 1 and 2, the
superclose and superconvergence results for the two
variables u and p in the broken H1-norm are de-
rived, which are one order higher than the con-
vergence results in [1].

(ii) *e conclusions of this paper are applicable to other
nonconforming elements such as the Qrot

1 element
[30], rectangular constrained Qrot

1 element [31],
quasi-Wilson element [32, 33], modified quasi-
Wilson element [34], and quasi-Carey element [35].

(iii) For nonconforming linear triangle Crou-
zeix–Raviart element [36], Carey element [37], and
Wilson element [38], the consistency errors are only
of order O(h); for nonconforming P1 element [39]
and pmod

1 element [40], though the consistency
errors reach to O(h3) order, the interpolation error
term can be estimated as (∇(u − Ihu),

∇vh)h≤Ch|u|2‖vh‖h. *erefore, the super-
convergence results are unable to get.

5. Numerical Example

Numerical simulation results are presented in this section.
*eNewton iterative algorithm is used to solve the nonlinear
system.

Consider the following problem [1]:

ut + Δ2u + αu � Δf(u) + g(X), (X, t) ∈ Ω ×[0, T],

u(X, 0) � u0(X), X ∈ Ω,

⎧⎨

⎩

(44)

where Ω � [0, 1] × [0, 1], α � 0.5, T � 1.
Let p � f(u) − Δu; then, the mixed variational formu-

lation for (44) is find (u, p) ∈ V × V such that

K1 K2

K4 K3

L4

L3

L1

L2

Figure 1: *e big element K.
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ut, v(  +(∇p,∇v) + α(u, v) � (g(X), v), ∀v ∈ V,

(p, q) − (∇u,∇q) � (f(u), q), ∀q ∈ V,

u(X, 0) � u0(X), p(X, 0) � p0(X) � f u0(X)(  − Δu0(X).

⎧⎪⎪⎨

⎪⎪⎩
(45)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: *e rectangular mesh.
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Figure 3: Exact solution u (a) and numerical solution Uh (b) on 16× 32 meshes at t � 0.5.
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(b)

Figure 4: Exact solution p (a) and numerical solution Ph (b) on 16× 32 meshes at t � 0.5.

8 Mathematical Problems in Engineering



*e exact solutions are u(x, y, t) � (1 + t6)sin πx sin πy

and p(x, y, t) � (1/2)(1 + t6)2(sin πx)2(sin πy)2 +2(π2 − 1)

(1 + t6)sin πx sin πy.

*e fully-discrete approximation scheme for (45) is find
(Un

h, Pn
h) ∈ Vh × Vh such that

z tU
n
h, vh  + ∇Pn

h,∇vh( h + α Un
h, vh(  � g(X), vh( , ∀vh ∈ Vh,

Pn
h, qh(  − ∇Un

h,∇qh( h � f Un
h( , qh( , ∀qh ∈ Vh,

U0
h � Ihu0, P0

h � Ihp0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(46)

We divide the domain Ω into m × n rectangular meshes
(see Figure 2). *en, the FE solutions Un

h, Pn
h can be cal-

culated according to (46); here, we choose
Δt �

�������������
(1/m2) + (1/n2)


.

For simplicity and concreteness, we just plot the exact
solutions u, p and the numerical solutions Uh, Ph on 16× 32
meshes at t � 0.5 (see Figures 3 and 4), respectively.

*en, the convergence, superclose, and super-
convergence results of u and p in the broken H1-norm at
time t � 0.1 and 0.5 are listed in Tables 1–4, respectively.

From Tables 1 and 2, we can see that ‖un − Un
h‖h are

convergent at orderO(h) and ‖Un
h − Ihun‖h and ‖un − I2hUn

h‖h

are convergent at order O(h2), which coincide with the the-
oretical analysis. Meanwhile, the results of ‖un − I2hUn

h‖h are

Table 1: Numerical results of u at t � 0.1.

m × n ‖un − Un
h‖h Order ‖Un

h − Ihun‖h Order ‖un − I2hUn
h‖h Order

4 × 8 4.2013e − 01 — 1.4228e − 01 — 2.6226e − 01 —
8 × 16 2.0201e − 01 1.0564 3.6301e − 02 1.9707 6.7246e − 02 1.9634
16 × 32 9.9915e − 02 1.0156 9.1169e − 03 1.9933 1.6911e − 02 1.9914
32 × 64 4.9818e − 02 1.0040 2.2818e − 03 1.9983 4.2340e − 03 1.9978

Table 2: Numerical results of u at t � 0.5.

m × n ‖un − Un
h‖h Order ‖Un

h − Ihun‖h Order ‖un − I2hUn
h‖h Order

4 × 8 4.2408e − 01 — 1.3655e − 01 — 2.6207e − 01 —
8 × 16 2.0484e − 01 1.0497 3.5024e − 02 1.9630 6.7315e − 02 1.9609
16 × 32 1.0147e − 01 1.0134 9.2067e − 03 1.9275 1.7147e − 02 1.9729
32 × 64 5.0596e − 02 1.0039 2.3042e − 03 1.9983 4.2931e − 03 1.9978

Table 3: Numerical results of p at t � 0.1.

m × n ‖pn − Pn
h‖h Order ‖Pn

h − Ihpn‖h Order ‖pn − I2hPn
h‖h Order

4 × 8 7.2813 — 1.2981 — 4.1865 —
8 × 16 3.6128 1.0110 3.2303e − 01 2.0066 1.0770 1.9586
16 × 32 1.8031 1.0026 8.0602e − 02 2.0027 2.7098e − 01 1.9908
32 × 64 9.0114e − 01 1.0006 2.0140e − 02 2.0007 6.7852e − 02 1.9977

Table 4: Numerical results of p at t � 0.5.

m × n ‖pn − Pn
h‖h Order ‖Pn

h − Ihpn‖h Order ‖pn − I2hPn
h‖h Order

4 × 8 7.3758 — 1.1901 — 4.2129 —
8 × 16 3.66791 1.0078 2.9887e − 01 1.9935 1.0854 1.9565
16 × 32 1.8318 1.0016 8.2041e − 02 1.8651 2.7536e − 01 1.9788
32 × 64 9.1551e − 01 1.0006 2.0500e − 02 2.0006 6.8948e − 02 1.9977
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better than ‖un − Un
h‖h, which indicate the superiority of the

superconvergence algorithm.*e results of p in Tables 3 and 4
are consistent with those of u in Tables 1 and 2.

6. Conclusions

In this work, we study the nonconforming MFEM for
fourth-order nonlinear Sivashinsky equation. *e super-
convergence results of the relevant variables in the broken
H1-norm are obtained, which are one order higher than
those of convergence. Furthermore, a numerical example
demonstrates the efficiency of the theoretical analysis.
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