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The fourth-order nonlinear Sivashinsky equation is often used to simulate a planar solid-liquid interface for a binary alloy. In this
paper, we study the high accuracy analysis of the nonconforming mixed finite element method (MFEM for short) for this
equation. Firstly, by use of the special property of the nonconforming EQ{** element (see Lemma 1), the superclose estimates of
order O (h? + At) in the broken H'-norm for the original variable u and intermediate variable p are deduced for the back-Euler (B-
E for short) fully-discrete scheme. Secondly, the global superconvergence results of order O (h* + At) for the two variables are
derived through interpolation postprocessing technique. Finally, a numerical example is provided to illustrate validity and

efficiency of our theoretical analysis and method.

1. Introduction

Under certain conditions, the dilute binary alloy will solidify,
at which point the solid-liquid interface is unstable and has a
cellular structure. When the solute rejection coefficient is
close to unity, near the stability threshold, the characteristic
cell size may significantly be beyond the diffusion width of
the solidification zone. The Sivashinsky equation describes
the dynamic of the onset and stabilization of the cellular
structure, which is considered as the following fourth-order
nonlinear equation [1, 2]:

u, + Nu+au=Af (u),
u=Au=0,
u(X,0) = u’ (X),

(X,t) e Qx(0,T],
(X,t) €0Q x(0,T], (1)
X e,

where Q is the interior of the rectangle [0,a] x [0,b],
X=(xy), T>0,a>0,b>0, >0 are fixed constants,
u® (X) is a given smooth function, and f (u) = (1/2)u? - 2u.
Due to the nonlinearity of this equation, it is very difficult to
find out the true solution. Thus, a lot of numerical simulation
methods have been considered for (1), such as the finite
difference method, finite element method (FEM for short),

and region decomposition method. For one-dimensional
case, Benammou and Omrani [3] studied the FEM and
obtained the convergence analysis of the original variable u
in L?>-norm; Momani [4] presented a numerical scheme
based on the region decomposition method; and Omrani
and Reza and Kenan [5, 6] provided two kinds of finite
difference schemes and proved the uniqueness and con-
vergence, respectively. For two-dimensional case, Denet [7]
gave the stability of the solution under the rectangular re-
gion; Rouis and Omrani [8] proposed a linearized three-level
difference scheme; and Ilati and Dehghan [9] derived an
error analysis by a meshless method based on radial point
interpolation technique.

As it is known to all that in regard to the fourth-order
problem, the conforming Galerkin finite element (FE for
short) approximation space belongs to H*(Q), and FE so-
lution in turn shall be C'-continuous. This leads to the
higher degree of piecewise polynomials, and the related
computation is complicated and difficult (both triangular
Bell element and rectangular Bogner-Fox-Schmit element
[10] are typical examples). The MFEM is an optimal choice
to overcome the above deficiencies, which transforms a
fourth-order problem into 2 coupled second-order problems
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by introducing an intermediate variable; thus, the low-order
elements can be used to solve. The nonconforming MFEM
brings down the smoothness requirement on FE solution
compared to the conforming case. Readers with more in-
terests may refer [11-15] and the references listed. For
problem (1), Omrani [1] developed the convergence analysis
of the corresponding variables in the semidiscrete and fully-
discrete schemes by using conforming MFEM; however,
situation involving nonconforming MFEM was not available
till now.

It is also well known that the superconvergence analysis
is an important approach to improve the precision of FE
solution. More precisely, based on the so-called integral
identity technique, the order of error in H'-norm between
FE approximation u, and the interpolation of the exact
solution Iu is much better than that of u and I,u; this
fascinating characteristic is called superclose. The global
superconvergence will then be investigated by adding a
simple postprocessing without changing the existing FE
program. Meanwhile, superconvergence is critical in prac-
tical engineering numerical calculation and has always been
a research hotspot. To find out more applications, readers
may refer [12, 15-23]. As far as our knowledge is concerned,
research on superconvergence for Sivashinsky equation is
yet to be found.

The main purpose of this article is to develop a non-
conforming MFE scheme for problem (1), and the superclose
and superconvergence results of the original variable u and
auxiliary variable p in the broken H'-norm are obtained for
the B-E fully-discrete scheme. The outline is organized as
follows: in Section 2, the MFE spaces and variational for-
mulation are introduced. In Section 3, based on the special
property of the nonconforming EQ)” element (when
u € H*(Q), the consistency error is of order O (h*) which is
one order higher than the interpolation error), the superclose
results for the above two variables are deduced. In Section 4,
the global superconvergence properties are derived with the
help of interpolation postprocessing technique. In Section 5, a
numerical example is given to verify the theoretical analysis.
In the last section, a brief conclusion is drawn.

Throughout this article, C denotes a positive constant
that may take different values at different places but remains
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independent of the subdivision parameter h and time step
At. Meanwhile, we use the notations as in [10] for the
Sobolev spaces WP (Q)) with norm ||~||m)p and seminorm
|l,n,p» Where m and p are nonnegative integer numbers.
Especially, for p = 2, p will be omitted in the above norms
and seminorms. Furthermore, we define the space L? (a,b;Y)
with the norm @1y = [, I®DIFdt (1< p<oo)
and [|Ol| e o1.y) = €ss supgerll® (- 1)lly (p = 00).

2. The MFE Spaces and Variational Formulation

Let Q) be a rectangular domain with edges parallel to the
coordinate axes, T, be a rectangular subdivision of ) which
need not satisfy the regular condition [10]. For all K € T,
K=[xg—hy,xg+h, ]x[yx—h,,yx+h,]  assume
that the barycenter of K by (xg, yx), and the four vertices
and four sides are z;, I, = z;z;,, (mod4) (i = 1,2,3,4), re-
spectively. hg = max{th, hyK}, h = maxgr, hg.

The nonconforming EQ** element space [17-21, 24, 25]
is defined by

Vv, :{vh: Vilg € span{l,x, y,xz,yz},

(2)
VK € Th,J [Vh]ds = O,F C aK},
F

where [v;,] stands for the jump of v, across the boundary F
and [v,] = v, if F c 0Q.

Then, we denote the
Il = Cxer, 150

The corresponding interpolation operator is defined as
I:veV=Hj(Q) — I,veV, I, | ¢ = Iy, satisfying

J (v—Igv)ds=0,
1.

i

norm on V, as

J (v—Igv)dxdy =0, (3)
K
i=1,2,3,4YK €T,

Let p = f (u) — Au; then, the mixed variational formu-
lation for (1) is find (u, p) € V x V such that

(upv) + (Vp, V) + a(u,v) =0, VveV,

(p,q) = (Vu,Vg) = (f (1), ),
u(X,0) = u’(X),

where (u,v) = jouvdx dy.

3. Superclose Analysis for the Fully-Discrete
Approximation Scheme

In this section, the superclose analysis for the B-E fully-
discrete scheme will be studied.

VgeV, (4)
P(X,0) = p°(X) = f(u*(X)) - Au® (X),

Let {t,|t, =nAt;n=0,1,2,...,N} be a uniform par-
tition of [0, T] with the time step At = (T/N). For a given
continuous function u on [0,T], we define that
u' =u(X,t,),0,u" =u" —u" /At

The following lemma is introduced first which is im-
portant in the superclose analysis.
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Lemma 1 (see [18]). For all v, € V,,, we get The existence and uniqueness of the solution for
B B 2 2 problem (9) can be found in [1].

e = Lo + s = Tyal < PNty w € (), (5) Next focus will be placed on the superclose of

(V(u = L), Vv,), = 0 6 N Il and 1B = Lp

"Vh”o SC”"h“h’ (7) Theorem 1. Le1" (u", p™) ancio(U ,Ph)3be the solution52 of (4)

and (9), respectively, u, pe L (0,T;H" (Q)),u,, p,€ L*(0,T;

ou H?(Q)), andu,, € L* (0,T; H* (Q)); then, forn=0,1,2,...,N,

Y| TvdssClulwl, weH @, ) wehave
K

KON
|Up = nu||, + Py - Inp" |, < C(K* + At). (10)
where (u,v)), = ZK_[Kuvdx dy. k h
Then, the B-E fully-discrete approximation scheme for
(4) is find (U7, P}) € V), x V,, such that Proof. Let u'-Up = " —Lu")+ (Ih?: -Up):=0"+
. ) o o P PL= (p" = 1 p") + (Lp" = P): = €
(a Up> Vh) + (VP V), + a(Ugw) =0, W, €V, The error equations can be derived from (1), (6), and (9):
(Ph>an) = (VUL Va,), = (f (U}) an)» Vg, € Vi
Ujp = I, P) =1,p°.
9)
N n n 1 3N gt 11 a " n
(3" vi) + (V" V) + @ (p"vy) = {9,6"v,) — (6" v) + ). J-aKa%l"hdS = (R}, ), (11a)
K
(1" qn) = (VP", Van), = =& q) + (f (") = £ (UR), an) - Z I 7‘1hd5> (11b)
where R = u — 0 u" = (1/At) _ﬁ”_l (1—t,_u, (1)dr. Firstly, taking v, = " in (11a) and g;, = 0 ,p" in (11b) and

then subtracting them, there holds

(%.52.8), + bl = 2.0~ o) (@) + 3 s - (R

HE0:0") =(f (W) = F(U}) 0,") + ;J o O s (12)

8
=Y A,

=1

It is easy to verify that

n n t” 1 n
A =Ry <cae [ i + ol (13)

n-1

N n n 1 n n— 2
(w092 (W 1)

By virtue of Lemma 1, we arrive at



Ap+ Ay + Ayl = '(aen) ’7n) +a(phn") +a(8'1")

1 t” n 7
<oi(; [ Iubar+ IR sl

Ly
.
(14)

n 1 n
<ch'lpli+ 'l a9

B op”
ad=[2 ], B

By using the derivative transfer technique and (5), there
holds

1 (M . o112

<oi(y; [ Wulias 1) +
= " ,

+ at<; JaKEP dS) .

In order to estimate A,, the following assumption is
given which will be proved later:

= 2
+é& "atpn"o

(16)

Uil <M, n=0,1,2,...,N, (17)

where M =1+ ||U||L00(0,T;L°°(Q))'
Then, we have

47| =(f (") = £ (U}).3.¢")

= (Y - ). 3,p") + 2

1 71 n n ny N n 7 n N n
=S ) U + 26+ 00"

U gtpn)

<Cl6" + p"|o[u” + Uilloo [0 + Cl6" + £l [0 "1

<G [u"; + €@ "]+l
(18)

Substituting (13)-(18) into (12), we get
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1 n n-12 L
(-1 ) + 5

n n N
<on (1" e [ e
(19)

+Clel; + Cle™ + 8"l

AR

Multiplying by 2At and then summing up the above
inequality, by applying discrete Gronwall’s lemma, we can
obtain

+

T+ 200 3l <00 + 007) + see 3 [0
i=1 i=1
(20)

Secondly, taking the difference between two time levels n
and n — 1 of (11b) reduces to

= ‘(5t£n’ ‘Ih)

@ -swma) -3 [, 2

(21)

(3t’7n) Qh) - (VaPn’ Vg, )h

Choosing v, = 0,p" in (11a) and g, = 7" in (21) and then
adding them, we can get

[0 15 + (@™ ") + (@, ")

o _ I
= —(a tG”,atp”) - a(@”,atp”) + Z JaKa—};atp"ds

~(R10,p") =(0.8"% ") +(3. (f (u") = F U ")
8(5,44")

- Z JBK on ds

(22)

It is not difficult to verify that

@)z 5 (W -1 ),
a(@.0"0") 255 (Il ~1e 1)

|B4l KR atP)

<CAtJ ot [P + “atp I

(23)
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By (5) and (17), there holds

B, + B, + B =[3,0°3,0") + o(6".3,6") +(3,8".")
<on'( 55 [ (Il ol )ar 1 ) + ol Il
==\ ae ), e P 2 ) Tl o I o

1Bl =3, ) - F @)
= 0" + en—l 1 -1 Uur+Urt n = n n = 5 n n
:<atu ( . +P +2P >+ h+2 h (at9 +0,p ),r] )—(z(at9“+8tp ),71) (25)

n n— 2 1 n—
e e e W Y R I e T R i e

(24)

From derivative transfer technique and (8), it can be Multiplying by 2At and summing up the above in-
proved that equality and then plugging (28) into (20), by discrete
Gronwall’s lemma again, choosing appropriate Af and ¢>0
‘Z —8 9,p"ds such that 1—CeAt>0, by applying (8) and noting that
oK On p° =0, #° =0, we can obtain
-3 p" "q a(gtpn) n-1 SEE SR C L2 4 2
-ar<ZLK e ) X[ s BT I+ o $ I <+ @) )
Ch* (' 2 12 = ap" Atlast, choosing v, = 9,#" in (11a) and g;, = 0 ,p" in (21)
AL Jt . [pellsdx + Cllp™ ], + 0. ; JBKEP ds | and then substituting them, it yields
(26) 34" n 5712_ 3.6"9.4" 09 "
(V" V"), +[0.p"l = {9:0".0.1") = o(6".9.")
23, | cn _ op'-
|B] 2‘% JaK o ! ds|<—=- AL J “”t||3d7+“’7 “h —oc(p",atn") +ZJ ap 0,n"ds
= Jok on
(27)

—(R},0,1") +(0,¢",0,p"
Then, substituting (23)-(27) into (22) reduces to ( 2Ol )+( '50:p )

e et ([ P Rt ' i @)~ UI)3:")

<n'| 5 [ (Il +1pdE o S

t, = P n -
+C(At) LH ““ttnsz”Laf(;J ok on’ ds>

n 1 n 11— 2
+Cl"l + lle” o + Il + ™l

D.

i

N

1

(30)

(28) Similar to the estimates of (20) and (29), we have



N " n 1 n n— 2
(o 9wz (I -1 15)

D, + D,| =[3,6",0,1") + o(6",0,1")

=[0.(0:6"1") + a3, (6" 7") (3.,(3,0"). "

<[p.[(3.0 1) + (8] + £

D; + Dy + Ds| =

K

<[5, [_a@

n N n a s n n N n
(" 3"+ ¥ [ L5 -(R1 5

")+ ZJ —’7d5— pn")]
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(31)

) -a(3.60 )| (32)

S liars [ puliar) « e

+Claup"; + Clo Ry +

Ch* (% )
el W 2 e T

(33)
|D6 + D7| = thfn’gtpn) _(a (f (”n) - f(UZ))>5tPn)
1 fn n n— N n 1 n— (34)
<o (3 [ (I R)ar ol ) + oo+ ol I
a(gtu”)_ " Ch4 ty 2 1= ny2
o IR el I A e P (35)
Substituting (31)-(35) into (30), we have
1 n||2 n—1 af 1 b n—1
prvd (i i A 9 Lo Gl M (2 Y T P R P
(36)

+Clap"lo +Cle"; + Cllo™ s

Multiplying by 2At and summing up the above in-
equality, by discrete Gronwall’s lemma and (29), there holds

Il + sy [, <c(h +a0?).  (37)

With (29) and (37), the proof is completed.

Finally, we use mathematical induction to verify as-
sumption (15) which is similar to the technique used in
(22, 23, 26].

Let y":=u"-Uj. Initially, when n=0, we have
140,00 = 4° = 1,1’y oo <Ch <1, and the assumption is
true.

[y a0 -t - 2 Loas- )]

0

Furthermore, we assume that when n =k -1, there
holds 4% 'lgeo <1. Then, by Theorem 1, we have
UK — Iuk= 1, < C (W + AY).

Addltlonally we consider the situation at n=k. We
know that [|lu (¢)lly o, is continuous function about time t, so
there exists § > 0, for Ve > 0; when |t;_, — t;| = At <6, there
holds

[ s T N (38)

Taking € = At in (38), we have
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P T S| AR T

N I
,00 (39)
Ot i+

SC(h_lAt+h) +Ch+ At<1.

In the last step of (39), we need the time step At and
space step h satisfy the condition At = O(h'**)(0<a<1).
Above all, choose appropriate h, to make that Ch{ < 1, which
ends the proof. O

4. Superconvergence Analysis for the Fully-
Discrete Approximation Scheme

To obtain the superconvergence results, we combine the
adjacent four elements K, K,, K3, and K, into a big element
K, ie, K =U. K, (see Figure 1). The corresponding sub-
division is defined by T',.

Then, construct the interpolation postprocessing oper-
ator I,;, on K as in [27-29] which satisfies

[ Lyu |z € P,(K),
JL (Iyu-u)ds=0, i=1,234YKeT,,

i

(40)
J (Iyyu —u)dxdy =0,
K, UK,

J (Iyyu —u)dxdy =0,
L J kK,

where P, (K) denotes the space of polynomial on K with
degree less than or equal to 2 and L; (i = 1,2,3,4) are the
four sides of K.

From [27], the interpolation postprocessing operator I,
satisfies

Ly = Lyu,
[T = u]|,, < CH* Il

|2l = vl

Vvh € Vh'

(41)

Theorem 2. Under the assumption of Theorem 1, there holds
" = LU, + 1" - I P, < C(H* + At). (42)

Proof. From triangle inequality, (10), and (41), there holds

| = LU, =" = LIy + Ly L = 1, U,

< |u" - Ly, + C|Lu" - Uy, < C(R* + At).

(43)

Ky K

Ly

FiGURE 1: The big element K.

The superconvergence result of p can be obtained
similarly, which completes the proof. O

Remark 1.

(i) From the analysis of Theorems 1 and 2, the
superclose and superconvergence results for the two
variables u and p in the broken H!'-norm are de-
rived, which are one order higher than the con-
vergence results in [1].

(ii) The conclusions of this paper are applicable to other
nonconforming elements such as the Q!°" element
[30], rectangular constrained Qi element [31],
quasi-Wilson element [32, 33], modified quasi-
Wilson element [34], and quasi-Carey element [35].

(iii) For ~nonconforming linear triangle Crou-
zeix-Raviart element [36], Carey element [37], and
Wilson element [38], the consistency errors are only
of order O (h); for nonconforming P, element [39]
and p™d element [40], though the consistency
errors reach to O (k) order, the interpolation error
term can be estimated as (V(u-I,u),
Vvi)n < Chlul,llvyll,. Therefore,  the  super-
convergence results are unable to get.

5. Numerical Example

Numerical simulation results are presented in this section.
The Newton iterative algorithm is used to solve the nonlinear
system.

Consider the following problem [1]:

(X,t) e Qx[0,T],

U, + Nu+oau=Af(u) + g(X),
XeQ,

u(X,0) = u’(X),
(44)

where O = [0,1] x [0,1], « =0.5,T = 1.
Let p = f (u) — Au; then, the mixed variational formu-
lation for (44) is find (u, p) € V x V such that
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FiGure 3: Exact solution u# (a) and numerical solution U, (b) on 16 x 32 meshes at ¢ = 0.5.
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(u,v) +(Vp, V) + a(u,v) = (g(X),v), VYveV,
(P, = (Vu, Vq) = (f (u),q), VgeV, (45)
u(X,0) = u’(X), P(X,0)=p°(X) = f (u* (X)) - Au (X).
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TABLE 1: Numerical results of u at t = 0.1.
mxmn [l = UL, Order oy - 1,u"|, Order e = 1, ULl Order
4x8 4.2013e - 01 — 1.4228e - 01 — 2.6226e—-01 —
8x 16 2.0201e—-01 1.0564 3.6301e—02 1.9707 6.7246e — 02 1.9634
16 x 32 9.9915e - 02 1.0156 9.1169¢ - 03 1.9933 1.6911e - 02 1.9914
32 x64 4.9818e —02 1.0040 2.2818e¢—-03 1.9983 4.2340e - 03 1.9978
TABLE 2: Numerical results of u at t = 0.5.
mxn lee* = UL, Order oy - 1,u"|, Order et — 1, U3l Order
4x8 4.2408¢ — 01 — 1.3655¢ - 01 — 2.6207e - 01 —
8x16 2.0484¢ - 01 1.0497 3.5024e - 02 1.9630 6.7315e—-02 1.9609
16 x 32 1.0147e-01 1.0134 9.2067e—-03 1.9275 1.7147e - 02 1.9729
32x64 5.0596e - 02 1.0039 2.3042e-03 1.9983 4.2931e—-03 1.9978
TaBLE 3: Numerical results of p at t = 0.1.
mxn lp" - Pyl Order 1Py — I, p"l, Order lp" - L, P}, Order
4x8 7.2813 — 1.2981 — 4.1865 —
8x16 3.6128 1.0110 3.2303e—-01 2.0066 1.0770 1.9586
16 x 32 1.8031 1.0026 8.0602e — 02 2.0027 2.7098e - 01 1.9908
32 x 64 9.0114e - 01 1.0006 2.0140e - 02 2.0007 6.7852e — 02 1.9977
TABLE 4: Numerical results of p at t = 0.5.
mxn lp" =Pyl Order 1Py — I,p" Order lp" = L, Pl Order
4x8 7.3758 — 1.1901 — 4.2129 —
8x16 3.66791 1.0078 2.9887¢—01 1.9935 1.0854 1.9565
16 x 32 1.8318 1.0016 8.2041e - 02 1.8651 2.7536e - 01 1.9788
32x64 9.1551e - 01 1.0006 2.0500e - 02 2.0006 6.8948¢e - 02 1.9977

The exact solutions are u(x, y,t) = (1 + t)sin zx sin 7y
and p(x, y,t) = (1/2)(1 + £5)2 (sin 7zx)? (sin 7'[y)2 +2(7*-1)
(1 +t%)sin x sin y.

The fully-discrete approximation scheme for (45) is find
(Up, Py) € V), x V), such that

(0.:Up ) + (VPR V), + a (Ul vy,) = (9(X), ), Vv, €V,

(P an) = (VU Van), = (f (UR) 91)»

0 _ 0
Uh—Ihu,

We divide the domain Q into m x n rectangular meshes
(see Figure 2). Then, the FE solutions U}, P} can be cal-
culated according to (46); here, we choose
At =/ (1/m?) + (1/n?).

For simplicity and concreteness, we just plot the exact
solutions u, p and the numerical solutions Uj,, P;, on 16 x 32
meshes at t = 0.5 (see Figures 3 and 4), respectively.

th € Vh’ (46)
P) =1,p°.
Then, the convergence, superclose, and super-

convergence results of u and p in the broken H'-norm at
time t = 0.1 and 0.5 are listed in Tables 1-4, respectively.
From Tables 1 and 2, we can see that |u” - Uj|, are
convergent at order O (h) and |[U}; - I,,u"|l, and [|u" — I, UL,
are convergent at order O (h?), which coincide with the the-
oretical analysis. Meanwhile, the results of [u”* — I,,U}l;, are
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better than [[u" — U7ll;,, which indicate the superiority of the
superconvergence algorithm. The results of p in Tables 3 and 4
are consistent with those of v in Tables 1 and 2.

6. Conclusions

In this work, we study the nonconforming MFEM for
fourth-order nonlinear Sivashinsky equation. The super-
convergence results of the relevant variables in the broken
H'-norm are obtained, which are one order higher than
those of convergence. Furthermore, a numerical example
demonstrates the efficiency of the theoretical analysis.
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