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Since the underwater image is not clear and difficult to recognize, it is necessary to obtain a clear image with the super-resolution
(SR) method to further study underwater images. The obtained images with conventional underwater image super-resolution
methods lack detailed information, which results in errors in subsequent recognition and other processes. Therefore, we propose
an image sequence generative adversarial network (ISGAN) method for super-resolution based on underwater image sequences
collected by multifocus from the same angle, which can obtain more details and improve the resolution of the image. At the same
time, a dual generator method is used in order to optimize the network architecture and improve the stability of the generator. The
preprocessed images are, respectively, passed through the dual generator, one of which is used as the main generator to generate
the SR image of sequence images, and the other is used as the auxiliary generator to prevent the training from crashing or
generating redundant details. Experimental results show that the proposed method can be improved on both peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) compared to the traditional GAN method in underwater image SR.

1. Introduction

Due to the complexity of the underwater imaging envi-
ronment, the underwater image distortion is severe, and it is
difficult to obtain clear and high-quality images [1]. In order
to solve this problem, high-resolution images can be ob-
tained by hardware and software. But as we all know, the
hardware is relatively expensive and difficult to implement,
so the super-resolution (SR) technology of underwater
images is a necessary job.

Conventional super-resolution methods include inter-
polation, sparse representation, deep learning, etc.
Kumudham and Rajendran [2] proposed a sparse repre-
sentation algorithm because of the sparsity of the high-di-
mensional sonar image data. The image is divided into many
blocks including dictionaries of low-resolution image blocks
and high-resolution image blocks are created, and each

block is represented using a sparse coeflicient and a dic-
tionary to obtain a high-resolution image. However, in-
terpolation and sparse representation can lead to blurred
edges in the process of obtaining super-resolution and the
image information is reduced. In order to solve the problem,
Lu et al. [3] used the SR algorithm based on self-similarity to
obtain scattered high-resolution (HR) images and applied
convex fusion rules to recover the final HR images. The
experimental results show superiority, and the edges of
images are significantly enhanced. However, the high-res-
olution image produced by the interpolation method often
has some errors, which cause problems such as blockiness or
detail degradation, and the improvement of image edges is
not obvious. Besides, sparse representation causes blurring
due to overfitting or underfitting. In recent years, deep
learning methods can solve these problems well and have
also been used in super-resolution for better results. Ding


mailto:heu503@hrbeu.edu.cn
https://orcid.org/0000-0003-4943-1648
https://orcid.org/0000-0001-6529-0377
https://orcid.org/0000-0002-2065-1105
https://orcid.org/0000-0002-4322-9070
https://orcid.org/0000-0002-0095-0378
https://orcid.org/0000-0002-1716-5093
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8472875

et al. [4] first used an adaptive color correction algorithm to
compensate for color cast and produced a natural color
corrected image. Secondly, the super-resolution convolu-
tional neural network is applied to the image to eliminate
blurring of images. The experiment shows that the proposed
network can learn the image deblurring from a large amount
of images and the corresponding sharp image and effectively
improve the quality of the underwater image. Islam et al. [5]
provided a deep residual network-based generation model
for single-image super-resolution (SISR) of underwater
images and a countertraining pipeline for learning SISR
from the paired data. At the same time, an objective function
is also developed in order to supervise the training, which
evaluates the perceptive quality of the image according to the
overall content, color, and local style information of the
image. Liu et al. [6] proposed an underwater image en-
hancement method through a deep residual network. Firstly,
the synthetic underwater image is generated as the training
data of the convolutional neural network model with a cycle-
consistent generative adversarial network (CycleGAN).
Secondly, the underwater residual neural network
(RESNET) model for the underwater image enhancement is
proposed by applying the very deep super-resolution
(VDSR) reconstruction model to the application of the
underwater image resolution. In addition, the loss function
is also improved to form a multiple loss function with mean
square error (MSE) loss and edge difference loss. However,
the deep learning method lacks high frequency and details,
which results in an incomplete representation of the image.

In order to obtain the image with more details, the
generative adversarial network is proposed for super-reso-
lution of images. Cheng et al. [7] proposed a new underwater
image enhancement framework. The image preprocessing
and deblurring are first performed with an improved super-
resolution GAN. Then, the improved super-resolution GAN
is used to deblur and enhance the preprocessed image. On
the basis of the GAN, the loss function is corrected to
sharpen the preprocessed image. Experimental results show
that the enhanced GAN method effectively improves the
quality of underwater images. Sung et al. [8] proposed a
method for improving the resolution of underwater sonar
images based on GAN. First, a network with 16 residual
blocks and 8 convolutional layers is built, and then the
network is trained with the sonar images intercepted in
several ways. The results show that the method can improve
the resolution of the sonar image and obtain a higher peak
signal-to-noise ratio (PSNR) compared with the interpola-
tion method. Furthermore, in video SR, Lucas et al. [9]
designed a 15-residual neural network SRResNet for video
SR, which is pretrained on MSE loss and fine-tuned in the
feature-space loss. Wang et al. [10] designed a GAN using
the space adaptive loss function to improve the network
based on spatial activities. Chu et al. [11] proposed a GAN
that obtains time coherence without loss of spatial infor-
mation, and a new loss function is proposed based on this.
Liu and Li [12] proposed an improved image super-reso-
lution method based on Wasserstein distance and gradient
penalty to generate a GAN to improve the gradient disap-
pearance problem. Shamsolmoali et al. [13] proposed a GAN
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that can be learned step by step, which can generate com-
plete information and improve network stability and image
quality. Xie et al. [14] proposed a method for generating SR
images using time-coherent three-dimensional volume data
and a novel temporal discriminator for identification. Bulat
and Tzimiropoulos [15] proposed a new residual-based
architecture that integrates facial information spectrum and
structural information to improve SR image.

Since GAN is very excellent for super-resolution of
images, it is used for super-resolution of underwater images.
In the super-resolution of underwater images, a single-image
super-resolution is usually processed. But in the actual
situation, underwater images can generate multiple images
in the same scene. Furthermore, in recent years, image
fusion has been widely used because it can collect a lot of
information which is applied to images [16]. Therefore,
considering multiple images in the process of obtaining
super-resolution images by the means of ISGAN will greatly
improve the resolution of the image and make the image
more detailed. In addition, due to a lot of interference and
low resolution of underwater images, a single generator
cannot capture full details when generating SR images,
which has certain instability. In order to eliminate the de-
viation of the single generator to generate images and en-
hance the robustness, the dual generator model of image
sequence is put forward, which can combine the charac-
teristics of two generators to generate SR images with dif-
ferent effects and increase the quality and diversity of SR
images.

In this paper, we have the contributions as follows:

(i) We design the image sequence GAN for super-
resolution of underwater images and obtain high-
quality images by fusing the image sequence and
generating and discriminating SR images.

(i) The dual generator including main generator and
auxiliary generator is used to improve the stability
of generator and optimize the structure of network.

(iii) The proposed method is evaluated experimentally,
and the experimental results show that this method
can obtain images with more details and higher
resolution.

2. Methods

In order to solve the super-resolution problem of the image
sequence, the SRGAN network [17] structure is improved so
that the image can adapt to the underwater image and the
information of multiple images can be obtained. Therefore,
the resolution of the underwater image can be improved on
the basis of adding more image details.

2.1. ISGAN Method. We divide the ISGAN method into two
steps: preprocessing and ISGAN structure. In the process of
preprocessing, the color of images is corrected and the
contrast of images is improved for the convenience of the
following training. At the same time, the images are pre-
trained to ensure the stability of the network and improve
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the training speed. In the ISGAN structure, image fusion is
carried out and the method of a dual generator is used to
ensure the accuracy and clarity of the generated images.

2.1.1. Preprocessing. Because of the serious distortion and
low contrast of underwater images, the white balance and
contrast limited adaptive histogram equalization (CLAHE)
are used to preprocess the images. The white balance is used
to correct the color of the seafloor in order to create a normal
underwater scene, and the CLAHE is used to improve the
visibility of underwater organisms to get the enhanced
image. Therefore, the results of the image preprocessing are
as shown in Figure 1.

Then, the pretraining is conducted in order to increase
the speed of training in discriminator and maintain the
stability of the generator. Before training, part of the HR
image training set is put into the discriminator D for pre-
training; the prior training ensures early identification ca-
pability of the discriminator and maintains the training
intensity and efficiency of the generator [18]. Furthermore,
the pretraining prevents the collapse of the training mode
that leads to the continuously failed generation of SR images
and ensures the stability and the training speed of the
discriminator and generator, which is convenient for the
following training strategy adjustment.

2.1.2. ISGAN Architecture. After images are preprocessed,
they are sent to the ISGAN for training and the SR image is
generated by the generator. In the generator, the image
sequence is fused firstly. Because there is a certain offset
between the image sequences, the image needs to be reg-
istered by using the geometric registration (SURF), linear
photometric model, and affine motion.

Then, the image fusion is performed to collect the in-
formation of all images. In order to fully represent the
detailed features of all image sequences, the fusion process of
image sequences is added to the network structure, and the
resolution of the image is improved by blending the sharpest
part of each image sequence. Firstly, the image is decom-
posed into four sub-bands by stationary wavelet transform
(SWT), which are low-low (LL) sub-band, low-high (LH)
sub-band, high-low (HL) sub-band, and high-high (HH)
sub-band, where the LL sub-band is an approximation
coeflicient containing the original detail of the image, and
the remaining LH, HL, and HH sub-bands represent the
detail parameters of the original image. The process of di-
viding the sub-bands by SWT is shown in Figure 2.

After all the images are divided into different sub-bands,
the principal component analysis (PCA) is performed on the
sub-bands. This method can find the best feature for the data,
which is the clearest part of the image, and represent this
part as the first feature. The principal component, repre-
sented by the data with the largest variance in the calcu-
lation, is a good representation of the data. In signal
processing, it is generally believed that the signal has a large
variance, while the noise has a small variance. The variance
ratio between the signal and the noise is defined as the
signal-to-noise ratio. Therefore, the variance is usually used

to judge whether the signal is useful information. Similarly,
such an idea is also adopted in image processing. It is
generally considered that the useful part in the image has a
large variance so that it is taken as the principal component,
while noise is generally considered as redundant informa-
tion. Subsequently, the first principal component is sorted
and selected and the first principal component of each sub-
band is fused. In this process, the fusion rule is to multiply all
the pixels of the sub-band of each image by the largest ei-
genvector of the sub-band. Finally, the processing for each
sub-band is repeated, and new fused sub-bands LL, HL, LH,
and HH are, respectively, established, as shown in the fol-
lowing equation:

LL(, j) = p,LL, (i, j) + p,LL, (i, j) + -+ + p,LL, (iy j),
LH(, j) = q,LH, (i, j) + q,LH, (3, j) + - - + q,LH, (i, j),
HL (i, j) = u,HL, (i, j) + u,HL, (i, j) + - - - + u, HL, (i, j),
HH (i, j) = v,HH, (i, j) + v,HH, (i, j) + - -- + v,HH, (i, j),
(1)

where the size of each image is M X N, n represents the
number of image sequences, and i and j represent pixel
locations, where i = 1,2,...,M, j=1,2,...,N. Besides, p,
g, u, and v represent the largest eigenvectors of the four sub-
bands in the source image, and the four sub-bands LL, LH,
HL, and HH, respectively, represent four sub-bands after
fusion according to the fusion rule. Finally, the four fusion
sub-bands are reconstructed by inverse stationary wavelet
transform (ISWT) to obtain the refused image IRE. The
refused image is iterated through the generator and dis-
criminator, and the image is learned to obtain a super-
resolution image. In the process of learning, the main
generation of the confrontation network model proposed by
Ledig et al. [17] is used for learning. The generated con-
frontation network model can be expressed as follows:

. HR
rré(l;n Hégx Epw_p vy [log DQD(I )] + Epe ()

[tog(1— Dy, (1))}

The equation is expressed as it allows the training
generation model G to fool the discriminator D that dis-
tinguishes the super-resolution image from the real image by
training and obtain the super-resolution image by contin-
uously learning the fused image and finally determine the
super-resolution image. In this way, our generator can learn
to create and gradually optimize SR images so that the
discriminator cannot distinguish between real and fake
images, which makes the generated images more and more
similar to real images.

At the same time, when the main generator generates SR
images, an auxiliary generator is also used to generate a
group of SR images. In the auxiliary generator, in order to
reduce artifacts, improve generalization ability, and reduce
computational complexity, the BN layer is removed to
improve training stability and performance. Then, these two
sets of SR images and HR images are mixed as an input of the

(2)
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FI1GURE 1: The results of the image preprocessing. (a) Original underwater image. (b) Preprocessed underwater image.
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F1GURE 2: The process of sub-band decomposition.

discriminator so that it can enhance the robustness of results
and make the resulting images more reliable.

In the ISGAN model, the generator uses two convolu-
tional layers as the activation function, where the con-
volutional layer has a small 3 x 3 convolution kernel and 64
feature maps, followed by a batch normalization (BN) layer
and parametric rectified linear unit (PReLU) layer and two
trained subpixel convolution layers to improve the resolu-
tion of the input image. The discriminator uses the Leaky
ReLU activation layer to avoid maximum pooling in the
entire network. It contains 8 convolutional layers, adding
3 x 3 filter kernels, increasing from 64 to 512 to obtain the
probability of sample classification. Through such a network
model, the resolution of the image can be significantly
improved, and a better super-resolution reconstruction
result can be obtained. The network architecture is shown in
Figure 3.

2.2. Loss Function. In the ISGAN model, the perceptual loss
is capable of enriching the details in the image. Since the
perceptual loss function is critical to the performance of the
generator, it is expressed as a weighted sum of the content
loss and the adversarial loss according to the proposed
ISGAN model. Among them, the content loss includes the
mean square error loss (MSE) and the VGG loss, and the
adversarial loss is used to confuse whether the SR image
generated by the generator is a real image. The loss function
is shown in the following equation:

SR /SR ~3;SR
Pr= L, + 107,
adversarialloss (3)

contentloss
perceptualloss

2.2.1. Content Loss. The content loss includes MSE loss and
VGG loss. The MSE loss is the most widely used optimi-
zation target in image super-resolution and represents the
expected value of the square of the difference between the
estimated value and the true value. MSE can evaluate the
degree of change of the data, which is a convenient method
to measure the “average error.” The smaller the value of
MSE, the better the accuracy of the prediction model to
describe the experimental data. In the proposed ISGAN
model, the MSE loss is defined as follows:

W rH

B = g 2 2 (15 Ga(™),) - @

However, while achieving a particularly high PSNR, MSE
loss usually results in the lack of high-frequency content in the
generated SR image so that the image will produce a smooth
texture. Therefore, the VGG loss is added, which is defined by
training the ReLU activation layer of the VGG network. It can
be defined as the Euclidean distance between the feature
representation of the reconstructed image Gq_(I RE) and the
real reference image (I'R). The feature map of a layer is
extracted on the already trained VGG network, and this feature
map of the generated image is compared with the real image, as
shown in the following equation:

o= 2 0 (60,

x=1 y=1

~0(Ga(),,)> ©

where W and H represent the dimensions of the corre-
sponding feature mapping in the VGG network.

To sum it up, the content loss of the ISGAN model can be
defined by MSE loss and VGG loss, as shown in the following
equation:
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[N o S S (6) where D%(G%(I ) reprlfser?ts. the probablhty.that the
reconstructed image Gg_(I™") is judged to be a high-reso-

where %, and I, denote the MSE loss and VGG loss in
the above definitions, respectively. Therefore, the content
loss defined in this way makes the reconstructed image as
similar as possible to the high-resolution image and has

similar characteristics to the low-resolution original image.

2.2.2. Adversarial Loss. In addition to the above content loss,
the adversarial loss is also important to the perceptual loss.
Its purpose is to fool the discriminator to determine the
generated super-resolution image so that it can generate a
data distribution that the discriminator cannot distinguish
and thus cannot judge whether the image is a real image. In
the proposed ISGAN model, the adversarial loss can be

defined as follows:

lSR
Gen

N
= ). log Dy (Gy (1)), @)

n=1

lution image, and in order to obtain a better gradient
characteristic, we reduce log[1 - Dy (G, (I""))] to
—log DOD (GHG (IRE))

With this loss function, the discriminator’s ultimate goal
is to output 1 for all real pictures, and for all fake images, the
output is 0. On the contrary, the goal of the generator is to
fool the discriminator, which is to output 1 for the generated
image. In this way, the process of alternating iterative
training can be achieved, and the images that can fool the
discriminator are obtained, which is the resulting super-

resolution image.

3. Results and Discussion

3.1. Training and Parameters. Our training dataset is col-
lected from NTIRE database, which is different from the
testing data. In the experiments, we obtain the low-reso-
lution (LR) image from the high-resolution (HR) images by
downsampling with a factor of 16. The size of HR image is



Mathematical Problems in Engineering

FIGURE 4: (a) HR image and (b) LR image.

(d)

6]

FIGURE 5: SR results on image Fish 1. (a) Bicubic. (b) USIGAN. (c) EGAN. (d) GGAN. (e) VDSR. (f) ISGAN.

2040 x 1404, as shown in Figure 4. For each minibatch, 16
random HR subimages are cropped, which is not only to
increase the amount of data but also to weaken data noise
and increase model stability. For optimization, we use Adam
[19] with 3, = 0.9. In addition, the networks are trained with
a learning rate of 10~* and 10° update iterations.

3.2. Evaluation Results. To verify the performance of the
proposed method, several experiments are performed for
comparison. We test three kinds of fish images named Fish 1,
Fish 2, and Fish 3 separately and compare the performance
of the bicubic interpolation, underwater sonar image GAN
(USIGAN) method [8], enhancement GAN (EGAN)
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(d) (e)

®

FIGURE 6: SR results on image Fish 2.(a) Bicubic. (b) USIGAN. (c) EGAN. (d) GGAN. (e) VDSR. (f) ISGAN.

method [7], gradual GAN (GGAN) method [13], and very
deep super-resolution (VDSR) method [6]. Here, the bicubic
interpolation method is the most traditional and classic
underwater image super-resolution method. The USIGAN
method is the traditional GAN method for underwater sonar
images and the EGAN and GGAN methods are the im-
proved GAN methods. Besides, the VDSR method is one of
the deep learning methods for super-resolution of

underwater images. Figures 5-7 show the SR results ob-
tained by different methods.

It can be seen from the figure that the proposed method
has the best effect, which can clearly show the details of each
part of the image and also have a higher resolution. The
bicubic interpolation method can improve the resolution of
the image but cannot restore the full details of the image.
Both USIGAN method and EGAN method can obtain better
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FIGURE 7: SR results on image Fish 3. (a) Bicubic. (b) USIGAN. (c) EGAN. (d) GGAN. (e) VDSR. (f) ISGAN.

results than the bicubic method, but some details are still
unclear. In addition, GGAN and VDSR can get high-reso-
lution images with sufficient clarity but the unfocused areas
cannot be clearly restored. Our proposed ISGAN method
can not only get the clearest images but also reflect the
information of the whole image completely.

To further verify the effectiveness of the proposed
method, we consider two evaluation index indicators, peak
signal-to-noise ratio (PSNR) and structural similarity

(SSIM), which are calculated as objective measurements, as
shown in Tables 1 and 2. PSNR is one of the most common
and widely used objective criteria for evaluating images,
which is defined based on MSE, as shown in the following
equation:

—

n—-1
[1G, §) - K(, )I%,

1 &

mn i3 %

MSE = (8)

—
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TaBLE 1: PSNR of SR images with different methods.

Bicubic USIGAN EGAN GGAN VDSR ISGAN
Fish 1 24.5151 24.8645 24.9737 25.379 25.663 26.347
Fish 2 30.9937 34.257 34.5471 35.672 37.936 39.7221
Fish 3 23.1508 23.415 23.6668 24.383 24.509 25.202
TasLE 2: SSIM of SR images with different methods.
Bicubic USIGAN EGAN GGAN VDSR ISGAN
Fish 1 0.847 0.853 0.8689 0.8803 0.9276 0.9528
Fish 2 0.879 0.897 0.91 0.923 0.9675 0.9827
Fish 3 0.639 0.643 0.655 0.6631 0.6772 0.703
45
40 . |
—~"‘-—._‘—
— 35 P R - -
"Cg —"". 2
= '
30 F =
Z 2
z
25 " e T
G o> @ am o= b = - ®
20
0.55
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Method Method
—&— Fish 1 —&— Fish 1
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(a)

(b)

FiGure 8: Evaluation index. (a) PSNR. (b) SSIM.

where K represents the LR image and I represents the HR
image of size M x N. Then, PSNR is defined as

255 )

MSE
SSIM is a similarity determined by three measures of LR
image and HR image, and the three measures are brightness,
contrast, and structure, respectively, expressed as

PSNR =10 - logm( (9)

2 +c
11, K) = RS
Uy tx t ¢

20,0 +C

c(LK)= 1K "2, (10)
07 + 0% + ¢y
O +¢

s(I,K) :M’

which generally take c; = ¢,/2. In the equation, y; and py are
the mean values of I and K, 0% and O'%< are the variances of I
and K separately, o, is the covariance of I and K,and

Besides, in order to avoid calculation errors caused by the
denominator being 0 in the formula, ¢; and ¢, are set as
nonzero constants to ensure the stability of the result.
Therefore, SSIM can be expressed as

SSIM (x, y) = [l(x,y)“ -c(x, y)ﬁ - s(x, y)y]. (11)

The comparison results are shown in Figure 8 according
to PSNR and SSIM.

The results show the superiority of the proposed method
in the testing data. It can be seen from the figure that the
proposed method performs best in both the PSNR and SSIM
evaluation indexes. Besides, the bicubic method gets the
lowest value of PSNR and SSIM, which means this method
cannot restore enough information. USIGAN and EGAN
methods have higher PSNR and SSIM values than the
bicubic method, but they still cannot reflect the complete
details. In addition, GGAN and VDSR methods have higher
PSNR and SSIM values close to those of the ISGAN method.
Although the GGAN and VDSR methods can obtain a clear
image, the missing part of the detail cannot be supplemented
by these two methods. Therefore, the proposed ISGAN
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method can accomplish two tasks at the same time and
obtain an image with the best effect.

4. Conclusion

The super-resolution reconstruction is performed by using
the underwater image sequence through the improvement of
the existing GAN model, where the fusion step of the image
sequence is added in the generator, and the loss function is
changed accordingly. Therefore, it can be more suitable for
the super-resolution reconstruction method for underwater
images, which combines image sequence information to
acquire features in more images, resulting in clearer and
more detailed super-resolution underwater images. Exper-
imental results show that the proposed ISGAN method can
improve image resolution and display complete image
information.
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