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In this paper, we propose a new method for hyperspectral images (HSI) classification, aiming to take advantage of both manifold
learning-based feature extraction and neural networks by stacking layers applying locality sensitive discriminant analysis (LSDA)
to broad learning system (BLS). BLS has been proven to be a successful model for various machine learning tasks due to its high
feature representative capacity introduced by numerous randomlymapped features. However, it also produces redundancy, which
is indiscriminate and finally lowers its performance and causes heavy computing demand, especially in cases of the input data
bearing high dimensionality. In our work, a manifold learning method is integrated into the BLS by inserting two LSDA layers
before the input layer and output layer separate, so the spectral-spatial HSI features are fully utilized to acquire the state-of-the-art
classification accuracy. (e extensive experiments have shown our method’s superiority.

1. Introduction

Hyperspectral images (HSIs) are produced by hyperspectral
sensors by capturing reflectance values on tens or even
hundreds of spectral bands for each pixel. (e increased
spectral resolution of HSIs makes them essential for many
remote sensing tasks in various fields, such as agriculture [1],
environment [2], and military [3], etc. To obtain semantic
abstraction from HSIs, classification requires mapping from
pixel values to land-use and/or land-cover descriptions,
which is nontrivial because the high spectral redundancy
detrimentally affects the classification process in terms of the
curse of dimensionality problem [4] and noisy labels [5].
Moreover, accompanied by increasing spatial resolution, the
widespread adoption of integrated spatial and spectral in-
formation in HSIs’ analysis has further increased the di-
mensionality of input data [6]. It has been proven in many
cases that the useful spectral information for HSIs classifi-
cation implies a nonlinear embedded submanifold of the
original feature space, which can be retrieved by manifold-
learning-based feature extraction methods [7, 8]. Sun et al.
modified isometric mapping (ISOMAP) by accelerating its

process to reduce the dimensionality of HSIs [9]. Fauvel et al.
investigated the kernel principal component analysis
(KPCA) cooperating with a linear classifier in HSIs classi-
fication and showed its privilege over the original principal
component analysis method [10]. In contrast to previous
global approaches, locally based methods like locally linear
embedding (LLE) [11] and Laplacian eigenmaps (LE) [12]
merely attempt to preserve the local geometrical structure of
data, thus bringing about two prominent advantages:
computational efficiency and representation capacity [13].
Some recent researches tried to formulate locally based
manifold learning with a supervised regularization, thereby
creating discriminative and compact feature representations
[14–16]. Locality sensitive discriminant analysis (LSDA) [17]
was developed as an extension to linear discriminant
analysis (LDA) by integrating the discriminative properties
of LDA with the nearest neighborhood graph (NNG)
modeling the local geometrical structure of the underlying
manifold. Unlike other NNG based approaches (e.g., locality
preserving projections (LPP) [18] and LE) [12], LSDA was
used within-class graph and between-class graph to obtain
good between-class separation and preserve the within-class
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local structure as well. It can then be expected as a useful
feature reduction method for supervised classification tasks.

During the past decades, machine learningmethods have
been widely used to achieve higher semantic prediction
accuracy on HSIs. For example, kernel machines such as
support vector machine (SVM) and kernel Fisher dis-
criminant analysis (KFDA) have been used successfully for
HSIs classification [19]. Ensemble learning methods like
random forest [20] and rotation forest [21] also showcased
their benefits, especially when the available labeled training
samples are limited [22]. Inspired by the biological nervous
system, neural network models have achieved great success
in general media information processing [23] and HSIs
analysis [24, 25]. Moreover, models with random weights
(NNRW) such as random vector functional link networks
(RVFL) [26], Schmidt’s method [27], and extreme learning
machine (ELM) [28] set arbitrary weights and biases for the
hidden layer while the weights for output layer are obtained
analytically. As noniterative artificial neural network (ANN)
based frameworks, the NNRW algorithms enable high
training efficiency while still retaining the powerful repre-
sentation learning capacity [29]. In the field of HSIs clas-
sification, Xia et al. [30] reported that the general ELM was
more accurate and much faster than SVM. Zhou et al.
compared ELM with the composite kernel (ELM-CK) to
SVM with CK (SVM-CK) and revealed that the ELM-based
method still holds its advantages [31].

Recently, a new NNRW method, which broadly extends
the hidden layer of RVFL called broad learning system, has
been introduced [32, 33].(emain distinctive feature of BLS
is that the input data are randomly mapped to features in
“feature nodes,” which are subsequently transformed by
nonlinear activation function to form “enhancement nodes.”
Such a higher-order network structure provides an alter-
native way of learning deep features. In addition, the uni-
versal approximation capability of a broad learning system
has been proven [33]. Jin et al. developed a robust broad
learning system (RBLS) by modifying the regular terms of
the cost function in order to promote its generalization
performance on contaminated data modeling [34]. (rough
replacing the feature nodes with Takagi–Sugeno (TS) fuzzy
subsystems, Feng and Chen crafted a neurofuzzy model
called fuzzy broad learning system for regression and
classification tasks [35]. Kong et al. applied BLS to HSIs
classification for the first time. (e semisupervised frame-
work enabled the proposedmethod (i.e., semisupervised BLS
(SBLS)) to leverage limited labeled samples and substantial
unlabeled samples [36]. Although SBLS has shown its ad-
vantages over many approaches, including deep learning-
based methods, the potential of BLS in HSIs classification is
far from being fully exploited under the current situation.

In this paper, we propose a new framework for HSIs
classification called BLS-LSDA, which integrates hierar-
chical spectral-spatial information abstraction, manifold
learning method, and BLS. Our method firstly extracts
spectral-spatial features by iteratively abstracting pixels’
neighborhood in a hierarchical manner. (en the features

are input into manifold learning nodes implementing LSDA.
(e reduced dimensional features, which are discriminative
and locality preserving, are sent to the feature nodes and
afterward, the enhancement nodes of BLS. (e following
layer which is identical to the previous LSDA one is adopted
to exploit the intrinsic structure of high order features
produced by randommapping. At last, the weights of output
nodes are acquired by a ridge regression learning algorithm.
Our contributions are highlighted as follows:

(1) Our method integrates a manifold learning algo-
rithm with BLS in a multilayer neural network
model, thus providing enhanced feature represen-
tation capacity to BLS

(2) A novel implementation of spectral-spatial response
(SSR) [37] consisting of Gabor filter and adaptive
weighted filter (AWF) is developed to extract deep
features of HSIs without a deep learning scheme

(3) With comparative experiments conducted on 3
standard HSIs datasets, we show the proposed
approach’s advantage in classification accuracy over
the state-of-the-art methods

(e rest of this paper is organized as follows. Section 2
gives a brief overview of BLS. In section 3, we present our
method along with the details of the learning algorithm.
Section 4 compares the performance of our method in three
benchmark datasets with several prominent approaches and
analyses the experimental results. Finally, discussions and
conclusions are given in section 5.

2. Broad Learning System

Being different from the deep neural networks (DNN), BLS
has no need of gradually searching for the models’ optimized
parameters with backpropagation (BP).

(e learning procedure of BLS consists of only one step,
e.g., performing matrix inversion to figure out the weights of
links between the nodes of the hidden layer and output layer.
As a single hidden layer feedforward neural network (SLFN),
the most prominent characteristic of BLS is the adoption of
mapped feature nodes to construct the enhancement nodes,
which bring in higher feature representation capability.
Figure 1 shows the framework of the original BLS. Given the
input data set X, the ith group of mapped feature nodes can
be established by the following:

Zi � φi XWei + βei( 􏼁, (1)

where Wei is the randomly chosen weights, and βei is the
bias. It should be noted that different functions φi can be
adopted for the n different groups of the mapped nodes.
Concatenating the mapped nodes, we get the following:

Z
n

� Z1, Z2, . . . , Zn􏼂 􏼃. (2)

(en Zn is fed into the enhancement nodes to produce
further abstraction of the input data as follows:
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Em � ϕ Z
n
Whm + βhm( 􏼁, (3)

where Whm and βhm are weights and biases, respectively, φ is
the activation function. Usually, sigmoid function is used.
Eventually, the hidden layer of BLS is as follows:

H � φ1 XW1 + β1( 􏼁,φ2 XW2 + β2( 􏼁, . . . ,φn XWn + βn( 􏼁 | ϕ Z
n
Whm + βhm( 􏼁􏼂 􏼃

� Z1, Z2, . . . , Zn |ϕ Z
n
Whm + βhm( 􏼁􏼂 􏼃

� Z
n

Em

􏼌􏼌􏼌􏼌􏽨 􏽩.

(4)

(en the output layer can be obtained by the following:

Y � HW
m
n , (5)

where Wm
n is the connection weights between the BLS’s

hidden layer nodes and output layer nodes. Since the H and
Y are already known in the learning procedure, we can
calculate Wm

n by rigid regression of the pseudoinverse as
follows:

W
m
n � Z

n
Em

􏼌􏼌􏼌􏼌􏽨 􏽩
+
Y. (6)

3. Methods

3.1. MultiScale Composite Spatial Features. Spatial infor-
mation has been utilized for hyperspectral image classifi-
cation for many years [38, 39], along with the recognition
that a smoother classification map always ensures higher
classification accuracy [40]. However, for those pixels lying
along the edges, a smoothing filter may jeopardize the
classification accuracy gain. (us, in most cases, the spatial
information derived by smoothing filters was composed
with the raw spectral band values to acquire a trade-off of the
context-based and isolated pixel values [31], or context-

sensitive adaptive filters were designed to give out the edge-
preserving maps [41]. In this work, we utilize the adoptive
weighted filter (AWF) proposed by Zhou and Wei [42] to
extract spatial information from HSIs. Meanwhile, given its
deficiency in obtaining the differential information and
inspired by the success of Gabor features applying in
hyperspectral image analysis by enhancing the spatial dis-
crimination on the highly contrastive area [43, 44], we
exploit the benefit of integrating a simple two-dimensional
Gabor filter and the AWF for feature extraction.

By assuming that neighborhood pixels which have
similar spectrum distribution aremore likely to belong to the
same class, AWF obtains the weight of each pixel in the
neighborhood by evaluating the similarity between it and the
central pixel of the filter as follows:

wi,j �
si,j

􏽐
m×m
i,j si,j

. (7)

(e similarity si,j is calculated by the Gaussian radial
basis function as follows:

si,j � exp −
pcentral − pi,j

�����

�����
2

σ
⎛⎜⎜⎝ ⎞⎟⎟⎠, (8)

where pcentral is the central pixel and pi,j is the pixel located at
the ith row and jth column of the neighborhood. (e σ is the
standard deviation of the pixels’ difference, as follows:

σ � std d1,1, . . . , d1,m, d2,1, . . . , dm,m􏼐 􏼑,

di,j � pcentral − pi,j

�����

�����.
(9)

Derived from the computational model for human be-
ings’ visual cortical channels, the 2D Gabor filter (https://en.
wikipedia.org/wiki/Gaborfilter) has been widely used in
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feature1

Y

Z2: Mapped 
feature 2

Zn: Mapped 
feature n

Enhancement nodes

φ (XWei + βei), i = 1....n φ ([Z1Z2...Zn]Whj + βhj), j = 1....m

Wm
n

X

Figure 1: In the BLS framework, the mapped features are adopted as the input of enhancement nodes and the output layer nodes, thus
introducing better representation capacity.
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computer vision for various low-level tasks [45, 46]. It is a
directional sinusoidal function modulated by a Gaussian
envelope on a 2D (h, v) plane, which can be expressed in the
complex form as follows:

g(h, v; λ, θ,ψ,ω, c) � exp −
h′

2

+ c
2
v′

2

2ω2
⎛⎝ ⎞⎠ × exp i 2π

x′
λ

+ ψ􏼠 􏼡􏼠 􏼡,

(10)

where

h′ � h cos θ + v sin θ,

v′ � −h sin θ + v cos θ,
(11)

where λ denotes the wavelength of the sinusoidal factor, θ is
the orthogonal orientation to the parallel stripes of a Gabor
function. ψ is the phase offset, σ denotes the standard de-
viation of the Gaussian envelope, and c is the spatial aspect
ratio that specifies the ellipticity of the support of the Gabor
kernel.

(e two spatial features are then integrated into a
multiscale framework. We extract AWF and Gabor features
through 5× 5, 7× 7, 9× 9, 11× 11, and 13×13 filters, re-
spectively. At each scale, the convolution is conducted 3
times iteratively, and then the obtained features are sent to
the next step. Figure 2 shows a brief view of the extraction of
the multiscale composite spatial features.

3.2. BLS-LSDA. We believe that the validity of BLS greatly
roots from its numerous randomly constructed hidden
nodes which form a “broad” neural network structure.
However, excessive nodes generally cause heavy computa-
tional or storage consumption, especially when the number
of input nodes is boosted. Moreover, the randomly produced
nodes have been often criticized for their arbitrariness that
may deteriorate the performance in real-world applications
[47].

(e underlying structure of input data which is useful for
classification can be retained by discriminate analysis
methods, which intend to seek feature representations that
address the interclass separation. It is necessary for BLS to
make a compromise between the arbitrarily created nodes
and their usefulness in differentiating input features of
varied classes. To fulfill this task, an effective way is to in-
troduce LSDA into BLS. Deriving from LDA, LSDA over-
whelms its prototype by revealing the local geometrical
structure of the data manifold additionally. In this work, we
craft a novel neural network model named BLS-LSDA by
inserting two layers applying LSDA as in Figure 3. Details of
the layers are listed as follows.

(1) A layer was added between the input layer and the
hidden layer of BLS to decrease the dimensionality of
input data as well as enhance its separability;

(2) By inserting an extra layer applying LSDA between
the hidden layer and output layer, we further

introduce a groupwise feature mapping which will
benefit the weights retrieving.

For each LSDA layer, given m samples
x1, x2, . . . , xm􏼈 􏼉 ∈ Rn, and their labels
l(x1), l(x2), . . . , l(xm)􏼈 􏼉 as input, LSDA splits the nearest
neighbors of xi into Nw(xi) and Nb(xi) which are the xi ’s
nearest neighbor sample sets of the same and different
labels, respectively.

Nw xi( 􏼁 � x
j
i l x

j
i􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌 � l xi( 􏼁, 1≤ j≤ k􏼚 􏼛,

Nb xi( 􏼁 � x
j
i l x

j
i􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌 ≠ l(x), 1≤ j≤ k􏼚 􏼛,

(12)

where k denotes the number of nearest neighbors of xi.
Based on Nw(xi) and Nb(xi), within-class graph Gw and
between-class graphGb are constructed with weight matrices
Ww and Wb.

Ww,ij �
1, if xi ∈ Nw xi( 􏼁 orxj ∈ Nw xi( 􏼁,

0, otherwise,
􏼨

Wb,ij �
1, if xi ∈ Nb xi( 􏼁 orxj ∈ Nb xi( 􏼁.

0, otherwise.
􏼨

(13)

In order to map the points in feature space to a line so
that the within-class points stay as close as possible while the
between-class points stay as far as possible, given the map as
yT � (y1, y2, · · · , ym) � aTX, where X � (x1, · · · , xm) is a
n × m matrix, the projection vector a can be retrieved by,

argmaxaa
T
X αLb +(1 − α)Ww( 􏼁X

Ta subject to aT
XDwX

Ta � 1,

(14)

where Lb is the Laplacian matrix, Dw is a diagonal matrix
with Dw,ii � 􏽐jWw,ij. And α is a scalar between 0 and 1. See
[17] for details.

Algorithm 1 depicts the framework of the BLS-LSDA
training process. Let X

g
tr be the Gabor and X

f
tr be the AWF

features of sample Xtr. (ey are fed into the first LSDA layer
separately to produce dimensional reduced features X

g′
tr and

X
f′
tr. (en the two features are weighted and concatenated as

follows:

X
s
tr � λX

g′
tr, (1 − λ)X

f′
tr􏼔 􏼕. (15)

According to equations (1) and (3), now we get the
groups of feature nodes and enhancement nodes of BLS-
LSDA as follows:

Zi � φ X
s
trWei + βei( 􏼁,

Em � ϕ Z
n
Whm + βhm( 􏼁.

(16)

Each group of mapped features and enhancement fea-
tures are fed into the second LSDA layer separately, and then
we concatenated the outputs to get [Z

n′ | Em
′] (see Algo-

rithm 1). At last, the weights of the output layer are cal-
culated with equation (6).
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4. Experimental Result and Analysis

4.1. Datasets. To investigate the performance of our pro-
posed framework, three open remote sensing datasets shown
in Figure 4 have been taken as benchmarks. (e first one is
the Indian Pine dataset, which was collected by Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
over the Indian Pines test site located in North-western
Indiana, USA. (e scene consisting of 145×145 pixels was
captured with 224 spectral bands in the wavelength ranging
0.4–2.5×10−6 meters. (e number of labeled samples in its
16 classes is quite unbalanced, ranging from 20 to 2455. In

(a) (b)

Figure 4: (ree open hyperspectral imagery datasets used in our experiment. (a) From top to down are the raw imageries from the Indian
Pine, the Pavia University, and the Salinas. (b) (e corresponding ground-truth maps.
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our experiment, only 200 bands were used in order to avoid
the effect of water absorption.

(e second dataset is the Pavia University dataset col-
lected by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor with 115 bands. (e dataset has a spatial size
of 610× 340 pixels with 9 labeled land-cover classes. Due to
the noise, 12 bands are discarded in our experiment.

Salinas dataset was also captured by AVIRIS sensor while
being characterized by high spatial resolution (3.7m/pixel).
(e ground-truth covered contains 16 classes. 20 water
absorption bands were also removed from the Salinas in the
experiment.

4.2. Parameter Settings. To quantitatively compare the
classification results of BLS-LSDA with some prominent or
state-of-the-art methods, including SVM, KELM, SVM-CK,
KELM-CK [31], HiFi-We [48], and MASR [49], three fre-
quently used indexes as overall accuracy (OA), average
accuracy (AA), and kappa coefficient (K) are adopted in our
experiment. For each time, class-wise r (r� 5, 10, 15, 20, 25,
30, 35, 40) labeled samples randomly chosen from each
dataset are used for training, while the left is taken as testing
samples (When there are no sufficient labeled samples, half
of them are selected for training). To make the comparison
more reliable, each listed evaluation result is obtained by
taking an average of 10 times measurements under the same
model settings. Moreover, in order to show themain features
of our method, some parameters are manually chosen, as
shown in Table1.(e analysis of parameters’ sensitivities can
be found in section 4.4.

4.3. Classification Results. We present our experimental
results on each dataset in Tables (2), (3), and (4). Based on
the results shown in all tables, we can find that our proposed
BLS-LSDA is superior to the classic methods (i.e., SVM and
KELM) and their derivations with spectral-spatial kernel
method (i.e., SVM-CK and KELM-CK), as well as recent
prominent methods (i.e., HiFi-We and MASR) focusing on
exploring the advantage of spectral-spatial filters in HSI
classification. Moreover, in order to explore the utility of
LSDA layers inserted into the BLS model, the classification
results using the original BLS are also provided.

For the Indian Pines dataset, our method achieves up
to 94.2 ± 0.95% OA, 97.0 ± 0.49% AA, and 93.3 ± 1.10% k
when 40 training samples are used. (e advantage of our
method over classic methods is much more obvious than
it over other methods; however, MASR is better than the
proposed method on AA by nearly 0.3%. However, for
the University of Pavia dataset, by using the same
number of training samples, the classification accuracies

are 94.8 ± 0.79% OA, 96.0 ± 0.66% AA, and 93.0 ± 1.09%
k, which surpass all the chosen comparative methods by
3-4% generally. For the Salinas dataset, our BLS-LSDA also
achieved higher OA (98.0± 0.43%), AA (99.1± 0.18%), and k
(97.7± 0.48%) than all other compared methods.

(e advantage of BLS-LSDA is more obvious when there
are a limited number of training samples (i.e., 5, 10, and 15).
As an example, in Table (2), when 10 random samples are
used for training, our method claims a nearly 4% OA in-
crease over HiFi-We, which achieves the highest OA in
comparative methods with 81.6± 2.26%. We believe that it is
due to the high representation learning capacity of our
proposed network structure. Moreover, the classification
accuracies’ standard deviations of our method are overall
lower than other methods, which means that the proposed
model is more robust to the randomly chosen training data.
However, an exception to the previous statement can be
found in Table 3, indicating that when there are extremely
limited training samples, LSDA may fail to capture the
representative features.

Figures 5, 6, and 7 visually show the classification results
of BLS-LSDA and other compared methods when r� 40. By
visual evaluation, we can conclude that our proposed
method is good at balancing the classification accuracy of
pixels at both sharp and smooth regions. Taking the Salinas
dataset (Figure 7) as an example, it can be easily seen that our
method surpasses the other methods on the homogeneous
area (i.e., the two smooth patches marked with grey circles),
while the edges or acute angles are also well-preserved.

4.4. Parameters’ Sensitivities Analysis. We have evaluated
the impact of different values of the model’s parameters
shown in Table 1. It reveals that the classification results are
not sensitive to different h, C, and s. Also, since N1, N2, and
N3 are intertwining, we choose these parameters empiri-
cally. Besides, it has been well recognized that the di-
mensionality of the reduced subspace is crucial in manifold
learning. Here, we investigate the performance of BLS-
LSDA with different subspace dimensions on three
benchmark datasets. For each dataset and each class, 20
training samples were randomly selected and the remaining
samples were used for testing. All experiments were per-
formed 10 times in order to get the average results. Figure 8
depicts the relationship between the classification results
(OA) and the dimensions of the reduced subspace on three
datasets.

For Indian Pines, we can find that when the dimensions
of reduced subspace are less than 15, the overall accuracy
goes up with the increase of the dimensions; otherwise, the
curve becomes flat. Similar curves can also be observed

Mathematical Problems in Engineering 7



Table 2: Results of classification accuracy (%) under different numbers of labeled training samples per class of the Indian Pines dataset

r Index SVM KELM SVM-CK KELM-CK HiFi-We MASR BLS BLS-LSDA

5
OA 44.6± 3.94 48.1± 4.09 59.0± 3.17 65.5± 4.42 72.2± 4.12 66.7± 4.14 72.0± 3.17 75.4 ± 3.22
AA 59.4± 2.41 60.5± 2.73 71.9± 3.83 78.6± 2.30 83.0± 2.67 80.9± 1.86 82.7± 1.77 84.0 ± 2.03
k 38.5± 4.04 42.0± 4.31 54.2± 3.57 61.4± 4.57 68.7± 4.52 60.2± 5.07 66.6± 3.92 70.8 ± 3.97

10
OA 53.9± 4.31 57.7± 1.73 70.2± 4.55 79.2± 2.76 81.6± 2.26 80.2± 2.66 83.7± 2.41 85.6 ± 1.61
AA 67.2± 2.72 68.9± 1.17 82.3± 2.48 88.1± 1.65 89.7± 0.89 89.5± 1.14 90.7± 1.23 91.7 ± 0.79
k 48.5± 4.69 52.5± 1.93 66.6± 4.99 76.5± 3.08 79.2± 2.49 76.9± 3.18 81.0± 2.86 83.2 ± 1.92

15
OA 59.6± 2.80 60.6± 2.12 77.4± 1.96 83.2± 1.59 86.0± 3.06 84.6± 1.62 85.2± 1.48 88.0 ± 2.21
AA 71.5± 1.63 72.9± 0.90 86.9± 1.41 91.2± 0.86 92.6± 1.36 91.6± 0.83 92.0± 0.90 93.2 ± 1.12
k 54.7± 3.03 55.9± 2.26 74.6± 2.19 81.1± 1.77 84.2± 3.39 82.0± 1.89 82.8± 1.74 86.0 ± 2.59

20
OA 61.8± 2.60 64.1± 1.70 82.1± 2.32 87.6± 0.91 87.7± 1.43 88.5± 1.93 88.9± 1.48 90.1 ± 2.06
AA 73.0± 1.86 75.5± 1.39 90.0± 0.87 93.7± 0.69 93.6± 0.77 94.2 ± 0.89 93.6± 0.96 94.0± 1.37
k 57.1± 2.82 59.7± 1.87 79.7± 2.55 85.9± 1.03 80.0± 1.61 86.7± 2.26 87.1± 1.74 88.6 ± 2.42

25
OA 64.4± 1.75 67.5± 1.71 84.4± 1.55 89.4± 1.50 89.7± 2.32 90.5± 1.01 89.9± 2.13 91.7 ± 1.86
AA 75.8± 1.25 77.7± 0.87 91.4± 0.89 94.6± 0.78 94.9± 0.79 95.3± 0.47 94.5± 0.84 95.5 ± 0.89
k 60.1± 1.92 63.4± 1.81 81.5± 1.63 88.0± 1.70 88.3± 2.57 89.0± 1.17 88.3± 2.50 90.4 ± 2.17

30
OA 66.9± 1.51 69.3± 1.30 85.6± 1.45 91.3± 1.62 92.0± 0.97 91.8± 1.45 90.5± 2.22 93.3 ± 1.22
AA 78.2± 1.34 79.5± 0.82 92.6± 0.74 95.7± 0.73 95.9± 0.57 96.0± 0.59 94.9± 1.26 96.4 ± 0.45
k 62.9± 1.47 65.8± 1.64 83.7± 1.64 90.0± 1.83 90.9± 1.09 90.5± 1.68 89.0± 2.61 92.2 ± 1.41

35
OA 68.7± 2.16 71.7± 1.52 86.6± 1.08 91.6± 1.57 92.6± 1.15 93.0± 0.78 91.0± 1.04 93.5 ± 1.04
AA 78.6± 1.90 80.9± 0.91 93.1± 0.89 96.1± 0.76 95.9± 1.66 96.2± 0.28 95.3± 0.40 96.5 ± 0.72
k 64.8± 2.35 68.1± 1.71 84.8± 1.21 90.4± 1.78 91.5± 1.30 91.9± 0.91 89.6± 1.22 92.5 ± 1.21

(i) Require: Training samples Xtr, and the corresponding labels Ytr; the group of mapped nodes in BLS n.
(ii) Ensure: (e weights of the output layer, Wm

n .
(1) Extract the Gabor feature X

g
tr and AWF feature X

f
tr of sample Xtr;

(2) Feed X
g
tr and X

f
tr into the layer which implement LSDA, to produce dimensional reduced features X

g′
tr and X

f′
tr;

(3) Concatenate weighted X
g′
tr and X

f′
tr by equation (15), yielding Xs

tr;
(4) for i� 1; i< n; i++ do
(5) Assign a random value to Wei and βei;
(6) Calculate the mapped feature values Zi � φ(Xs

trWei + βei).
(7) end for
(8) Concatenate the mapped feature values to get a mapped feature group Zn � [Z1, Z2, . . . , Zn];
(9) Assign Whm and βhm with random values;
(10) Calculate the enhancement nodes with Em � ϕ(ZnWhm + βhm);
(11) Apply LSDA to each Zi in Zn and Em in another LSDA layer to get Z

n′ and Em
′;

(12) Concatenate Z
n′ and Em

′ to produce [Z
n′ | Em
′];

(13) Calculate the connection weights between the BLS’s hidden layer and an output layer with Wm
n � [Zn | Em]+Y.

ALGORITHM 1: BLS-LSDA training algorithm.

Table 1: Parameter settings of the proposed method for each dataset.

Dataset parameter Indian pines Pavia University Salinas
H 3 3 3
C 5 5 5
S 10 10 10
N1 200 200 200
N2 30 30 30
N3 1000 1000 1000
λ 0.1 0.1 0.1
D 30 50 60
g 5, 7, 9, 11, 13 5, 7, 9, 11, 13 5, 7, 9, 11, 13
f 5, 7, 9, 11, 13 5, 7, 9, 11, 13 5, 7, 9, 11, 13
h is the convolution depth of Gabor and AWF filters, g and f are the neighborhood’s sizes of Gabor and AWF, respectively, λ is the weight of the spatial
information in equation (15), d is the number of dimensions of reduced subspace in LSDA algorithm, C and s are penalty parameters and enhanced node
scaling in BLS, and N1, N2, and N3 are the number of feature node groups, feature nodes per group, and enhanced nodes in BLS, respectively.
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Table 2: Continued.

r Index SVM KELM SVM-CK KELM-CK HiFi-We MASR BLS BLS-LSDA

40
OA 70.1± 1.48 72.1± 1.98 89.1± 1.28 93.4± 0.87 93.1± 1.10 94.0± 0.66 91.7± 1.11 94.2 ± 0.95
AA 81.2± 3.46 81.1± 1.27 94.4± 0.66 96.9± 0.35 96.3± 0.57 97.3 ± 0.29 95.8± 0.48 97.0± 0.49
k 66.3± 1.63 68.5± 2.21 87.6± 1.46 92.5± 0.98 92.1± 1.24 93.1± 0.77 90.3± 1.29 93.3 ± 1.10

Table 3: Results of classification accuracy (%) under different numbers of labeled training samples per class of the University of Pavia
dataset.

r Index SVM KELM SVM-CK KELM-CK HiFi-We MASR BLS BLS-LSDA

5
OA 57.8± 6.36 58.8± 4.44 65.3± 8.89 64.1± 7.98 66.3± 6.54 69.0± 2.19 74.2 ± 4.75 73.7± 6.44
AA 70.6± 2.42 67.9± 2.30 73.5± 3.55 71.6± 3.38 73.1± 2.13 70.5± 1.81 81.9 ± 1.78 78.3± 2.64
k 48.6± 6.24 49.5± 3.85 56.9± 9.95 55.3± 8.66 57.4± 7.22 51.7± 4.00 62.8 ± 6.73 60.8± 9.90

10
OA 62.3± 6.60 63.6± 3.45 75.3± 6.74 76.5± 6.62 79.2± 4.52 74.6± 3.46 83.8± 3.27 84.0 ± 2.81
AA 73.3± 1.89 74.5± 1.29 81.3± 2.30 81.2± 3.96 84.3± 2.65 74.7± 2.19 87.0± 1.18 87.5 ± 1.75
k 53.8± 6.55 55.0± 3.49 70.0± 6.70 70.3± 7.87 73.6± 5.28 61.4± 6.00 77.2± 4.59 77.4 ± 4.10

15
OA 69.6± 4.09 67.1± 3.99 82.7± 4.52 83.9± 4.56 83.2± 2.58 79.0± 2.89 86.2± 2.31 88.4 ± 1.76
AA 76.8± 1.32 77.4± 1.09 85.3± 2.08 86.4± 1.98 86.7± 1.97 79.3± 1.09 90.2± 1.27 90.7 ± 0.96
k 61.6± 4.49 59.2± 4.18 77.8± 5.39 79.3± 5.43 78.4± 3.18 69.2± 4.45 80.7± 3.35 83.9 ± 2.48

20
OA 71.6± 3.99 69.1± 5.08 86.6± 2.65 87.8± 4.38 86.3± 2.72 82.3± 2.33 87.1± 2.84 88.8 ± 1.91
AA 79.8± 0.84 78.7± 1.26 88.3± 1.31 88.9± 1.91 89.2± 1.82 81.3± 1.42 91.0± 0.90 91.1 ± 0.80
k 64.3± 4.30 61.5± 5.36 82.6± 3.26 84.2± 5.39 82.2± 3.33 74.4± 3.55 82.1± 3.93 84.6 ± 2.69

25
OA 72.3± 4.29 73.4± 2.30 88.4± 2.36 88.8± 3.27 87.0± 2.43 85.6± 1.78 88.3± 2.27 89.7 ± 1.38
AA 80.2± 2.07 80.8± 0.92 89.7± 1.49 90.3± 1.34 90.3± 1.90 84.1± 0.56 91.8± 0.83 92.2 ± 0.54
k 65.1± 4.77 66.3± 2.39 82.6± 3.26 85.5± 4.05 83.2± 3.03 79.6± 2.57 83.9± 3.20 85.7 ± 1.93

30
OA 75.5± 2.43 75.6± 1.42 90.6± 1.52 91.4± 1.84 88.0± 1.27 86.8± 2.11 88.8± 2.38 91.5 ± 1.44
AA 81.6± 1.30 81.3± 1.02 91.3± 0.86 91.6± 1.01 91.8± 0.77 85.5± 0.75 92.2± 0.82 93.3 ± 0.85
k 68.7± 2.79 68.9± 1.61 87.7± 1.93 88.7± 2.35 84.5± 1.57 81.3± 3.06 84.5± 3.31 88.3 ± 2.01

35
OA 76.9± 3.34 75.7± 2.09 91.2± 1.26 91.9± 1.52 88.3± 3.12 88.1± 1.43 88.9± 2.67 93.2 ± 0.83
AA 82.5± 1.29 82.3± 0.91 91.8± 0.89 92.5± 0.97 91.9± 1.28 86.9± 0.74 92.3± 1.20 95.1 ± 0.31
k 70.6± 3.73 69.1± 2.40 88.6± 1.64 89.3± 1.97 84.9± 3.85 83.3± 2.06 84.6± 3.72 90.8 ± 1.13

40
OA 77.7± 2.69 76.2± 2.62 91.6± 1.80 93.2± 1.09 90.4± 1.91 89.5± 1.41 90.0± 2.25 94.4 ± 0.85
AA 83.3± 1.18 83.2± 0.80 92.2± 0.87 93.1± 0.99 92.7± 1.09 88.2± 0.77 93.0± 0.76 95.4 ± 0.52
k 71.4± 3.21 69.8± 2.97 89.0± 2.27 91.1± 1.43 87.4± 2.43 85.4± 1.99 86.3± 3.14 92.3 ± 1.16

(a) (b) (c)

Figure 5: Continued.
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(a) (b) (c) (d)

Figure 6: Continued.

(d) (e) (f )

(g) (h) (i)

Figure 5: Classification results on the Indian Pines dataset with 40 training samples per class. (a) (e Ground-truth map. (b) SVM. (c)
KELM. (d) SVM-CK. (e) KELM-CK. (f ) HiFi-We. (g) MASR. (h) BLS. (i) BLS-LSDA.
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when the other two datasets are taken. However, the
turning points are found when the number of dimensions
equals 10.

We also investigate the change of classification accu-
racies with λ. Figure 9 shows that with λ� 0.1 the model
acquires its best performance.

(e) (f ) (g) (h)

(i)

Figure 6: Classification results on the University of Pavia dataset with 40 training samples per class. (a)(eGround-truthmap. (b) SVM. (c)
KELM. (d) SVM-CK. (e) KELM-CK. (f ) HiFi-We. (g) MASR. (h) BLS. (i) BLS-LSDA.
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(a) (b) (c)

(d) (e) (f )

Figure 7: Continued.
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(g) (h) (i)

Figure 7: Classification results on the Salinas dataset with 40 training samples per class. (a)(e Ground-truth map. (b) SVM. (c) KELM. (d)
SVM-CK. (e) KELM-CK. (f ) HiFi-We. (g) MASR. (h) BLS. (i) BLS-LSDA.
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Figure 9: OA (%) of classification on 3 datasets with different λ.
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5. Conclusion

In this paper, we present a novel method for HSI classifi-
cation which is based on BLS and LSDA.(e two algorithms
are integrated into a multilayered neural network model. To
utilized both the spatial and spectral information, the Gabor
filter and AWF filter are adopted to produce the input of the
BLS-LSDA. Our experiments on three open benchmark
datasets have shown their advantages against compared
methods in terms of OA, AA, and k.

Also, our work has shown that with limited dimensional
features acquired by LSDA layers in the model, high clas-
sification accuracy can be achieved, which means compu-
tational efficiency in real applications.

We believe that BLS-LSDA is a successful improvement
on the original BLS for HSI classification; however, there are
still some problems to be tackled. Our future work would
address the initialization of weights and offsets with heuristic
algorithms instead of random assignments.
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