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Populations of multipopulation genetic algorithms (MPGAs) parallely evolve with some interactionmechanisms. Previous studies
have shown that the interaction structures can impact on the performance of MPGAs to some extent. -is paper introduces the
concept of complex networks such as ring-shaped networks and small-world networks to study how interaction structures and
their parameters influence the MPGAs, where subpopulations are regarded as nodes and their interaction or migration of elites
between subpopulations as edges. After solving the flexible job-shop scheduling problem (FJSP) by MPGAs with different
parameters of interaction structures, simulation results were measured by criteria, such as success rate and average optimal value.
-e analysis reveals that (1) the smaller the average path length (APL) of the network is, the higher the propagation rate will be; (2)
the performance of MPGAs increased first and then decreased along with the decrease of APL, indicating that, for better
performance, the networks should have a proper APL, which can be adjusted by changing the structural parameters of networks;
and (3) because the edge number of small-world networks remains unchanged with different rewiring possibilities of edges, the
change in performance indicates that the MPGA can be improved by a more proper interaction structure of subpopulations as
other conditions remain unchanged.

1. Introduction

Genetic algorithm (GA) [1], an original metaheuristic, is
easy to fall into local optima when employed to solve re-
source-constrained project scheduling problems [2] such as
flexible job-shop schedule problems (FJSPs) due to the
complexity of searched space and high dimensions [3].

To maintain population diversity (enhancing the search
diversity) and avoid premature convergence, a multi-
population genetic algorithm (MPGA) [4] is one feasible
method where subpopulations are generated and individuals
migrate periodically among them. In the evolutionary
process, when intra-subpopulation evolution pushes indi-
viduals towards different local optima, migration can in-
troduce new genes into the subpopulations [5]. As in [5, 6],

the migration can be implemented in different topologies
that define how subpopulations are connected, which can
influence the outcomes of MPGAs to some extent.

To more effectively research on the performance with
different interaction structures between subpopulations, we
can consider subpopulations as nodes and their interaction
or migration of elites between subpopulations as edges so
that MPGA can be regarded as complex networks. Similarly,
but not identically, Du et al. [7] proposed the networked
evolutionary algorithm where nodes represent information
process units, i.e., individuals, and connections denote in-
formation transmission links. Payne et al. [8] shed light on
dynamic population structures, wherein edges are dynam-
ically rewired according to the genotypic or phenotypic
properties of individuals or according to the success of prior
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interindividual interaction. Chao et al. [9, 10] proposed a
multiobjective cellular grey wolf optimizer with a topological
structure for hybrid flow-shop scheduling, in which each wolf
or individual can be regarded as a grid of a lattice structure,
and the interaction among them is restricted to the neigh-
borhood. In the aforementioned three papers, the nodes of
networks were regarded as individuals; however, this paper
mainly discusses the interactions of subpopulations. For
example, Leitao et al. [5] conducted simulations to study how
the topology of island models (subpopulations) impacts the
effectiveness and diversity of evolutionary algorithms with
three types of networks, i.e., the ring and torus, as well as the
fully connected networks. Besides, Zhang and Li [11] pro-
posed a multiobjective evolutionary algorithm based on de-
composition (MOEA/D). It can also be regarded as a
multipopulation algorithm, and each subpopulation has only
one individual. Fu et al. [12] extended and used the idea of
MOEA/D to realistic problems, e.g., flow-shop scheduling
problem, and each subpopulation contains multiple indi-
viduals. MOEA/D decomposes a multiobjective optimization
problem into a number of scalar optimization subproblems,
and the offspring individual to one subproblem can be
generated upon the parent individuals from its neighboring
subproblems. -is neighborhood relation can also be treated
as a ring-shaped network. Unlike MPGA discussed in this
paper, the subpopulations of MOEA/D are heterogeneous,
representing different subproblems, and cannot evolve in-
dependently to get an optimal solution. Additionally, other
networks such as 4D hypercubes [13] and a 4 × 4 toroidal
mesh are also utilized [4].

When it comes to scheduling problems [14, 15], MPGAs
are widely used to get the optimal solution. Kimms et al. [16]
introduced an MPGA as a procedure to solve the syn-
chronized and integrated two-level lot sizing and scheduling
problem; in the migration process, a copy of each best in-
dividual is inserted into the next population replacing a
random individual. -erefore, the interaction of subpopu-
lations can be abstracted as a ring-shaped network. Zandieh
and Karimi [17] proposed an MPGA to search the Pareto
optimal solution for a multiobjective group scheduling
problem in hybrid flexible flow-shop with sequence-de-
pendent setup times, where the interaction of subpopula-
tions can be abstracted as fully connected networks.

We specifically choose the FJSP [18–21] as a measure-
ment to test the performance of the MPGA as interaction
structures of subpopulations vary. Research on the FJSP is
essential for enterprises, especially for small-medium en-
terprises, to carry out production planning and scheduling
in order to meet the delivery dates under a complex market
[22]. For instance, Zhang et al. [23] put forward the MPGA
based on the multiobjective scheduling of flexible job-shop,
in which the abstracted topology of migration is a cen-
tralized network.

As summarized in Table 1, complex networks, such as
scale-free networks and small-world networks, have been
employed in cellular evolutionary algorithms to control
interaction behaviors between individuals. However, for
MPGAs, the focus of interaction structures among sub-
populations is mainly rings, tori, hypercubes, and so on, and

complex networks have rarely been utilized to represent
subpopulations and their interaction purposefully.

-erefore, in our previous studies [24, 25], we addressed
how seven different network structures, including the ring-
shaped network and the small-world network, influence the
propagation rate of advantageous genes and thus affect the
performance of MPGA for solving the FJSP. However, only
the scale of networks is discussed, and the influence of other
structural parameters is not researched. -us, in this paper,
we mainly take advantage of ring-shaped networks and
small-world networks [26] to study the structural influence
on the performance of MPGAs to solve the FJSP because
ring-shaped networks are elementary topology widely used
in MPGAs intentionally or unintentionally, and small-world
networks with a definite node number will possess the same
edge number as the rewiring possibility of edges varies,
which would make them convenient and easy to study the
influence of interaction structures as other conditions re-
main unchanged.

Concretely, we change the inherent structural parameter
of the corresponding network constantly and record the
simulation results of MPGAs with the network. -e success
rate (SR) and average optimal value (AOV) are utilized to
measure the results of MPGAs. Besides, the Hamming
distance index (HDI) is introduced to evaluate the difference
between elite individuals and characterize the propagation
rate of advantageous genes, which provide an insight into
how different interaction structures of subpopulations affect
the performance of MPGAs.

-e sections below are organized as follows. In Section 2,
basic knowledge of complex networks and MPGA with
networks for solving the FJSP, as well as the evaluation index,
are introduced. -en, experiments and results analysis are
reported in Section 3. Conclusions follow in Section 4.

2. Preliminaries

2.1. Network Models. A network consists of some nodes
connected by some edges with a certain topology (structure)
[27]. Some basic concepts utilized to characterize the net-
work are introduced in the following. On top of that, typic
models of the ring-shaped network and small-world net-
work are elaborated.

2.1.1. Degree and Average Path Length. -e concept of
degree is the most fundamental character and measure of a
node in a network (in this paper, networks are undirected
networks), and the degree of a node is defined to be the
number ki of its existing edges. -e average degree of a
network is the average value of all such node degrees ki over
the entire network, denoted by‾k.

-e average distance or average path length (APL) of a
network is defined to be the average value of all distances
over the network:

APL �
2

N ×(N − 1)
􏽘
i<j

dij, (1)
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whereN is the total number of nodes in the network and dij is
the distance between node i and node j, i.e., the total number
of edges connecting them through the shortest route [27].

2.1.2. Ring-Shaped Networks. A network in which every
node has the same degree, i.e., the same number of con-
necting edges, is called a regular network. A typical sparse
regular network is a nearest-neighbor coupled network,
where every node is connected to 2K-nearest neighbors, K
nodes on each side. Particularly, as shown in Figure 1, such a
network with a periodic boundary connectivity condition is
a ring-shaped network [27].

2.1.3. Small-World Networks. -e so-called WS small-world
networks [28] were first proposed by Watts and Strogatz in
1998, which have both features of large clustering coeffi-
cients and short average path lengths. -is model is gen-
erated by rewiring the edges of a ring-shaped network one by
one with probability p, in which the case of p � 0 corre-
sponds to a regular network, and p � 1 corresponds to a
kind of ER random-graph networks.

A WS small-world network can be generated by the
following algorithm:

(1) Start from a ring-shaped network with N nodes,
where each node is connected to its 2K(K> 0)

neighbors, K nodes on each side
(2) For every pair of connected nodes in the ring-shaped

network, reconnect the edge with possibility p in
such a way that the beginning end of the edge is kept,
but the other end is disconnected, and then rewire it
to a node randomly

-is operation is conducted edge by edge on the original
ring-shaped network, once and once only, either clockwise
or counterclockwise. Additionally, self-loop and multiple
edges are avoided. Figure 2 shows an example of WS small-
world networks. Since the WS small-world network is the
original and most widely used topology, the term “small-
world network” mentioned in this paper is always the WS
small-world network.

Additionally, compared to WS small-world networks,
the algorithm can be modified by replacing “random
rewiring edges” with “random adding edges,” resulting in

the NW small-world network model [29]. However, the edge
number of NW small-world networks is changed with the
rewiring process, so we discard the use of NW small-world
networks.

2.2. Flexible Job-Shop Scheduling Problem. FJSP, which is
also introduced in [24, 30], can be divided into two sub-
problems: machine subproblem and operation subproblem,
namely, selecting a specific machine for each operation and
arranging a proper processing order of all operations.
Usually, there exist a job set within n jobs, labeled as
J � Ji􏼈 􏼉

n

i�1, and a machine set within m machines, labeled as
M � Mk􏼈 􏼉

m

k�1. For each job Ji, there is an operation set
within li operations, labeled as Oi � Oij􏽮 􏽯

li

j�1. Each operation
Oij can only be processed on a specific group of machines,
labeled as Sij ⊆M. -e goal of the scheduling problem is to
assign operations with proper orders to proper machines at
the proper time, to pursue some given objectives such as
minimizing maximum machine workload and minimizing
makespan. For simplicity without losing generality, we
choose to minimize makespan as the objective. -e math-
ematical model is as follows [25]:

minFmax � max Fij􏼐 􏼑, ∀i, j, (2)

s.t.

Fijk ≥ 0, ∀i, j, k, (3)

Pijk ≥ 0, ∀i, j, k, (4)

Bijk ≥ 0, ∀i, j, k, (5)

Xijk ∈ 0, 1{ }, ∀i, j, k, (6)

i, j, l, i′, j′ ∈ 1, 2, 3, . . . ,{ }, (7)

􏽘
k∈Sij

Xijk � 1∧Fijk − Bijk � Pijk, ∀i, j,
(8)

Fij − Fi(j−1) ≥Pijk · Xijk, ∀i, j, k, (9)

Fi′j′k ≤Bijk ∨Fijk ≤Bi′j′k, ∀i′, j′ ≠ i, j. (10)

Table 1: Summary of background studies.

References Networks or topologies Denotation of nodes
[4] Toroidal mesh networks; hypercubes Subpopulations
[5] Fully connected networks; rings; tori Subpopulations
[7] BA networks Individuals
[8] Scale-free networks; small-world networks Individuals
[9, 10] Lattices Individuals
[11, 12] Rings Subpopulations
[13] 4D hypercubes Subpopulations
[16] Ring-shaped networks Subpopulations
[17] Fully connected networks Subpopulations
[23] Centralized networks Subpopulations
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Table 2 lists the notations used in the FJSP. For equation
(6), as Oij is arranged to be processed on Mk, Xijk � 1;
otherwise, 0. Equation (7) denotes the domains of variables.
Equation (8) guarantees that each operation can only be
processed at one machine without disruption, and ‘∧’ rep-
resents logical AND. -erefore, Fij � Fijk, ∀i, j,∃k, k ∈ Sij.
Equation (9) ensures each job will be processed in the correct
order. Equation (10) ensures that one machine can only
process one operation at the same time, and ‘∨’ represents
logical OR.

Besides, Table 3 lists a four-step process of the FJSP for 2
jobs with a total of 4 operations (4 × 4), where ‘—’ means the
corresponding operation cannot be processed in that ma-
chine. -e fourth number “19” in the first line, for example,
represents that O11 can be processed in M4 within time
horizon 19.

2.3. MPGA with Networks for Solving the FJSP. For using an
MPGA with networks to solve the FJSP, multiple operations
are included, such as encoding, decoding, crossing, muta-
tion, and migration.

2.3.1. Encoding. In this algorithm, we employ an integer
encoding method [31] to generate individuals, each of which
can represent a feasible solution of the FJSP. -e process of
encoding can be divided into two stages, to wit, encoding for
machine subproblem and operation subproblem. For the
former, an encoded solution is denoted by a string of in-
tegers whose length is equal to the total operation number of
all jobs, in which an integer in each position represents an
operation, and the value represents the ordinal number of
machines in the candidate machine set (Sij) of this oper-
ation. For the FJSP mentioned in Table 3, suppose there is an
encoded solution (1 2 3 1) within four integers which reflect
that there are a total of four operations in the two jobs. -e
first integer 1 means that O11 is arranged with M1. For the
second integer, because the candidate machine set of O12 is
S12 � M2, M4􏼈 􏼉, integer 2 denotes that O12 will be processed
on the fourth machine, namely, M4, rather than M2.
Similarly, O21 is arranged to be processed on M4 and O22 on
M3.

For the latter one, a string of integer represents an
encoded solution, and the number of integers equals the
total operation number of all jobs too.-e value of an integer
denotes the serial number of jobs, and if a job has li op-
erations, the job number will appear li times.-e sequence of
integers represents the processing order of the corre-
sponding jobs. For example, there is an encoded solution (21
1 2) for the FJSP as shown in Table 3, in which integers “1”
and “2” appear twice, respectively, due to both J1 and J2
including two operations. In detail, the fourth integer is “2,”
and it is the second occurrence of “2” in this string, indi-
cating the processing of the second operation of the second
job, namely, O22. -erefore, the processing order of oper-
ations indicated by this solution is O21, O11, O12, and O22.

-erefore, we combine (1 2 3 1) and (2 1 1 2) together,
getting an individual (1 2 31 21 1 2), whichmeansO21 will be
processed on M4, O11 on M1, O12 on M4, and O22 on M3
sequentially.

2.3.2. Decoding. An encoded individual must be decoded
into an original solution of the FJSP to calculate the fitness.
-e decoding algorithm proposed by Shi et al. [30] was
adopted in this paper as follows:

At first, we convert an individual into a matrix, labeled
as Hd. For instance, [3 1 2 1 2 1 1 2], a given individual
for the FJSP in Table 3, can be converted into a matrix
as shown in Figure 3.
In matrix Hd, the first column stores the sequence
numbers of jobs; the second column stores the se-
quence numbers of operations of the corresponding
job; the third column stores the sequence numbers of
machines in Sij; and the fourth column stores the time
horizon as the corresponding operation processed in
the specific machine. Besides, the last two columns are
reserved to store the start time and completion time,
respectively. For instance, the first row of Hd represents
that O21 is processed on M3 within time horizon 19.

Figure 1: Ring-shaped networks.

Figure 2: WS small-world networks.
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Next, we update the start time and completion time row
by row. If Oij represented by the corresponding row is
the first operation of Ji and Mk selected to process Oij

has not processed any other operation, then
Bijk � 0, andFijk � Bijk + Pijk. Assign Bijk and Fijk into
columns 5 and 6 of Hd.
If Oij is the first operation of Ji and Mk has processed
other operations, then find all idle-time intervals of Mk

denoted by [SqEq](q � 1, 2, . . . , ), check all idle intervals
one by one to find the first one whose duration is longer
than Pijk, and set Bijk � Sq andFijk � Bijk + Pijk.
If Oij is not the first operation of Ji, the former op-
eration Oi(j−1) is finished on Mk′ , and Mk has not been
assigned to any operation, then
Bijk � Fi(j−1)k′ andFijk � Bijk + Pijk.
If Oij is not the first operation of Ji and Mk has been
assigned to other operations, then search for and check
all idle-time intervals of Mk from left to right on the
timeline. If Eq − Sq ≥Pijk andFi(j−1)k′ ≤ Sq, then Bijk �

Sq andFijk � Bijk + Pijk; if
Eq − Sq ≥Pijk, Fi(j−1)k′ ≥ Sq, andEq − Fi(j−1)k ≥Pijk,
then Bijk � Fi(j−1)k′ andFijk � Bijk + Pijk. Since Eq of
the last interval is positive infinity, an idle-time interval
can always be found to satisfy one of these conditions.
In this way, there is no earlier idle-time interval on Mk

for Ji to insert without delaying or interrupting other
operations, indicating that an active schedule is
achieved [32]. -e optimal schedule for any regular
measure of performance, including makespan, will be a

member of the active schedule set [33]. -erefore, the
optimal value of makespan can be found by MPGAs
with this decoding method.
At last, after updating columns 5 and 6 of all rows, the
maximum value of column 6 can be found as the
makespan of the FJSP, and our goal is to minimize
makespan through MPGA. As shown in Figure 3, the
makespan of our example is 35.

2.3.3. Crossing. -e processing of crossing is also divided
into two stages. For the machine subproblem, we implement
the standard two-point crossing process [30]. In this process,
we choose two individuals randomly, called parent 1 and
parent 2, both of which will be divided into three parts with
the same size at random common breakpoints.

We partially select parts from parent 1 and parent 2 to
shape offspring 1, and remaining parts compose offspring 2,
which are indicated in Figure 4.

For the code of the operation subproblem [34], all jobs
are randomly divided into two groups: group 1 and group 2.
Offspring 1 inherits the integers of parent 1 belonging to
group 1 and those of parent 2 belonging to group 2; in the
same method, offspring 2 inherits the integers of parent 1
belonging to group 2 and those of parent 2 belonging to
group 1, respectively, meanwhile preserving the sequence of
these integers. For example, as indicated in Figure 5, jobs 1
and 2 belong to group 1, and jobs 3 and 4 belong to group 2.
To get offspring 1, we first preserve the integers belonging to
group 1, i.e., job 1 and job 3. Next, we insert integers of group
2, i.e., job 2 and job 4, from parent 2 into parent 1.
Meanwhile, the original sequence of integers representing
jobs 2 and 4 is also preserved. In the same way, we get
offspring 2.

2.3.4. Mutation. For MPGAs, mutation can be a supple-
mentary strategy to maintain diversity [35]. Based on the
characteristic of integer encoding, it is divided into two
stages. In the process of the machine subproblem, we
randomly choose several individuals based on the mutation
probability. -en, in several random positions of these se-
lected individuals, the original integers can be replaced by
alternative integers, which should be smaller than the total
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Figure 3: Illustration of decoding.

Table 2: Notations related to the FJSP.

Symbol Meaning
n -e number of jobs
J -e job set
Ji -e ith job
m -e number of machines
M -e machine set
Mk -e kth machine
li -e number of operations of the ith job
Oi -e operation set of the ith job
Oij -e jth operation of the ith job
Sij -e candidate machine set Oij can be processed on
Fmax Makespan
Fij Completion time of Oij

Fijk Finish time of Oij on Mk

Pijk Processing time of Oij on Mk

Bijk Start time of Oij on Mk

Xijk Indicate if Oij is processed on Mk

Table 3: One instance of the FJSP.

Jobs Operations
Machines

M1 M2 M3 M4

J1
O11 24 — 16 19
O12 — 21 — 13

J2
O21 9 — 6 8
O22 — — 8 6
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number of the corresponding candidate machines. For the
operation subproblem, in the same way, some individuals
are randomly selected. Within each selected individual,
several pairs of integers are randomly selected, and the
positions of two integers, within each pair, are swapped.

2.3.5. Migration. -e migration strategy is often utilized to
mitigate the premature convergence of evolutionary algo-
rithms [36]. To obtain an MPGA with networks, we divide
the population of standard genetic algorithms into sub-
populations, denoted by nodes. Communications between
nodes, denoted by edges, occur when certain individuals in
one node migrate to another periodically based on different
networks. Figure 6 displays an MPGA with a certain
network.

In the process of migration, we select a subpopulation
randomly in anMPGA, denoted by one node of the network,
and find all neighbor nodes (subpopulations). Next, we find
the best elite of these subpopulations which will replace a
random individual in each of these selected subpopulations.

2.3.6. Implementation of the MPGA with Networks to Solve
the FJSP. As shown in Algorithm 1, we initialize Ns sub-
populations, and each of them can be run parallel [37].
Within each subpopulation, there are S individuals, namely,
Ns × S individuals, in total, and we first decode the indi-
viduals to get fitness, i.e., makespan. -en, tournament
selection strategy is employed to generate the next sub-
population and maintain the subpopulation size unchanged.
After that, crossing and mutation operators are

implemented to generate new individuals. After all of the
subpopulations are updated, we calculate the fitness again
and select the elites of each subpopulation into the elite set.
At last, our proposed migration strategy is utilized to
propagate advantageous genes. As iterating to the maximum
generation, the best fitness and individual are output.

2.4. Evaluation Indexes. An index to evaluate the propa-
gation rate of advantageous genes among subpopulations
under different network structures is needed. All the best
individuals of each subpopulation are selected into an elite
set. With the accumulation of advantageous genes through
the operators of MPGA, the difference between individuals
becomes small. -erefore, if the propagation rate of ad-
vantageous genes is larger, the difference between these elites
will be smaller. -us, we introduce the HDI to evaluate the
difference between elite individuals. -e HDI is calculated as
follows [24]:

HDI � 􏽘
100

i�1
􏽘

2×JT

j�1

1 − δ h
1
ij, h

2
ij􏼐 􏼑􏼐 􏼑

100 × 2 × JT( 􏼁
, (11)

where we only sample 100 pairs of individuals to limit time
consumption and δ(. . .) is the Kronecker function. As the
two independent variables are unequal, the value of δ(. . .) is
0; otherwise, 1. JT represents the total operation number of
all jobs, and h1

ij and h2
ij denote the ith pair’s two jth integers

in this sample. -erefore, smaller HDI indicates less dif-
ference between elites, suggesting the propagation among
subpopulations is faster.

Besides, we use the SR to assess the performance of
MPGA, better performance with higher SR. -is measure is
defined as follows:

SR �
Ns

Nt

, (12)

where Ns denotes the number of times the algorithm finds
the optimal value and Nt denotes the total number of times
it runs. -e optimal value, mentioned in this paper, is de-
fined as the best value found by all current algorithms by
now, rather than the best value found by the currently
running algorithm.

Also, due to the stochastic nature of MPGA, we have to
run the proposed algorithm repeatedly, and statistical fea-
tures are often utilized to analyze simulation results [38–40].
-erefore, the AOV is introduced and calculated as follows:

AOV �
1

Nt

􏽘

Nt

i

OVi, (13)

in which OVi is the optimal value obtained by the ith run of
the algorithm. -e smaller the AOV is, the better the per-
formance will be.

3. Experiments and Results’ Analysis

In this section, we design experiments to evaluate how the
parameters of interaction structures of subpopulations, i.e.,

Breakpoint Breakpoint

Parent 1

Parent 2

Offspring 1

Offspring 2

4 2 5 6 3 3 2 4 4 1

2 3 2 4 4 2 3 1 3 1

4 2 5 4 4 2 3 4 4 1

2 3 2 6 3 3 2 1 3 1

Figure 4: Crossing of the machine subproblem.

Parent 1

Parent 2

Preserve jobs 1 and 3 in parent 1

Preserve jobs in 2 and 4 in parent 2

Offspring 1

Offspring 2

2 2 1 3 1 3 1 4 4 1

1 1 2 4 4 2 3 1 3 1

2 4 1 3 1 3 1 4 2 1

1 3 2 4 4 2 3 1 3 1

1 3 1 3

2 4 4 2

1 1

Figure 5: Crossing of the operation subproblem.
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ring-shaped networks and small-world networks, affect the
performance of MPGAs.

We take two benchmark problems proposed by Kacem
et al. [41] as examples. One possesses 8 jobs and 8 machines,
labeled as P1; the other possesses 10 jobs and 10 machines,
labeled as P2. For the basic parameters of MPGA, we set the
number of subpopulations Ns as 100, the size of a sub-
population S as 40, the mutation possibility Pm as 0.08, and
the total number of iterations itermax as 400.

3.1. MPGAs with Ring-Shaped Networks. For ring-shaped
networks, the parameter K is changed constantly. -e value
of K slides from 1 to 24, and the interval is 1. Due to the
stochastic nature of evolutionary algorithms, for each value
of K, the MPGA with a certain network is run 50 times.

Figure 7 illustrates the curves of the HDI over iterations
for different K. -e X-axis represents the values of the HDI,
and the Y-axis represents the times of iteration. As shown in
the following, the HDI decreases faster as K becomes larger,
which indicates the propagation rate of advantageous genes
becomes larger as K increases.

To further reveal the relationship between the propa-
gation rate and the structural parameter of networks, Fig-
ure 8 shows the curves of the HDI at 100th iteration, 200th
iteration, and 300th iteration along with APL for different K,
in which the X-axis represents the value of K, and the Y-axis
(left) and Y-axis (right) represent the value of HDI and APL,
respectively. It can be seen that, as K becomes larger, the
HDI at the same iteration decreases in accordance with the
trend of APL shown by cyan lines, namely, the smaller the
APL is, the faster the propagation of advantageous genes will
be. Also, the variation of parameter K can change the APL to
affect the propagation rate of advantageous genes. In this
way, the performance of MPGAs can be influenced by
different values of K.

To directly show the influence of variation of K on the
performance of MPGAs, curves of SR and AOV over K are
shown in Figure 9. For both benchmark problems, when K

increases from 1 to 25, the performance of MPGAs increases
rapidly at first and then decreases with fluctuation. Con-
cretely, in Figure 9(a), the SR of P1 begins with 24% and

increases to the peak, i.e., 90%, when K � 4. -en, SR de-
creases slowly with fluctuation. In contrast, the AOV of P1
begins with 14.9 and decreases to 14.12. -en, AOV rises
slowly with fluctuation. For P2, shown in Figure 9(b), the
trends of SR and AOV are similar to those in P1.-e peak of
the SR or the lowest value of AOV can also be found at
K � 4. For the worst performance of P2, the lowest SR is 4%
at K � 24, and the highest AOV is 8.42 at K � 23.

-erefore, the variation of K can influence the propa-
gation rate of advantageous genes, consequently affecting the
performance of algorithms. In detail, as K is very small, the
APL is large, and the advantageous genes can hardly
propagate to distant subpopulation in the network. Each
subpopulation evolves with little communication and can-
not benefit from elites of other subpopulations. However, as
K is too large, the APL is very small, and the advantageous
genes can be propagated rapidly. -erefore, MPGA is more
likely to fall into local optimal, leading to premature con-
vergence. For our benchmark problems, the moderate value
of K is 4, so the corresponding propagation rate is neither
too large nor too small, and the MPGA with networks can
get the best performance.

Additionally, because of the stochastic nature of meta-
heuristics, to show significant differences between MPGAs
with different structural parameters K of the network, the
nonparametric Wilcoxon signed-rank test of the 50 inde-
pendent runs is conducted [42]. -e null hypothesis, termed
as H0, is set as “there exists no difference between MPGAs
with different structural parameters of networks.” Accord-
ingly, the alternative hypothesis H1 is “the MPGAs with two
different values of the structural parameter are statistically
different.” A significance level 0.05 is employed, and a p
value less than 0.05 indicates that there exist significant
differences between the two samples [43]. As shown in
Table 4, we take K � 4 vs. other values of K as examples, and
the row titled with “total” indicates how many times h � 1
within our two benchmark problems. Basically, the larger
the difference between two values of K is, more likely h � 1,
namely, there exist differences between MPGAs with dif-
ferent K, especially, as the difference of K is large.-e results
further indicate parameter K can influence the performance
of MPGAs.

3.2. MPGAs with Small-World Networks. For small-world
networks, the structural parameters are K and p as men-
tioned in Section 2.1.3. Since the number of subpopulations
(100) is very small, causing the scale of the corresponding
network to be small, the rewiring possibility p can bring
significant uncertainty, namely, the number of rewired edges
fluctuates with the same p. -us, we directly change the
number of rewired edges P as the structural parameter to
implement simulation. We suppose the value of P slides
from 0 to 120 and the interval becomes larger as P increases.
When P � 0, the corresponding network is a ring-shaped
network. It is noted that, with the same P(P≠ 0), there still
exists uncertainty because different edges can be selected to
rewire to different locations. To limit this, we randomly
generate three different small-world networks with the same

GA operator

Node or subpopulation

Individual

Interaction between subpopulations
or migration of elite

Figure 6: Schematic diagram of the MPGA with networks.
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Figure 8: HDI over K with ring-shaped networks. (a) P1. (b) P2.
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Figure 9: SR and AOV over K with ring-shaped networks. (a) P1. (b) P2.
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Figure 7: HDI over iterations with ring-shaped networks. (a) P1. (b) P2.
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P, and MPGA is run 20 times with each network, namely, a
total of 60 times for each value of P. At last, for P1, the value
of K is set as 2. For P2, the value of Kis set as 4.

Figure 10 illustrates curves of the HDI over iterations for
different P. It can be noted that the HDI decreases faster as P
increases, indicating the propagation rate of advantageous
genes becomes larger with the increase of P.

To intuitively show the influence of variation of P on the
performance of MPGAs, curves of the HDI at 100th, 200th,
and 300th iterations over P are shown in Figure 11, along
with APL. -e X-axis represents the value of P, and the Y-
axis (left) and Y-axis (right) represent the value of HDI and
APL, respectively. As shown by red, green, and blue lines,
with the increase of P, HDI of the same iteration decreases in
accordance with the trend of APL shown by cyan lines. It can
be concluded that the variation of P can change the APL,
thus affecting the propagation rate of advantageous genes, by
which the performance of MPGAs is influenced. Compared
with the ring-shaped network in Figure 8, the decrease of
APL caused by the increase of P is gentler than that caused
by the increase of K, resulting in a more gradual change of
HDI in Figure 11.

Figure 12 directly shows how the performance, mea-
sured by SR and AOV, is affected by P, in which the X-axis
represents the value of P, and the Y-axis (left) and Y-axis
(right) represent the value of SR and AOV, respectively. For
P1, shown in Figure 12(a), the SR of P1 starting from 64.44%
increases to the peak of 86.67% as P � 4 and then decreases
with fluctuation. Besides, the AOV starting from 14.41
decreases to the lowest value 14.12 as P � 5 and then in-
creases with fluctuation.

In Figure 12(b), because P2 is more sophisticated than P1,
the success rate is already low.We choose to setK as 4, at which,
as shown in Figure 9, MPGAwith the ring-shaped network gets

the best performance, i.e., SR � 38% andAOV � 7.64. -ere-
fore, the improvement of performance is limited and subject to
fluctuation due to the stochastic nature of evolutionary algo-
rithms. However, the best performance can be found atP � 6 at
which the peak of the SR is 48.33%, and the lowest value of AOV
is 7.5. Besides, for the worst performance, the SR is 18.33%, and
AOV is 7.86.

-erefore, a similar conclusion can be dawn that the
variation of structural parameter P can influence the
propagation rate of advantageous genes, thus affecting the
performance of MPGAs with small-world networks. Besides,
it is noteworthy that the edge number and node number are
not changed as P varies, so the change in performance
indicates that the MPGA can be improved by choosing a
more proper interaction structure of subpopulations as
other conditions remain unchanged.

Besides, the Wilcoxon signed-rank test of the 60 inde-
pendent runs is implemented again. As shown in Table 5, we
take P � 6 vs. other values of P as examples. Although there
are fewer times h � 1, the results still indicate that parameter
P can influence the performance of MPGAs with small-
world networks.

3.3. Comparison between Ring-Shaped Networks and Small-
WorldNetworks. We can conclude that both parameter K of
ring-shaped networks and unique parameter P of small-
world networks can influence the performance of MPGAs,
but the degree of influence is different.-is is because due to
the variation of K and P, the APL is changed to a different
extent. For small-world networks, as K � 2 and P slides from
0 to 120, APL varies from 12.88 to 3.53; as K � 4 and P slides
from 0 to 120, APL varies from 7.00 to 2.57. However, for
ring-shaped networks, as K slides from 1 to 25, APL varies

Input:
FJSP: the FJSP to solve
Ns: the number of subpopulations;
S: the size of each subpopulation;
Pm: mutation probability;
itermax: the maximum generation to run;

Output:
R∗: the best fitness or makespan;
g∗: the best individual;

G � G1, G2, . . . , GM􏼈 􏼉 ← encoding(FJSP, Ns, S);
While (genration≤ itermax) do
For i_sub � 1: Ns do
R ← decoding(Gi sub);
Gi sub

s ← selection(Gi sub) based on R;
Gi sub

c ← crossing (Gi sub
s );

Gi sub ← mutation (Gi sub
c , Pm);

End for
R ← decoding(G);
Select the elites of each subpopulation to compose elite set E;
G ← migration(G, E);

End while
Find the best individual g∗ from E and the corresponding fitness R∗.

ALGORITHM 1: MPGA with networks.
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Figure 11: HDI over P with small-world networks. (a) P1. (b) P2.
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Figure 12: SR and AOV over P with small-world networks. (a) P1. (b) P2.
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Figure 10: HDI over iterations with small-world networks. (a) P1. (b) P2.
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from 25.25 to 1.50. It can be seen that the decrease of APL is
dramatic as K increases, bringing significant influence on
the performance, while for P of small-world networks, the
variation of P is gentle, causing the influence to be slighter.
-erefore, to adjust the APL and the propagation rate of
advantageous genes, we can first change parameter K, and
the variation of P can be a supplementary method to adjust

APL in a smaller step. In this way, we can get a more proper
interaction structure to improve the performance of MPGA.

3.4. Efficacy of the MPGA with Networks to Solve the FJSP.
To further demonstrate the efficacy of MPGA with networks
to solve the FJSP, our algorithm is employed to solve small-

Table 4: Wilcoxon signed-rank test results for ring-shaped networks.

Parameter
pairs

K � 4 K � 4 K � 4 K � 4 K � 4 K � 4 K � 4 K � 4 K � 4 K � 4
vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.

K � 1 K � 2 K � 6 K � 9 K � 11 K � 13 K � 15 K � 18 K � 21 K � 25

P1
p value 1.2e− 07 0.0104 0.4850 0.2407 0.0920 7.2e− 04 0.0540 0.0017 0.0011 5.4e− 04

h 1 1 0 0 0 1 0 1 1 1

P2
p value 1.2e− 05 0.5316 0.0709 0.0339 0.0282 0.0051 0.0076 3.3e− 04 3.9e− 05 1.5e− 05

h 1 0 0 1 1 1 1 1 1 1
Total 2 1 0 1 1 2 1 2 2 2

Table 5: Wilcoxon signed-rank test results for small-world networks.

Parameter
pairs

P � 6 P � 6 P � 6 P � 6 P � 6 P � 6 P � 6 P � 6 P � 6 P � 6
vs. vs. vs. vs. vs. vs. vs. vs. vs. vs.

P � 1 P � 2 P � 3 P � 4 P � 5 P � 8 P � 12 P � 20 P � 55 P � 90

P1
p value 0.8348 0.1444 0.5485 0.0389 0.0164 0.2513 0.1444 0.0495 0.3359 0.0762

h 0 0 0 1 1 0 0 1 0 0

P2
p value 0.048 0.0771 0.4191 0.0133 0.0946 0.0106 0.0133 0.0285 0.041 0.0077

h 1 0 0 1 0 1 1 1 1 1
Total 1 0 0 2 1 1 1 2 1 1

Table 6: Comparison with other algorithms.

Problems
Optimal value

AIA HHS M2 M4 MILP HA -is article
SFJS01 66 66 66 66 66 66 66
SFJS02 107 107 107 107 107 107 107
SFJS03 221 221 221 221 221 221 221
SFJS04 355 355 355 355 355 355 355
SFJS05 119 119 119 119 119 119 119
SFJS06 320 320 320 320 320 320 320
SFJS07 397 397 397 397 397 397 397
SFJS08 253 253 253 253 253 253 253
SFJS09 210 210 210 210 210 210 210
SFJS10 516 516 516 516 516 516 516
MFJS01 468 468 468 468 468 468 468
MFJS02 448 446 446 466 446 446 446
MFJS03 468 466 466 466 446 466 466
MFJS04 554 554 564 590 554 554 554
MFJS05 527 514 514 546 514 514 514
MFJS06 635 634 634 666 634 634 634
MFJS07 879 879 928 1990 879 879 879
MFJS08 884 884 — — — 884 884

Mathematical Problems in Engineering 11



size FJSPs (SFJ01–10), and larger-size FJSPs (MFJS01–08)
[44]. Based on the above analysis, we set K � 4 and P � 3.
Other parameters for MPGA are the same as above. Previous
studies, such as AIA [45], HHS [46], M2 and M4 [47], MILP
[48], and HA [49], are also experimented on the afore-
mentioned instances, and their results are cited to compare
with our algorithm.

As shown in Table 6, regarding MFJS02 and MFJS03, the
optimal value of our algorithm is 446 and 466 (better than
448 and 468 found by AIA). Regarding MFJS04, the optimal
value is 554 (better than 564 found by M2 and 590 found by
M4). Regarding MFJS05, the optimal value is 514 (better
than 527 and 546 found by AIA and M4, respectively).
Regarding MFJS06, the optimal value is 634 (better than 635
and 666 found by AIA and M4, respectively). Regarding
MFJS07, the optimal value is 879 (better than M2 and M4).
At last, for MFJS08, the optimal value is 884, which is not
given by M2, M4, and MILP.

4. Conclusion and Future Scope

For further analyzing the influence of interaction structures
on the performance of MPGAs, MPGA based on complex
networks, such as ring-shaped networks and small-world
networks, has been presented in this work. -en, how
structural parameters K and Pof these two types of networks
affect the performance of MPGAs is discussed by solving the
FJSP.

First, the HDI is utilized to quantitatively measure the
differences of elites between subpopulations. -e smaller
the HDI is, the higher the propagation rate of advanta-
geous genes will be. -e simulation results indicate that
the HDI has a positive correlation with the APL. -is
means the smaller the APL is, the higher the propagation
rate is.

Next, as the structural parameters K and P increase, the
curves of the HDI over iterations decrease faster, namely, the
propagation rate becomes faster with the increases of K and
P, resulting in the variation of the performance of MPGAs
captured by SR and AOV. For instance, the highest and
lowest SR of P2 are 48.33% and 4.00%. Since the propagation
rate of advantageous genes can neither be too high nor too
low, we should choose proper K and P for MPGAs with
networks. Based on experiments, the proper intervals for K

can be [2, 5], and the choice of P is dependent on the value of
K because the variation of K can bring a significant change
of APL, and the variation of P can be a supplementary
method to adjust APL in a smaller step.

At last, the edge number and node number of small-
world networks are not changed as P varies, so the change in
performance indicates that MPGA can be improved by
choosing a more proper interaction structure of subpopu-
lations as other conditions remain unchanged.

Because of the limitation of computing capability, the
number of nodes is not big enough compared with classic
network science, but this study can still illustrate the im-
portance of interaction structures and the meaning of in-
troducing complex networks as a study tool. In the future,

more complex or compound networks, such as multilayer
networks, can be introduced into the research.
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