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Pavement damage is the main factor affecting road performance. Pavement cracking, a common type of road damage, is a key
challenge in road maintenance. In order to achieve an accurate crack classification, segmentation, and geometric parameter
calculation, this paper proposes a method based on a deep convolutional neural network fusion model for pavement crack
identification, which combines the advantages of the multitarget single-shot multibox detector (SSD) convolutional neural
network model and the U-Net model. First, the crack classification and detection model is applied to classify the cracks and obtain
the detection confidence. Next, the crack segmentation network is applied to accurately segment the pavement cracks. By
improving the feature extraction structure and optimizing the hyperparameters of the model, pavement crack classification and
segmentation accuracy were improved. Finally, the length and width (for linear cracks) and the area (for alligator cracks) are
calculated according to the segmentation results. Test results show that the recognition accuracy of the pavement crack
identification method for transverse, longitudinal, and alligator cracks is 86.8%, 87.6%, and 85.5%, respectively. It is demonstrated
that the proposed method can provide the category information for pavement cracks as well as the accurate positioning and
geometric parameter information, which can be used directly for evaluating the pavement condition.

1. Introduction

Pavement distress is the main factor affecting road per-
formance. Timely and accurate detection of pavement
damages is a crucial step in pavement maintenance. Cracks
are the initial manifestation of various types of pavement
diseases. Pavement cracks will not only affect pavement
appearance and driving comfort but also can easily expand
to cause pavement structural damage and shorten the overall
service performance and life of the pavement [1, 2].
.erefore, early crack detection and timely maintenance of
the cracked pavement can reduce the economic cost of
pavement repairing and ensure the safety of vehicles and
drivers transiting on the pavement.

Early pavement detection and maintenance mainly rely
on manual detection, which is not only time-consuming and

laborious but also has low detection accuracy and some
associated risks [3–5]. Scholars from across the world, taking
advantage of recent science and technology developments,
have carried out a series of extensive and in-depth research
to accurately and efficiently extract crack information from
images [6–8]. In 2014, Wang et al. [9] proposed a pavement
crack extraction method based on the valley bottom
boundary; it uses a series of image processing algorithms to
obtain the crack detection results. In 2015, Liang et al. [10]
proposed a pavement crack connection algorithm based on
the Prim minimum spanning tree, which obtains the crack
structure by filling the fracture.

.e disadvantages of these traditional crack detection
methods are obvious. Each method is designed for a specific
database or scenario, but the crack detector will fail if the
dataset or scenario changes. With the rapid development of
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artificial intelligence, convolutional neural networks (CNNs)
have been widely applied in the field of image recognition
[11–14]. In recent years, deep learning methods have been
increasingly applied to pavement crack detection and seg-
mentation [15, 16]. Combining deep learning methods with
pavement crack detection techniques considerably improves
the efficiency and accuracy of pavement crack detection [17].

In 2016, Zhang et al. [18] proposed a crack detection
method based on deep learning. .ey trained a deep CNN
based on supervised learning, proving the feasibility of
combining deep learning with pavement crack recognition.
In 2017, Zhao et al. [19] proposed a pavement crack de-
tection method based on a CNN using images of different
scales and taken at different angles for training, achieving
the detection of cracks of various shapes. However, owing
to road surface interference and noise, the detection ac-
curacy of this system peaked at 82.5%. In 2017, Markus
et al. developed the open dataset GAPs for the training of
deep neural network and evaluated the pavement damage
detection technology for the first time, which is of great
significance [20, 21]. In 2018, Nhat-Duc et al. [22] estab-
lished an intelligent method for the automatic recognition
of pavement crack morphology; this study constructs a
machine learning model for pavement crack classification
that included multiple support vector machines and an
artificial swarm optimization algorithm. Using feature
analysis, a set of features is extracted from the image
projection integral, which can significantly improve the
prediction performance. However, the algorithm is com-
plex and programming it becomes very difficult. In 2020,
Zhaoyun Sun et al. [23] proposed a method to detect
pavement expansion cracks with the improved Faster
R-CNN, which can achieve accurate expansion crack lo-
cation detection through the optimization model. .e
aforementioned studies only detect and classify pavement
cracks and their location but cannot quantify certain crack
characteristics, such as crack width and area. On the other
hand, there are also many studies on crack segmentation. In
2018, Zhang and Wang [24] proposed CrackNet, which is
an efficient architecture based on CNN to predict the class
of each image pixel, but its network structure is related to
input image size, which prevents the generalization of the
method. In the same year, Sen Wang et al. [25] proposed to
use the full convolutional networks (FCNs) to detect cracks
and built the Crack-FCN model taking into account the
shortcomings of the FCN model in the crack segmentation
experiment and obtained a complete crack image. How-
ever, the highest accuracy obtained by their method is only
67.95%; thus, segmentation performance needs to be im-
proved. In 2019, PiaoWeng et al. [26] proposed a pavement
crack segmentation method based on the VGG-U-Net
model. It solves the problem of fracture in the crack seg-
mentation result in complex background, but its training
time is slightly longer and its efficiency is low. In 2020,
Zhun Fan et al. [27] proposed an encoder-decoder archi-
tecture based on hierarchical feature learning and dilated
convolution (U-HDN) detects cracks in an end-to-end
manner. .e U-HDNmethod can extract and fuse different
context sizes and different levels of feature mapping, so it

has high performance. In the same year, Zhun Fan et al.
[28] proposed an ensemble of convolutional neural net-
work based on probability fusion for automatic detection
and measurement of pavement cracks, and the predicted
crack morphology is measured by skeleton extraction al-
gorithm. In summary, these previous studies only use the
segmentation method, which cannot achieve accurate crack
classification and location determination.

Although all of these methods were able to recognize
crack diseases from pavement images to a certain extent,
some problems remain: (1) Most algorithms still extract
crack information using feature extraction, which is rela-
tively complex and programmatically difficult [6–8]. (2)
Although deep learning-based pavement crack recognition
algorithms already exist, they still do not eliminate the
specificity requirement of “one device, one algorithm.” If the
source image is taken by different devices or on different
road sections, using a single dataset leads to inaccurate
results. .erefore, their adaptability is poor [18, 19]. (3)
Complex environmental factors affect the stability and ac-
curacy of crack identification algorithms [29]. (4) Although
there is already a pavement crack recognition method based
on CNNs, the model has a single function and most of the
cracks are classified and roughly positioned through the
detection box and cannot be directly used for evaluating
road conditions [23–26].

Given the abovementioned problems in pavement
crack identification, this paper proposes a method based on
a deep convolutional neural network fusion model for
pavement crack identification, which is applicable in many
crack detection cases (including detector vehicle and
smartphone). By training on a learning image data having a
variety of sources and sizes, the method can effectively
identify cracks, and recognition accuracy can be guaran-
teed. At the same time, a detected crack can be segmented,
and the segmented binary image can be used to calculate
the geometric parameters of the crack. .erefore, the
proposed model is of great significance for intelligent
pavement detection and it can also achieve detection and
segmentation simultaneously, thereby significantly im-
proving model efficiency.

2. Methodology

In this paper, a crack identification method based on a deep
CNN fusion model is proposed. First, the image dataset is
established, and the image noise in the dataset is filtered out
to increase the contrast between road cracks and back-
ground. Next, the processed images are provided as input
into an improved single shot multibox detector (SSD) crack
detection model and an improved U-Net crack segmenta-
tion model for training. .en, the binary image of a crack
obtained by the segmentation model is used to calculate the
geometric parameters of the crack. By integrating the ad-
vantages of the two models, this pavement crack identifi-
cation method can effectively overcome the single-model
limitations of inaccurate positioning and imperfect infor-
mation. .e overall process flowchart is shown in Figure 1.
.e details of each step are discussed in Section 2.1.
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2.1. Image Collection and Preprocessing. In order to be ap-
plicable to crack detection in a variety of scenarios, the
proposed method uses a detector vehicle (Figure 2(a)) and a
smartphone (Figure 2(b)) to collect crack images. .e pixel
of the image captured by the detector vehicle is 1024 ∗ 960,
and the pixel of the image captured by the smartphone is
2560 ∗ 1024.

.e pavement crack images are preprocessed before
network training to reduce the noise in the images and
improve the prediction accuracy. Preprocessing consists
mainly of augmenting and denoising the pavement crack
images.

First, the number of images needs to be increased. As it
is difficult to distinguish the effects of rotation by using an
actual crack image, a black-and-white double-arrow pic-
ture is used here to exemplify how to increase the number
of images (Figure 3). By horizontal reflection, vertical
reflection, and clockwise rotation of the image by 45°, 90°,
and 180°, the training image dataset can be expanded
eightfold.

.e images, as taken by the camera, are seriously affected
by discrete pulse noise and zero-mean Gaussian noise.
.erefore, median and bilateral filters are used to denoise the
road images. .en, contrast enhancement is performed to
increase the difference between crack information and road
background, which improves the quality of the sample
images. As seen in Figure 4, the processed crack information
is more prominent than in the original image.

2.2. Classification and Detection Using Improved SSD Model.
.e SSD [30] network model used in this study was pro-
posed in 2016; it combines the characteristics of the You
Only Look Once (YOLO) model [31], which provides fast
speed, and the Faster R-CNN (Region-CNN) model [32],
which provides accurate recognition. We use Tensorflow
and Keras framework to implement the SSD network.

.e characteristic feature of the SSD network model is its
capability of performing multiscale feature map detections.
.e model adds some convolutional feature layers at the end

of the feature extraction network, and the feature maps
extracted from these convolutional layers have the feature of
decreasing in size. Image prediction is carried out by means
of fusion of the multiscale detection results. In Figure 5, the
feature fusion of conv4_3 and fc7, two convolution layers, is
given as an illustrative example. conv4_3_norm_priorbox
sets each point to generate four preselected boxes. .e
sample dataset used in this study contains three categories;
thus, the value of the conv4_3_norm_mbox_conf channel is
12 (num priorbox × num class � 4 × 3 � 12). Each pre-
selected box returns four position transitions, so the value of
the conv4_3_norm_mbox_loc channel is 16 (4 × 4 � 16). fc7
generates six preselected boxes per point, in addition to the
others. Finally, mbox_conf and mbox_loc are merged,
mbox_conf behind reshapes, and then softmax classification
is performed. As can be seen from the above example, each
convolution feature layer will produce corresponding pre-
diction results, and finally, the prediction results on different
scales will be fused to obtain the best fracture prediction
results.

Increasing the number of network layers can improve
the accuracy of the network in identifying pavement cracks.
.erefore, in this study, the feature extraction network
structure Visual Geometry Group 16 (VGG16) in the SSD
network model was replaced with a deep residual network to
improve the pavement crack identification accuracy. .e
deep residual network [33, 34] solves this problem by fitting
a residual map instead of the original map and by adding
multiple connections between layers.

In order to convert the basic VGG16 network of the SSD
model into a deep residual network, it is necessary to
connect the convolution layer feature map output size in the
residual network with the matching VGG16 convolution
layer. Table 1 shows the names and outputs of convolution
layers matching the outputs of the feature maps of the two
feature extraction networks.

.e structure of the improved crack classification and
detection network is shown in Figure 6. .e convolutional
layer of different feature map sizes contains two kinds of
3∗ 3 convolution kernels. One is used for position
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Figure 1: Flow chart of the proposed methodology.
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regression of the prediction box, and the other is used for
crack classification.

In order to improve the robustness of the model, all
predicted crack boxes of different sizes at all positions of the
feature map are combined to form a diversified prediction
set. When the pavement crack images were input for
training, with settings steps_per_epoch� 100 and final_-
epoch� 100 (100-step iterations), 10,000 training iterations
were conducted. .e test set was used for testing after each

step. If val_loss was reduced, the weight file was saved to
continue training until training was complete.

Figure 7 shows the loss function curves obtained by
training on the pavement crack dataset in the improved
model..e red line represents the training set loss curve, and
the blue line represents the val set loss curve. When
final_epoch� 90, the model is effectively stable.

.e reason behind improving the model is to improve
crack detection accuracy and to generate a better detection

Original
image

Clockwise rotation
90 degrees

Rotation 180
degrees

Counter clockwise
rotation 90 degrees

Horizontal
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Vertical
reflection

Clockwise rotation
45 degrees

Counter clockwise
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Figure 3: Example of how to increase the number of images.

(a) (b)

Figure 2: Pavement crack image acquisition and collection by (a) detector vehicle and (b) smartphone.
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box to surround the cracks. In order to ascertain whether the
model prediction results were improved after improving the
crack detection model, model results before and after the
improvement were compared using the test set (Table 2).

By constantly adjusting the hyperparameters in the
model and comparing the accuracy of crack classification
and detection, the precision–recall (PR) curves for the
recognition of three types of pavement cracks (transversal,
longitudinal, and alligator) were constructed (Figure 8).

.ree types of cracks were randomly selected for testing,
and the test results are shown in Figure 9. By comparing the
prediction results of the model before and after the im-
provement for the same category and the same picture, it can
be seen that the improved crack classification and detection
model provides a higher degree of confidence for identifying
the crack category in the pavement image, and the prediction
results are more accurate, which demonstrates the effec-
tiveness of model improvement and optimization.

By replacing the feature extraction structure of the
original SSD network with the deep residual network, the
network accuracy and recall rate in predicting pavement
cracks were substantially improved. .is analysis of the
experimental results shows that the proposed method
achieves good results in the classification and detection of
cracks. From the prediction effect, however, a classification
by the pavement crack detection method based on the single
SSD crack location model is incomplete, is not conducive to
subsequent crack geometry parameter computation steps,
and will produce larger calculation errors. .us, as the
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Figure 5: Single-shot multibox detector (SSD) multiscale feature detection example.

Table 1: SSD convolution feature layers and feature map outputs.

VGG16 layer (type) Resnet layer (type) Output shape
conv4_3 conv2d_24 (64, 64, 512)
fc7 conv2d_43 (32, 32, 1024)
conv6_2 conv2d_53 (16, 16, 512)
conv7_2 conv2d_63 (8, 8, 256)
conv8_2 conv2d_73 (4, 4, 256)
conv9_2 conv2d_83 (2, 2, 256)
conv10_2 add_28 (1, 1, 256)

(a) (b)

Figure 4: Effect of filtering: (a) original image; (b) image after filtering.
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practical application value is still lacking at this point, this
study adopted the fusion segmentation model approach to
address this problem.

2.3.Crack SegmentationUsing ImprovedU-NetModel. In the
proposed method, the U-Net [35] model is used as the
pavement crack segmentation model. We use Tensorflow
and Keras framework to implement U-Net network. As
shown in Figure 10, the U-Net structure is divided into two
main parts, the first part for feature extraction and the
second part for the upsampling operation; this structure is
also known as the encoder-and-decoder structure. U-Net
uses splicing for feature fusion and splicing features on
channel dimensions to form richer features, thus facilitating
the network’s learning of crack features.

.e structure of the U-Net network is simple, and the
original U-Net network has crack segmentation accuracy
problems. .erefore, the feature extraction network of the
U-Net crack segmentation model was also replaced with a
deep residual network to fully extract crack features and
ensure crack segmentation accuracy. .e specific improve-
ment steps are similar to those of the SSDmodel. As shown in
Table 3, the two basic network feature graph outputs match
the network layers. After adjusting the corresponding layers
of the feature extraction network, it is still necessary to adjust
the network parameters through continuous training to
optimize the crack segmentation effect. .e improved crack
segmentation model is shown in Figure 11.

In the training of U-Net crack segmentation model, the
ReLU function is used as the activation function and the
input data samples are regularized many times.
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Figure 7: Training and val loss curves for the crack classification
detection model.

Table 2: Comparison of crack classification detection network
prediction results.

Crack type Precision Recall Average
precision (AP)

Before After Before After Before After
Transverse 0.773 0.805 0.780 0.811 0.776 0.810
Longitudinal 0.771 0.827 0.782 0.836 0.779 0.834
Alligator 0.694 0.811 0.721 0.824 0.718 0.825
Mean average precision (mAP) 0.758 0.823
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Figure 6: Improved crack classification detection network.
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Figure 8: Classification network precision–recall (PR) curves for three types of pavement crack recognition: (a) transverse crack (average
accuracy: 0.868); (b) longitudinal crack (average accuracy: 0.876); and (c) alligator crack (average accuracy: 0.855).
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Figure 9: Continued.
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Regularization adjusts the output value of each convolu-
tional network layer to the same distribution, thereby
avoiding a deviation or change in the distribution of feature
vectors caused by network deepening. .e segmentation
model uses the upsampling method. .at is, the feature map
with the new size is obtained by the convolution inversion
operation, and the feature map with the size corresponding
to the convolution layer is added as the upsampling result.

Longitudinal_crack: 0.68

(c)

Longitudinal_crack: 0.90

(d)

Alligator_crack: 0.80

(e)

Alligator_crack: 0.85

(f )

Figure 9: Comparison of crack classification and detection. Top: transverse crack detection before (a) and after (b) improvement. Center:
longitudinal crack detection before (c) and after (d) improvement. Bottom: alligator crack detection before (e) and after (f ) improvement.

Feature extraction

U

DD
D

D

U U U

Upsampling

Input

C C C C C C C C C C

Output

Figure 10: Structure of U-Net.

Table 3: U-Net convolution feature layers and feature map outputs.

VGG16 layer (type) Resnet layer (type) Output shape
block1_conv2 leaky_re_lu_1 (512, 512, 64)
block2_conv2 leaky_re_lu_4 (256, 256, 128)
block3_conv3 leaky_re_lu_9 (128, 128, 256)
block4_conv3 leaky_re_lu_26 (64, 64, 512)
dropout_1 leaky_re_lu_43 (32, 32, 1024)
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.e segmentation network performs upsampling of the
feature extraction network feature maps with sizes of
20 × 20, 40 × 40, 80 × 80, and 160 × 160, and the upsampling
process combines the feature extraction network feature
maps with sizes of 40 × 40, 80 × 80, 160 × 160, and
320 × 320; this improves the segmentation network accuracy
through multilevel joint learning.

Figure 12 shows the loss function curve obtained by
training the pavement crack dataset in the improved model.
.e red line represents the training loss curve of the training
set, and the blue line represents the val loss curve of the test
set. According to the loss curve, the model training effec-
tively reached stability by the 50th epoch. .e detection
results for the test set before and after model improvement
are shown in Table 4.

.e model was improved to optimize the hyper-
parameters in the network. After comparing the segmen-
tation effect under different hyperparameter settings, the
activation function was set as the sigmoid function and the
SGD optimizer was selected to optimize the network
training. .e PR curves of the pavement crack segmentation
model before and after improvement for the three types of

crack images are shown in Figure 13. As can be seen, the
upper right convexity of the PR curve after improvement is
more evident than before the improvement, indicating a
better performance by the improved model.

Figures 14–16 show the segmentation effect of the three
crack segmentation models for transverse, longitudinal, and
alligator cracks, respectively. It can be seen that before im-
provement, the crack information obtained by the model is
significantly wider and somewhat distorted when compared
with the ground truth. .e improved model, by contrast, can
obtain more accurate segmentation results. .erefore, the
improved method is more suitable for crack segmentation.

.e crack segmentation model uses the cascade mode of
multiple residual elements, which can effectively extract the
morphological characteristics of the pavement crack and
improve the learning effectiveness of the neural network on
the crack characteristics. A single crack segmentation
method based on U-Net can provide the crack pixel location
information, but it cannot classify the crack [35]. .erefore,
in this study, a fusion of two models was adopted to identify
pavement crack images and to obtain the crack category,
location information, and geometric parameters, thereby
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Figure 11: Structure of improved crack segmentation model.
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Table 4: Comparison of prediction results of segmentation networks.

Precision Recall F1-score
Before 0.654 0.763 0.699
After 0.723 0.795 0.752
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Figure 13: Pavement crack segmentation model PR curves before (a) and after (b) improvement.
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Figure 14: Transverse crack segmentation model results: (a) original image; (b) before improvement; (c) improved result; (d) ground truth.
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facilitating accurate quantification and evaluation of pave-
ment cracks.

2.4. Proposed Fusion Model

2.4.1. Fusion Model Design. As shown in Figure 17, when
only the SSD detection network is used, the number of
cracks can be accurately obtained, but the crack width
cannot be quantified. Use of only the U-Net segmentation
model will lead tomisjudgment of the number of cracks; e.g.,
a fractured crack may be misidentified as multiple cracks.
.e fusion of the detection and segmentation networks can
avoid this phenomenon and ensure that the crack is iden-
tified as a single crack. .us, the advantage of the fusion
model is that it can accurately identify the number of cracks
and ensure that cracks are quantified correctly.

.e proposed fusion model adopts the following order:
(1) detection, (2) segmentation. Because the detection net-
work will obtain the result of a detection box, which contains
one crack, and then segment that crack..is method can not
only ensure crack number accuracy but also quantify the
crack width information, which can prevent the misjudg-
ment of crack number caused by using only the segmen-
tation model. If the order is changed, i.e., segmentation first
and detection second, in the presence of fractures in the
cracks, the segmentation result will be misjudged into
multiple cracks. Moreover, the segmented image is a binary
image, which is not suitable for detection.

.e proposed fusion model can improve pavement crack
identification accuracy and provide a good foundation for
measuring crack parameters. .e fusion model structure is

shown in Figure 18. First, the input crack image enters the
feature extraction network for feature extraction and
learning. Convolutional feature maps with sizes of 64× 64,
32× 32, 16×16, 8× 8, 4× 4, 2× 2, and 1× 1 are used for
multiscale fusion classification, and feature maps with sizes
of 512× 512, 256× 256, 128×128, 64× 64, and 32× 32 are
used for upsampling. After continuous calculation of losses
and updating of the weights, the crack classification and
position results are obtained. .en, the geometric param-
eters of the crack are calculated according to the segmen-
tation results, and the identification results of the final fusion
model are obtained.

.e specifications of the fusion model process are
shown in Figure 19. First, the standardized pavement crack
image is input into the crack classification and detection
model for classification. If there are cracks in the image, the
categories and confidence values of the cracks are obtained.
Next, the image of a detected crack and its category in-
formation are input into the crack segmentation model to
obtain the precise pavement crack location, and the geo-
metric parameters of the crack are calculated according to
the segmented binary image of the pavement. Finally, the
classified detection results are fused with the segmentation
results, and the crack’s geometric parameters are calcu-
lated. .e result is restored to the corresponding original
image for display, and the final pavement crack identifi-
cation result is obtained.

2.4.2. Feature Extraction and Analysis. .e deep convolu-
tional network is trained bymeans of supervised learning. By
extracting the morphological features of the cracks and

(a) (b) (c) (d)

Figure 15: Longitudinal crack segmentation model results: (a) original image; (b) before improvement; (c) improved result; (d) ground
truth.

(a) (b) (c) (d)

Figure 16: Alligator crack segmentation model results: (a) original image; (b) before improvement; (c) improved result; (d) ground truth.
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continuously comparing them with the tag values to cal-
culate the loss, the parameters of each network layer are
continuously adjusted to finally reach the state of small loss
and accurate judgment. With the deepening of convolu-
tional layers in the network model, the model has more
powerful feature extraction capabilities and can therefore
identify and detect more abstract information. At this stage
of the experiment, the crack characteristics learned by the
deep convolutional network are analyzed and studied, and
the characteristics of the three crack types at different depths
are displayed by means of feature visualization.

Figure 20(a) shows original transverse, longitudinal, and
alligator crack images (left to right) that were provided as
input into the model for feature visualization. Owing to the
large number of feature maps generated by the convolution
of each layer, it will cause confusion to display all the feature
maps, so we can analyze the single feature map generated by
each convolution kernel. Figure 20(b) shows a single feature
map for each of three kinds of crack on a convolutional layer
with an output size of 128×128. It can be seen from the
feature map that the morphological features of the cracks are
still relatively evident. .e model has learned the curve
shapes and directions of the three types of fractures, which
can be discerned by the human eye. However, these features
can be somewhat unclear. Figure 20(c) shows a single feature
map for each of three kinds of crack on a convolutional layer
with an output size of 64× 64. Compared with the 128×128
crack feature map, the pavement crack feature obtained by
this layer is less clear, and the location feature of the crack is
magnified and brighter. However, the basic linear mor-
phological features of the three crack types can still be
distinguished by eye. Figure 20(d) shows a single feature
map for each of three kinds of crack on a convolutional layer
with an output size of 32× 32. Compared with the other two
convolutional layer feature maps, the brightness of the
feature map of this layer is considerably improved, whereas
the morphological features of the three crack types can no
longer be distinguished, and the learned features are more
complex.

From the above analysis, it can be seen that crack fea-
tures extracted by different convolutional layers in the deep
convolutional network are not the same. Meanwhile, with
the deepening of network layers, crack features extracted by
the deep convolutional neural network evolve from low-
order features to high-order features. .erefore, in order to
perform a comprehensive study of crack features and im-
prove the identification accuracy of pavement cracks, it is
necessary to fully extract their features by increasing the
convolutional network depth.

2.5. Calculation of Crack Parameters. As shown in Figure 21,
linear cracks (transverse and longitudinal cracks) and alli-
gator cracks have different morphological characteristics;
the former need two parameters, length and width, to be
calculated, whereas the latter needs area parameters to be
calculated. .erefore, these two types of morphological
cracks are considered separately when the geometric pa-
rameters of pavement cracks are calculated. Each image is a

two-dimensional image, in which each point represents a
pixel. .ere may be differences in the size of the image
captured by different cameras, but the size of the pixel points
is fixed. According to the corresponding relationship be-
tween image size and the pixel points, the real crack pa-
rameter value (unit: centimeter) can be calculated; e.g., if the
width of the image is 1000 pixels and the camera’s shooting
range is 4 meters wide, a pixel point represents 4m/1000
px � 0.4 cm.

In the binary image output by the pavement crack
segmentationmodel, the pavement background is in black (a
pixel value of 0) and the crack information is in white (a pixel
value of 1). .e steps for calculating the geometric pa-
rameters of a crack are as follows.

2.6. Calculation of Alligator Crack Area

Step 1: set the initial size (in pixels) of the pavement
crack as Sx, and scan the pixels in the image from left to
right and top to bottom. A pixel value of 1 means that it
belongs to the crack area, and the area increases by 1:
Sx � Sx + 1.
Step 2: if the pixel value is 0, it is part of the background,
and the scan moves to the next pixel.
Step 3: the value of Sx obtained after all pixels have been
scanned is the crack area, denoted as S.

2.7. Calculation of Linear Crack Length

Step 1: first, set the parameter Lx, denoting crack length
(in pixels), to an initial value of 0. Scan the pixels in the
image columns from left to right. When a column is
found to contain a pixel value of 1, Lx � Lx + 1.
Continue until all columns are scanned, and retain the
final Lx value.
Step 2: scan the pixels in the rows from top to bottom
according to the same principle as in the previous step,
and set the parameter as Ly. If the value of any pixel in a
row is 1, Ly � Ly + 1. Continue scanning all the rows,
and keep the final Ly value.
Step 3: according to the Pythagorean theorem, crack
length (in pixels) can be calculated as follows:

L �

�������

L
2
x + L

2
y



. (1)

2.8. Calculation of Linear Crack Width. .e width of the
crack can be obtained by dividing the linear crack area by its
length, as follows:

W �
S

L
. (2)

.rough these steps, the length, width, and area of the
crack can be expressed in pixels. Some pavement images
were randomly selected for calculation of their geometric
parameters, and the results are shown in Table 5.
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3. Implementation Details and Results

3.1. Data Preparation and Environment Setup. In this re-
search, a detector vehicle and a smartphone were used to
collect crack images. .e test sample dataset contained 8000
crack images, including 2800 transverse, 2800 longitudinal,
and 2400 alligator crack images. With a ratio of 6 : 2 : 2, the
sample data were divided into a training set (4800),

verification set (1600), and test set (1600) for training and
testing the pavement crack identification model. .e size of
each image is 1024× 960 pixels. Figure 22(a) shows the
proportional distribution of the numbers of the three crack
types, and Figure 22(b) shows the proportional distribution of
the dataset partitions for training. Details of the experimental
equipment and software used in this study are given in
Table 6.

(a)

0

0

10

10

20

20

30

30

40

40

50

50

60

60
70

70

0

0

10

10

20

20

30

30

40

40

50

50

60

60
70

70

0

0

10

10

20

20

30

30

40

40

50

50

60

60
70

70

(b)

0

0

10

10

20

20

30

30

40

40

50

50
60

60

0

0

10

10

20

20

30

30

40

40

50

50
60

60

0

0

10

10

20

20

30

30

40

40

50

50
60

60

(c)

0

0

5

5

10

10

15

15

20

20

25

25 30
30

0

0

5

5

10

10

15

15

20

20

25

25 30
30

0

0

5

5

10

10

15

15

20

20

25

25 30
30

(d)

Figure 20: Different sizes of feature visualization.
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3.2. Comparison of Each Individual Model Optimization

3.2.1. Learning Rate. For this study, a dynamic learning rate
was adopted to adjust the learning rate of the model, thereby

optimizing the learning rate efficiently and improving the
network training efficiency. .e initial learning rate can be
set to be relatively large and can then be gradually reduced as
the number of iterations increases. Figure 23 shows the

(a) (b) (c)

Figure 21: Binary images of three types of crack output by the segmentation network.

Table 5: Calculation results of geometric parameters of cracks (unit: pixels).

Image name Crack type Linear crack length Linear crack width Alligator crack area
000010.jpg Transverse crack 534 5 —
000394.jpg Transverse crack 496 4 —
001581.jpg Longitudinal crack 3 512 —
002944.jpg Longitudinal crack 4 557 —
003911.jpg Transverse crack 533 3 —
005864.jpg Longitudinal crack 6 490 —
020107.jpg Alligator crack — — 13803
021323.jpg Alligator crack — — 21837
022144.jpg Alligator crack — — 16366
. . . . . . . . . . . . . . .

30%
35%

35%

Transverse crack
Longitudinal crack
Alligator crack

(a)

60%

20%

20%

Train
Validation
Test

(b)

Figure 22: Proportional distributions: (a) percentages of the three crack types; (b) data set partitions for training.
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learning rate of the pavement crack segmentation model
during the training process. As the number of iterations
increases, the learning rate is dynamically adjusted, be-
coming increasingly smaller.

3.2.2. Activation Function. .e ReLU function is a linear
function in the positive direction [36, 37]. In this study, the
ReLU, tanh, and sigmoid functions were compared, as shown
in Figure 24. When the SGD algorithm is used, the ReLU
function converges faster than the other two functions, with
the additional advantage of low computational complexity. It
does not need to perform an exponential calculation; it only
needs to set an activation threshold. Moreover, it is more
suitable for back propagation, which can maintain a constant
gradient and avoid the occurrence of gradient dispersion. For
these reasons, the ReLU function was selected as the acti-
vation function of the network model proposed in this paper.

3.2.3. Optimizer. .e role of the optimizer in the deep neural
network is to update and calculate the network parameters that
affect model training and model output so as to make them
approximate an optimal value and tominimize the loss function.
For deep convolutional neural networks, choosing an appro-
priate optimizer plays a decisive role in the final recognition
accuracy of the model. In this study, Adam, SGD, AdaGrad,
AdamW, andNadamwere used to train and test themodel..e
test results are shown in Table 7. When training on crack data,

although the Adam optimizer has a relatively fast training speed,
its crack prediction accuracy is not the best.Whereas differences
in training times were small, accuracy values clearly differ.
.erefore, SGD was selected as the model optimizer.

3.2.4. Transverse and Longitudinal Ratios. Owing to the
linear shape of transverse and longitudinal cracks, there is a
major difference between length and width. Considering the
particularity of pavement crackmorphology, this studymodified
the transverse-to-longitudinal ratio parameter in the model in
an attempt to improve pavement crack identification accuracy.
Results for the modified model tests are shown in Table 8.
Modifications of the transverse-to-longitudinal ratio for training
do not directly influence the model, but when the gap between
the transverse and longitudinal ratios is set too large, the pre-
diction accuracy for the alligator cracks is substantially reduced,
reducing, in turn, the average precision of the model..erefore,
the transverse-to-longitudinal ratio parameter was set as (1.0,
2.0, 0.5, 3.0, 1.0/3.0).

3.2.5. Optimization Results

(a) Crack classification and detection network
As shown in Table 9, after optimizing the feature
extraction network and hyperparameters of the crack
classification and detection model, the model ac-
curacy is improved.

Table 6: Experimental environment configuration details.
Device name Version
PC operating system Windows7 64 bit professional
Processor Intel (R) core (TM) i7-8700 CPU @ 3.20GHz
GPU 1080Ti
CUDA cuda_9.0.176_windows
CUDNN Cudnn-7.0-windows
TensorFlow 1.8.0
Keras 2.2.4
Python 3.0
Anaconda Anaconda3-5.0.1-windows-x86_64
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Figure 23: Learning rate during the training process.
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According to these pavement crack identification results,
the improved and optimized method developed in this study is
effective for classifying and locating cracks in pavement images.

(b) Crack segmentation network
After optimizing the feature extraction network and
hyperparameters of the crack segmentation network,
the segmentation accuracy of the model for pavement
cracks is also improved. Results are shown in Table 10.

3.3. Fusion Model Identification Results and Analysis. In
order to demonstrate the effectiveness of the model pro-
posed in this paper, three sample images of each pavement
crack type were randomly selected from the test set, and the

model-identified parameter information for each crack is
shown in Table 11. .e confusion matrices for the training
and testing phases are shown in Figure 25.

.e effectiveness of crack positioning is displayed visually
in the form of images (Figures 26–28). As can be seen in the
figures, the accuracy of crack identification and positioning is
considerably improved by image segmentation. .e length,
width, and area of pavement cracks can be calculated more
accurately by using the segmented binary image. At the same
time, the crack information can be restored to the original
crack image to accurately cover the crack area.

3.4. Comparison of Different Datasets. To illustrate the re-
liability of this experiment, we used three kinds of different
datasets (our dataset, CFD dataset, and AigleRN dataset) to

1.0

0.5

–0.5

–1.0

–10 –5 0 5 10

Sigmoid
Tanh
Relu

Figure 24: Comparison of three activation functions.

Table 7: Model speed and accuracy with different optimizers.

Optimizer Training time (s) Transverse cracks Longitudinal cracks Alligator cracks Average accuracy
Adam 25 0.801 0.813 0.796 0.803
SGD 37 0.828 0.839 0.828 0.832
Adagrad 30 0.799 0.810 0.773 0.794
AdamW 27 0.806 0.817 0.802 0.808
Nadam 32 0.822 0.832 0.818 0.824

Table 8: Model speed and accuracy with different transverse and longitudinal ratios.

Transverse-to-longitudinal ratios Training time (s) Transverse cracks Longitudinal cracks Alligator cracks Average accuracy
1.0, 2.0, 0.5, 3.0, 1.0/3.0 26 0.833 0.841 0.847 0.840
2.0,1.0,0.5,1.0/3.0,1.0/4.0 27 0.820 0.817 0.785 0.807
1.0,0.5,1.0/3.0,1.0/4.0,1.0/5.0 27 0.828 0.799 0.769 0.799
2.0,1.0,0.5,1.0/3.0,1.0/3.0 26 0.819 0.805 0.697 0.774

Table 9: Detection accuracy before and after optimization.

Transverse crack Longitudinal crack Alligator crack
After After Before After Before After

Accuracy 0.810 0.868 0.834 0.876 0.825 0.855
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carry out the experiment, respectively. Figure 29 shows some
images of three different datasets. CrackForest Dataset
(CFD) is an annotated road crack image database which can

reflect urban road surface condition in general. Its website is
https://github.com/cuilimeng/CrackForest-dataset. .e
AigleRN dataset contains 38 images with pixel level

Table 10: Segmentation accuracy before and after optimization.

Before optimization After optimization
Accuracy 0.752 0.787

Table 11: Fusion model prediction results (unit: pixels).

Sample number Crack type Confidence Length Width Area
1 Transverse 0.70 496 4 —
2 Transverse 0.98 529 3 —
3 Transverse 0.71 519 3 —
4 Longitudinal 0.92 4 299 —
5 Longitudinal 0.87 3 512 —
6 Longitudinal 0.70 5 535 —
7 Alligator 0.91 — — 21837
8 Alligator 0.88 — — 13227
9 Alligator 0.88 — — 20818
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Figure 25: .e confusion matrices for the training and testing phases. (a)Training set; (b) test set.
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Figure 26: Transverse crack identification results.
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Figure 27: Longitudinal crack identification results.

Alligator_crack: 0.91

(a)

Alligator_crack: 0.88

(b)

Alligator_crack: 0.88

(c)

Figure 28: Alligator crack identification results.
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Figure 29: .ree different datasets: (a) our dataset; (b) CFD; (c) AigleRN.
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annotation, which was obtained at driving speed, and the
French road condition was regularly monitored using the
Aigle RN system. Its website is https://www.irit.fr/∼Sylvie.
Chambon/AigleRN.html. Table 12 shows the accuracy of the
proposed segmentation model in the three datasets. Ex-
perimental results show that the model has good perfor-
mance on three datasets.

4. Conclusions

In this research, a crack identification method based on a
deep convolutional neural network fusion model is pro-
posed. .e strategy for model optimization was carried out
through repeated experiments, and the model hyper-
parameters were optimized, effectively improving its pave-
ment crack identification accuracy. In summary, the
following conclusions can be drawn from this research:

(1) To achieve accurate crack classification and seg-
mentation, we propose a fusion model. .e SSD
network is used as the detection model and the
U-Net network is used as the segmentation model,
which can achieve crack classification and segments
the cracks in the detection box at the same time.
Moreover, crack length, width, and area parameters
are calculated using the crack-segmented binary
image. .is method not only ensures the accuracy of
crack number but also calculates crack parameters,
which can prevent the misjudgment of crack number
caused by using only a single model.

(2) .e SSD network model was proposed as the
pavement crack classification and detection network.
We improved the SSD model by replacing the
VGG16 feature extraction network with the deep
residual network. Experimental results show that the
mAP of the improved model is 6.5% higher than that
of the former model, which indicates that the clas-
sification and detection level of pavement cracks can
be improved by optimizing the network. We made
the same improvement to the U-Net model. By
joining the segmentationmodel behind the detection
model, we can solve the problem of inaccurate crack
location in the pavement classification detection
network. Results show that the precision of the
improved segmentation model is 6.9% higher than
that of the former. .erefore, the proposed fusion
model has value in the field of pavement crack
identification and classification.

(3) Compare and selecte the learning rate, activation
function, optimizer, and other parameters of the
model. Experimental results demonstrate that the
proposed model not only improves performance
when compared to the original model but also

achieves higher accuracy, which has certain practical
application value.

In summary, the method developed in this study offers
an intuitive display and accurate reference for pavement
crack identification for future road surface maintenance and
for automatic pavement crack repair based on the calculated
parameter information it provides.
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