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To solve the problems of high complexity and low accuracy in Volterra time-domain kernel calculation of a nonlinear system, this
paper proposes an intelligent calculation method of Volterra time-domain kernel by time-delay artificial neural networks
(TDANNs) and also designs a root mean square error (RMSE) index to choose the neuron number of the network input layer.
Firstly, a three-layer TDANN is designed according to the characteristics of the Volterra model. Secondly, the relationship
between parameters of TDANN and Volterra time-domain kernel is analyzed, and then three-order expressions of Volterra time-
domain kernel are derived.*e calculation of Volterra time-domain kernel is completed by network training. Finally, it is verified
by a nonlinear system. Simulation results indicate that compared with traditional methods, the new method has higher accuracy,
and it can realize the batch calculation of Volterra kernel, which not only improves the calculation efficiency but also provides
accurate data for fault diagnosis based on Volterra kernel in further research work.

1. Introduction

As the transfer function of a linear system, Volterra kernel
(including Volterra kernel time-domain kernel and Volterra
kernel frequency-domain kernel) does not depend on the
input and output of the system, which can characterize the
essential properties of the nonlinear system and explain the
special phenomena of the nonlinear system. It has advan-
tages of clear physical meaning and rich information, which
is widely used in electronic engineering, mechanical and
electrical engineering, control engineering, and other fields
[1–6].

At present, the research and application of Volterra
kernel have developed rapidly; especially the nonlinear
spectrum research based on the generalized frequency re-
sponse function (GFRF) and the output spectrum response
function (OFRF) has been gradually applied to the fields of
feature extraction, mechanism analysis, and fault diagnosis
[7–11]; however, the complexity and accuracy of Volterra
kernel calculation are the key factors to its application. Until

now, the calculation of Volterra kernel is still difficult, and
the main calculation methods of Volterra kernel are the
recursive method and identification method. *e recursive
algorithm is to substitute the relevant parameters of the
system into the recursive equation to calculate the Volterra
kernel. Billings and Tsang [12] adopted recursive algorithm
to obtain Volterra kernels of each order for a nonlinear
system. Jing et al. [13] established a description function
from low-order Volterra kernel to high-order Volterra
kernel to calculate the Volterra kernel of each order based on
the nonlinear differential equation. Billings and Peyton
Jones [14] adopted the harmonic probing method to derive
the recursive algorithm of Volterra frequency-domain
kernel. Swain and Billings [15] adopted recursive algorithm
to calculate the Volterra kernel of an MIMO system. *e
research studies mentioned above calculated the Volterra
kernel based on a system mathematical model, and the
calculation accuracy depends entirely on the accuracy of the
model. Obviously, recursive algorithm is not suitable for the
system with uncertain mathematical model. *e
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identification algorithm is a “black box” operation, which
does not rely on the mathematical model of the system; it
only relies on the input and output data of the system. *e
Volterra kernel of each order can be calculated by adjusting
the parameters according to the error between the true
output and the estimated output. Toker and Emara-Shabaik
[16] proposed LMS identification algorithm by using
pseudorandom multilevel sequence excitation, which can
avoid matrix inversion and improve calculation speed and
accuracy. Sigrist et al. [17] adopted the improved LMS
method to identify the first two-order Volterra time-domain
kernel. Asyali and Juusola [18] expanded the Volterra kernel
by the Meixner function to identify the Volterra model of a
nonlinear system with time delay. Prazenica and Kurdila
[19] proposed multiwavelet function to identify Volterra
time-domain kernel, and the first three-order Volterra time-
domain kernel function of a nonlinear system was obtained.
*e identification algorithm can realize the adaptive calcu-
lation, but this method calculated one Volterra kernel value at
one time, which cannot achieve batch calculation and cannot
meet the needs of fault diagnosis based on data. *erefore,
there are at least two shortcomings in the traditional calcu-
lation of Volterra kernel: (1) the calculation efficiency and
process are low and complex, respectively; (2) due to the
approximate processing in the calculation process, the error
between the estimated value and the true value is large.

In order to solve the problems of calculation methods
mentioned above, a new intelligent calculation method is
urgently needed. Artificial neural network (ANN) is a
parallel distributed information processing network. *e
neurons in the network have strong ability of nonlinear
approximation and fitting, which can approach any non-
linear function [20–22]. In recent years, to simplify Volterra
kernel calculation, a small number of researchers have tried
to adopt ANN to calculate the Volterra kernel. Wray and
Green [23] and Stegmayer et al. [24] adopted the weight
coefficient of ANN to express the Volterra kernel of each
order, and it was also verified by a nonlinear system. In
references [25, 26], a Volterra kernel identification method
based on time-delay neural network (TDANN) was pro-
posed, and the relationship between the parameters of
network and Volterra kernel function was derived, which
successfully identified the first three-order Volterra kernel of
nonlinear unsteady aerodynamic loading. Although ANN
adopted in above research studies can realize fast and ac-
curate calculation of Volterra kernel, there are still some
disadvantages, for example, the number of input nodes in
the network structure was set by experience, and the analysis
of input node number impact on the calculation accuracy
was lacking; furthermore, the network structure was
established with great randomness and arbitrariness, which
has no adaptability.

*e main contributions of this paper are as follows. (1)
Based on the research studies by the authors of [23–26], the
impact of input node number and the memory length of
TDANN network on the accuracy and calculation speed is
analyzed and studied. (2) Root mean square error (RMSE) is

introduced as the reference of neuron node number selec-
tion to realize network structure adaptive adjustment, which
can avoid the network structure selection blindness. After
obtaining the optimal structure, only the input and output of
the system were needed to realize the intelligent calculation
of the Volterra kernel. (3)*e proposed method was verified
by a nonlinear system. *e reason why it was called “in-
telligent calculation” is that compared with the traditional
calculation method, the whole calculation process does not
need human’s participation, which can avoid the complex
calculation process. In Section 2, the mathematical model of
Volterra time-domain kernel is provided. Section 3 intro-
duces the concept of TDANN. In Section 4, the relationship
between the Volterra kernel model and TDANN model is
analyzed, and the explicit expression of Volterra time-do-
main kernel is obtained. In Section 5, the proposed method
is simulated and verified by a nonlinear model. *e con-
clusions are summarized in Section 6.

2. Volterra Time-Domain Kernel Model

For any continuous time invariant nonlinear system, if the
system input satisfies
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wherey(t) is output of the system, u(t) is input of the
system, and hn(τ1, τ2, . . . , τn) is the n-order Volterra time-
domain kernel or generalized frequency response function.
*e n-order Volterra kernel model can be obtained by
truncating (2), which is shown as

y(t) � h0 + 􏽚
+∞

0
h1 τ1( 􏼁u t − τ1( 􏼁dτ1

+ 􏽚
+∞

0
􏽚

+∞

0
h2 τ1, τ2( 􏼁u t − τ1( 􏼁u t − τ2( 􏼁dτ1dτ2

+ · · · + 􏽚
+∞

0
􏽚

+∞

0
􏽚

+∞

0
hn τ1, τ2, . . . , τn( 􏼁u t − τ1( 􏼁

· u t − τ2( 􏼁 . . . u t − τn( 􏼁dτ1dτ2 . . . dτn.

(4)

Discretize equation (3) to obtain the discrete Volterra
kernel model, which is shown as
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For a system with memory lengthM, equation (4) can be
changed to
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Generally speaking, the energy components of Volterra
kernels above three-order are very small, and it is also not
easy to visualize the graphs over three dimensions [30].
*erefore, this paper only calculates the first three-order
Volterra kernel of the system.

3. Time-Delay Artificial Neural
Networks (TDANNs)

As shown in Figure 1, the artificial neural network is
composed of many neurons which are related to each other
to achieve efficient data processing. Such a network is also
known as feedforward multilayer perceptron. Artificial
neural network is generally composed of an input layer,
hidden layer, and output layer. A simple three-layer network
can realize the approximation of any nonlinear function. A
mapping of data from the input layer to the output layer is
called training. In order to achieve accurate approximation,
several training iterations are required. In this process, the
network constantly updates the weights and thresholds
between different neurons. According to the error between
true value and calculation result, the weights and thresholds
are modified in turn. After updating several times, the
calculation result is closer to the true value, and the optimal
weight and threshold can also be obtained.

ANN is a typical MIMO neural network with M inputs
and N outputs. *e selection of input and output of a neural
network depends on the characteristics of the specific sys-
tem. For the Volterra kernel model, from equation (5), it can
be seen that the Volterra kernel model with memory length
M has M+ 1 input variables, which are
u(k), u(k − 1), · · · u(k − M), respectively. *ere is one

output, that is y(k). In addition, h(k − 1), . . . , u(k − M) are
delayed 1 t, 2 t,..., M t, respectively, from input u(k). For a
single-input single-output (SISO) system, how to construct
dataset with M+1 inputs and 1 output is important. *e
specific process is shown in Figure 2.

*e artificial neural network takes M+ 1 delay neurons
as the input layer and 1 output neuron as the output layer,
which is called time-delay artificial neural network
(TDANN). Because the network adopts forward time delay,
it has the function of memory. *e structure of TDANN is
shown in Figure 3.

In Figure 3, ω11,φ12, . . . ,ωMp are weights between the
input layer and hidden layer; b1, b2, . . . , bp are thresholds on
the hidden layer; ω1,ω2, . . . ,ωp are weights between the
hidden layer and output layer; and b0 is the threshold on the
output layer.

4. Equation Derivation of Volterra Kernel
Based on TDANN

According to equation (3), the first three-order Volterra
kernel model with memory length M can be shown as
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For the TDANN model shown in Figure 3, the selection
of activation function and number of neurons in the hidden
layer directly affects the accuracy of output. In this paper,
sigmoid function is chosen as the activation function of
neurons in the hidden layer, which is shown as

φ(x) �
1

1 + e− x
. (8)

Input layer

Hidden layer

Output layer
x1 y1

ym

x2

xn

Figure 1: Artificial neural network with single hidden layer.
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*e number of hidden neurons has a significant impact
on the performance of the network. If the number of
neurons is too small, the calculation accuracy is low. If the
number of neurons is too large, the overfitting phenomena
will occur. So, according to the Volterra kernel character-
istics, this paper adopts root mean square error (RMSE) as
an evaluation index to determine the reasonable number of
hidden neurons, which is shown as
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����������������
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2

􏽶
􏽴
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wherey(j) is the true value of output at time j; 􏽢y(j) is the
predicted value of output at time j; and RMSE represents the
standard deviation of error samples between the estimated
value and the true value, which reflects the dispersion degree
of sample. *e smaller the RMSE is, the better the ap-
proximation effect is.

φ(x) is chosen as activation function between neurons in
the input layer and hidden layer, and pureline function is
chosen as activation function between neurons in the hidden
layer and output layer; then, the j-th output yj can be
expressed as

yj � φ 􏽘

M+1

i�1
ωij ∗ ui + bj

⎛⎝ ⎞⎠, (10)

where M is the memory length of the network; ωij is the
weight between the i-th neuron in the input layer and the j-
th neuron in the hidden layer; ui is the i-th input; and bj is
the threshold of j-th neuron in the hidden layer.

*e output of TDANN can be expressed by

yout � 􏽘

p

j�1
ωj ∗yj + b0, (11)

where p is the number of neurons, ωj is the weight between
the j-th neuron in the hidden layer and output layer, and b0
is the threshold on the output layer. Substituting equation
(9) into equation (10) and expanding φ(x)with Taylor series,
equation (12) can be obtained.
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where φ(n)(bj)stands for the n-th derivative of φ(x) at bj.
Because only the first three-order Volterra kernel values
are considered in this paper, equation (11) can be translated
into
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Figure 2: *e process of dataset construction.
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Figure 3: *e structure of TDANN.
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Expanding n and i in equation (13), equation (14) can be
obtained.

yout � b0 + 􏽘

p

j�1
ωj ∗φ bj􏼐 􏼑 + 􏽘

p

j�1
ωj ∗φ

(1)
bj􏼐 􏼑 ω1j ∗ u(k) + ω2j ∗ u(k − 1) + · · · + ωM+1 j ∗ u(k − M)􏽨 􏽩

+ 􏽘

p

j�1
ωj ∗

φ(2) bj􏼐 􏼑

2!
ω1j ∗ u(k) + ω2j ∗ u(k − 1) + · · · + ωM+1 j ∗ u(k − M)􏽨 􏽩

2

+ 􏽘

p

j�1
ωj ∗

φ(3) bj􏼐 􏼑

3!
ω1j ∗ u(k) + ω2j ∗ u(k − 1) + . . . + ωM+1 j ∗ u(k − M)􏽨 􏽩

3
.

(14)

Comparing equation (6) and equation (14), the first
three-order Volterra time-domain kernel calculation
equations can be obtained, which are shown as follows:
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It can be seen from equations (15)–(21) that the first
three-order Volterra time-domain kernel expressions are
completely composed of weights and thresholds of TDANN.
We substitute the optimal weights and thresholds into the
equations above to calculate the Volterra kernel of each

order. Compared with the traditional calculation method,
the new method only needs the input and output of system
to train the network and does not needmanual participation,
which can realize the intelligent calculation of Volterra
kernel.
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5. Simulations

According to reference [31], the dynamic model of the
nonlinear oscillator is shown in Figure 4.

*e nonlinear differential equation of the model can be
expressed as follows:

m
d2y(t)

dt2
+ c

dy(t)

dt
+ k1y(t) + k2y

2
(t) + k3y

3
(t) � u(t),

(22)

where m is the mass of the oscillator; c is the damping
coefficient of the system; k1 and k2 are linear stiffness pa-
rameters and k3 is nonlinear stiffness parameter; u(t) is
external force applied to the system, which is the input of the
system; and y(t) is the displacement of the vibrator, which is
the output of the system.

*e parameters are

m1 � 1kg, c �
3N · s
m

, k1 �
60N
m

, k2 �
100N
m2 , k3 �

200N
m3 ,

(23)

setting the input as u(t) � 50cos(0.4πt).

5.1. 5e Effect of Volterra Memory Length M on System
Output. From Figures 2 and 3, it can be seen that the
memory lengthM not only affects the neuron number of the
input layer but also affects the composition of dataset. IfM is
too small, the nonlinear correlation between neurons is not
high. IfM is too large, overfitting phenomena may occur. So,
it is very important to choose M reasonably to ensure the
output accuracy. In order to facilitate the analysis, this paper
makes the neuron number of the input layer equal to the
hidden layer, namely,M + 1� p. *e influences of M on the
network output are tested, which are shown in Figures 5–7
and Table 1.

*e specific effects of memory length M on system
output are shown in Table 1.

From Figures 5–7 and Table 1, it can be seen thatM has a
great effect on the accuracy of system output. At the be-
ginning, when M is gradually increasing, the system output
error tends to decrease due to the increase of correlation

degree between neurons in the network. However, with the
increase of M, the degree of correlation between neurons is
increasing, but the overfitting phenomena occurred, so the
system output error shows oscillation. In addition, with the
increase of M, the structure of network becomes more
complex, and the time cost of network training and testing is
longer. Furthermore, based on the RMSE index, the memory
length M is selected to be 8.

5.2. 5e Calculation of Volterra Kernel. When M� 8, the
neuron number of the input layer is 9, and the neuron
number of the hidden layer is 9. After TDANN training, the
optimal weight of different neurons between the input layer
and hidden layer is

ωi,j �
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. (24)
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Figure 4: *e model of the nonlinear oscillator.
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*e optimal threshold of neurons in the hidden layer is

b � [− 2.4254 2.6970 − 2.4143 1.0530 0.0096 0.7809 1.9744 − 2.7337 3.5764]. (25)

*e optimal weight of different neurons between the
hidden layer and output layer is

ωj � [0.3457 − 0.0424 − 0.3568 − 0.1451 − 1.8627 − 1.1851 0.1561 0.6817 0.4550]. (26)

*e optimal threshold of neurons in the output layer is

b0 � 1.2744. (27)

*e first three-order Volterra time-domain kernel can be
obtained by substituting the parameters above into equa-
tions (15)–(20), and the results are shown in Figures 8–10.

In order to prove that the identified kernels hold the
correct dynamics, predicted responses can be obtained by

the first three-order Volterra time-domain kernels, which
are shown in Figure 11.

From Figure 11, it can be seen that the predicted re-
sponse using first-order kernel is similar to the system input,
which stands for the linear system response, and the pre-
dicted response using first two-order kernels begin to appear
as nonlinearity components; furthermore, with the order of
kernel increasing, the nonlinear components are more and
more obvious and also close to the real response.
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Figure 6: M� 8: the comparison of output between true value and estimated value.
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Table 1: *e effects of M on system output.

M Average error RMSE Time cost (s)
2 0.0013 0.006 0.91
3 6.3360×10− 4 0.0059 0.85
4 8.5099×10− 4 0.0051 0.90
5 6.1712×10− 4 0.0042 0.79
6 0.0033 0.0052 0.96
7 1.3466×10− 4 0.0052 0.89
8 8.7882 × 10−5 0.0013 1.02
9 8.3969×10− 4 0.0031 1.24
10 0.0021 0.0050 1.29
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Figure 8: *e first-order Volterra time-domain kernel calculated by TDANN.
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5.3. 5e Robustness of the Proposed Method. In order to
demonstrate the robustness of the proposed method,
Gaussian noise is added to the system input; the first three-
order Volterra kernels are calculated by TDANN, and then
the system output estimated value can be obtained by
equation (6), which is shown in Figure 12.

From Figure 12, it can be seen that due to the influence
of noise, the estimated output value of the system is in
fluctuation state at beginning, and the errors between the
estimated value and the true value are relatively large, but
after about 2 s, the estimated value begins to approach the
true value, and after 4.7 s, the error between the estimated
value and the true value is getting smaller and smaller. So, it
can be demonstrated that the proposed method has
robustness.

5.4. 5e Accuracy Comparison with Traditional Algorithm.
In order to verify the accuracy of Volterra kernel calculated
by TDANN, the first three-order Volterra time-domain
kernels of the nonlinear system are calculated by TDANN,
recursive algorithm in reference [32], and variable step size
least mean square (VSSLMS) adaptive identification algo-
rithm in reference [33], respectively. *en, three different
output results are obtained by equation (6). *e accuracy of
three methods is shown in Figures 13 and 14.

From Figures 13 and 14, it can be seen that among three
methods, the accuracy of the TDANN method is highest, so
each order of Volterra time-domain kernel (as shown in
Figures 7–9) calculated by TDANN is closest to the true
value of Volterra time-domain kernel. In the VSSLMS
identification algorithm, all kinds of parameters have been
adjusted to the best, but the identification accuracy is not
ideal for the system; two reasons can account for such
phenomena. Firstly, the adjustment of parameters in the
identification algorithm is based on experience, which is
subjective. Secondly, the accuracy of the identification al-
gorithm may be affected by the data type. So, the accuracy of
identification algorithm is the lowest. It is worth to notice
that in order to further enhance the accuracy, TDANN can
easily realize the above three-order Volterra time-domain

kernel calculation, while it is difficult for others to calculate
the Volterra time-domain kernel above three-order.

5.5. 5e Computation Complexity Comparison with Tradi-
tional Algorithm. Both TDANN and recursive algorithm
can realize the simultaneous calculation of multiple
Volterra kernels, namely, one operation can realize the
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calculation of multiple Volterra kernels, which can im-
prove the calculation speed and efficiency, while with
identification algorithm, one operation can only calculate
one Volterra kernel value. In order to demonstrate that
TDANN can reduce the computational complexity, the
recursive algorithm in reference [32] and the identifica-
tion algorithm in reference [33] are adopted to randomly
calculate several first three-order Volterra kernels of the
system. *e time consumption of three methods is shown
in Table 2.

It can be seen that the identification algorithm consumed
the most time, and TDANN consumed the least time. *e
time consumption of identification algorithm, recursive
algorithm, and TDANN is 1325.25ms, 559.2ms, and
366.96ms, respectively. Compared with identification al-
gorithm and recursive algorithm, the calculation speed of
TDANN is increased by 72.31% and 34.38%, respectively.
*erefore, the method proposed in this paper reduced the
complexity of calculation, which can realize the online
calculation and detection of the system.

6. Conclusions

To solve the problems of large computation amount and low
accuracy in the conventional method to calculate the Vol-
terra time-domain kernel of the nonlinear system, this paper
proposed a novel method to intelligently calculate Volterra
time-delay kernel by TDANN; by comparing the Volterra
kernel model with the TDANNmodel, the connection of the
two models has been found, and the complex Volterra time-
domain kernel calculation was transformed into the optimal
parameter calculation of neural network; the novel method
has been well verified on a nonlinear system.

*e main achievements can be summarized as follows.
Compared with recursive algorithm, the TDANN

method has three contributions: Firstly, it can avoid the
complex modeling operation of the system; only with input
and output of the system, the first three-order Volterra time-
domain kernel can be calculated, so it is more adaptable.
Secondly, it transforms the complex calculation into the
optimal parameter solution of the network, and the Volterra
time-domain kernel can be calculated through network
training, so it is more intelligent. *irdly, it can adjust the
network structure according to the output of the network to

ensure the calculation result is closer to the true value, so it is
more adaptive.

Compared with the identification method, the TDANN
method can not only achieve batch calculation at one time
but also reduce the time consumption, so the calculation
efficiency is high, which provides the possibility of online
calculation.

However, the three-order Volterra kernels calculated by
TDANN are only parts of the whole Volterra kernel in-
formation because the value of M cannot be too large. How
to balance the amount of Volterra kernel information and
time consumption is the future work.
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