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The present paper concerns with a near-optimal control problem for systems governed by mean-field forward-backward sto-
chastic differential equations (FBSDEs) with mixed initial-terminal conditions. Utilizing Ekeland’s variational principle as well as
the reduction method, the necessary and suflicient near-optimality conditions are established in the form of Pontryagin’s type. The
results are obtained under restriction on the convexity of the control domain. As an application, a linear-quadratic stochastic

control problem is solved explicitly.

1. Introduction

Near-optimal control problems have attracted more atten-
tions in recent years due to its distinct advantages, such as
existence under minimal assumptions, availability in most
practical cases, and convenience for implementation both
analytically and numerically. The study of this theory can be
traced back to Ekeland [1] and later greatly developed by
Zhou [2-4] for deterministic and stochastic cases. Since
then, many works have been devoted to the near-optimality
of various stochastic control systems. Without being ex-
haustive, let us refer to [5-13] and the references therein.
In 2015, Zhang et al. [14] investigated the near-opti-
mality necessary conditions for classical linear FBSDEs,
where the control domain was with nonconvexity. Via
convergence technique as well as reduction method, they
established the near-optimal maximum principle. Soon af-
terwards, under the same assumptions, Zhang [15] presented
the near-optimal sufficient conditions for such classical
linear FBSDEs. Especially, in 2018, by defining viscosity
solution with perturbation factor to dispense the illusory
differentiability condition of value function, Zhang and
Zhou [16] established the necessary near-optimality con-
ditions for stochastic recursive systems by virtue of dynamic
programming principle. Another noteworthy thing is that,

for recent years, some authors started research studies on
near-optimal control problems for delay systems. For ex-
ample, Zhang [17] first studied near-optimal control
problems for linear stochastic delay systems. By anticipated
backward stochastic differential equations method as well as
maximum principle, necessary condition and sufficient
verification theorem were provided. Then, also under re-
striction on convexity control domain, Wang and Wu [18]
investigated near-optimal control problem for nonlinear
stochastic delay systems. By Ekeland’s variational principle
and corresponding moment estimations, they presented the
sufficient as well as necessary near-optimality conditions.
For more details, refer to [19, 20] and the references therein.

However, to the best of our knowledge, few papers can be
found in the literature on the near-optimality of mean-field
backward stochastic differential equations (BSDEs). This
new kind of mean-field BSDEs was first introduced by
Buckdahn et al. [21], which were derived as a limit of some
highly dimensional system of FBSDEs, corresponding to a
large number of particles. It has been shown in Buckdahn
et al. [22] that, such a mean-field BSDE described the vis-
cosity solution of the associated nonlocal partial differential
equations. Henceforth, many authors take into account of
this system of McKean-Vlasov type (Lasry and Lions [23])
adapted for different frameworks, for example, Xu and Wu
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[24] presented a maximum principle for optimal control
problems governed by backward stochastic partial differ-
ential equations of mean-field type, and for other related
works, refer to [25-28].

As we can see that all the above literature studies are
about mean-field problems involving expectations as mean-
field terms. In fact, there is another line dealing with mean-
field problems, which involve large-population as mean-field
terms to describe the impact of the population’s collective
behaviors on all agents (Huang et al. [29]) such as the work
of Huang [30] and Xu and Shi [31] as well as the work of Xu
and Zhang [32] all concerned with general mean-field linear-
quadratic-Gaussian (LQG) games of stochastic large-pop-
ulation systems; through the consistency condition, they
derived the decentralized strategies and further verified the
asymptotic near-optimality property (namely, e-Nash
equilibrium) of decentralized strategies for the LQ games.
On the contrary, a relevant work of Hafayed and Abbas [8]
dealing with near-optimal control problems has established
necessary and sufficient conditions for mean-field singular
stochastic systems in the case of controlled diffusion coef-
ficient. Particularly, in the concluding section, it is pointed
out that the establishment of necessary and sufficient near-
optimal conditions for mean-field FBSDEs also remains an
open problem. Motivated by this fact with the addition of
above described mean-field theory application background
in economics and finance, this paper is to discuss near-
optimal control problems for mean-field FBSDEs, where the
controlled state systems are with mixed initial-terminal
conditions.

The main contribution of this paper lies in the initial
introduction of three first-order adjoint equations to
eliminate the corresponding variational processes during
dual analysis; another is rooted in the usage of reduction
method to guarantee the well-posedness of the first-order
adjoint equations with mixed initial-terminal conditions.
Via classical convex variational technique and Ekeland’s
variational principle, a necessary condition of Pontryagin’s
type is derived. Then, under some additional assumptions,
we prove that the near-maximum condition on the Ham-
iltonian function is a sufficient condition for near-opti-
mality. It is remarkable that our results extend those of [5]
essentially to the framework of mean-field theory.

The rest of this paper is organized as follows. In Section
2, we state some preliminaries and basic definitions. In
Sections 3 and 4, we establish the main theorems and
provide its detailed proof. In Section 5, an example of a
linear-quadratic control problem is worked out to illustrate
the theoretical applications. Finally, some concluding re-
marks are given in Section 6.

2. Preliminaries

Let (Q, F,{F,},», P) be a filtered probability space satis-
tying the usual condition, on which a one-dimensional
standard Brownian motion (W,),., is defined,
F ={F,0<s<T} be the natural filtration generated by
(W), and augmented by all P-null sets, i.e.,
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Fo=o{W,r<spvl,, sel0,T], (1)

where ./, is the set of all P-null subsets. We now introduce
some spaces of random variables and stochastic processes.

L% (Q; R) = {# — measurable random variable

X: E|X|* < oo}

8% (0,T;R) = {92— adapted and continuous process

y: E[Supte[O,T]th ] < oo}

X3 (0,T;R) = {F - adapted process

y: E[[, ly,[*dt] < oo}

M?[0,T] = 8% (0,T;R) x % (0, T; R) x %, (0, T; R)
Clearly, M?[0,T] is a Banach space. Any process in

M?[0,T] is defined by ® = (x, y,2z) with the norm

R 5 T X 172

1©llys2 0,17 = {E[ sup [x[" + sup [y,] +J [z dt” :
te[0,T] te[0,T] 0

(2)

We study the near-optimal control problem of the fol-
lowing controlled mean-field FBSDEs having mixed initial-
terminal conditions:

dx, = b(t, x,, Ex,, u,)dt + o (t, x,, Ex,, u,)dW,,
=dy, = f (t: x> y» 20 Ex;, Eyy, Bz, uy)dt - 2,dW,,
xo =y (%X ¥o)s
yr =h(xr: y),
(3)

where b,0: [0,T]xR*xU — R; f: [0,T]xR®* xU —
R; h,y: Rx R — R;and U is a given convex closed set of R.
The cost functional to be minimized over the space % =
L% (0,T;U) of admissible controls takes the form

T
J(u) = E{Jo l(t’ xt’yt’zt’Ext’Eyt’Ezt’ut)dt + (P(xT’yo)}’

(4)
with I: [0,T] xR xU — R; ¢: Rx R — R.

Definition 1 (see [4]). Both a family of admissible pairs
{(x*, 5,25, u)} parameterized by €>0 and any element
(x%, %, 2% u®) in the family are called near-optimal if

J(u) - ilg;](u) <r(e), (5)

holds for sufficiently small ¢, where r is a function of
satisfying r (¢) — 0 as ¢ — 0. The estimate r (¢) is called
an error bound. If 7 (¢) = Ce’ for some 8 > 0 independent of
the constant C, then u* is called near-optimal with order &,
Particularly, when r (¢) = ¢, u® is called ¢-optimal. The near-
optimal control problem under consideration in this paper is
as follows.

Problem of. Find u® € % such that
](u):ilel?gf(v)+s. (6)
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Some notations and assumptions are presented before
giving the well-posedness of system (3). We denote the norm
by |- | of an Euclidean space.

(A,) The functions b, o, f, and [ are F-progressively
measurable in u, continuously differentiable in
X, ¥,2,%, 9, and Z, and the derivatives of b, o, f, and |
with respect to x,y,z,%,%, andz are bounded.
Moreover, for some constant C >0,

(1 +]x] +IZD) B, %, % w)] + (1 +x] +IZD o (¢, x, %, )
+(1+|x] +1yl +lz] +I7 +7] + 2D 7' f (£ %, v, 2, %, 7,2, 0)]

+ (1 +Ix] +]yl +lz] +1%| +17] +12) [t x, 3,2, %, 7,2, w)| <C.

(7)

+

b (% % u) - bx(t, X%, u)

+

~ ~!
o, (t,x, X, u) - ax<t,x1,x , u)

SC<|x—xl|ﬂ +|x —E'|’3),

‘fi(ta X y)Z> 52)5}1 z)u) - fj(t) x,a yI)Z,) 52,: ’)7,) 2,) l/l)

+

b (t, x,X,u) - b;(t, xn %, u)

li (t)x>)/, Z)%)’in z)u) - li<t$ x,) y,) z’a 32,) ’le)z,a M)

(A,) h, y, and ¢ are continuously differentiable in
xand y, and the derivatives of 4, y, and ¢ with respect
to xand y are bounded. Moreover, for some constant
C>0,p=h,y,¢9

(1 +1x| +1yD) o (x, y) <C. (8)

(A;) There is a constant C >0 and f € [0, 1] such that

o5 (t,x, %, u) - a;(t, x1 %, u)

(9)

<C(lw-wl +ly -y sz -zl +[z -7 4[5 -7 +l2-2]),

Furthermore,

lpx (%, 9) = p (xt, )| +]py, (% 9) = p,, (1, 1)

(10)
£C<|x— 1 +ly —y,|ﬁ),

where i = x, y,2,%,9,Z and p = h,y, ¢.

Remark 1. Under assumptions (A,) — (A;) via Theorem 2
in [33], the mean-field stochastic system (3) admits a unique
adapted solution (x, y,z) € M?[0,T].

In fact, due to the mixed initial-terminal conditions in
the state equation, even if we have the well-posedness of the
state equation via the Lyapunov operator introduced in [34],
the well-posedness of the first-order adjoint equation seems
to be not guaranteed. To overcome this difficulty, we in-
troduce a reduction method inspired by the study of opti-
mality variational principle for controlled FBSDEs with
mixed initial-terminal conditions [35]. First, we pose the
following problem.

Problem %B. Find (xg, v, u®) € R == Rx R x 2 such that

I(xf),yf),uf):( inf ] (x yoo 1) + & (11)

XosYoolh) €U

where (x,, y,,u) is subject to the forward control system:
dx, = b(t, x,, Ex,, u,)dt + o (t, x,, Ex,, u,)dW,,
-dy, = f(t: x5 ¥ 20 Exp, Eyy, Bz uy)dt — 2,dW,,

x(0) = x,,
y(0) =y,
(12)
with the mixed initial-terminal state constraints:
Xy = X7, >
0 V( T J’o) (13)
Yr = h(xT’ }’0)-

It is remarkable that, for Problem &/, the mean-field
system (3) has a unique solution (x, y,z) under (A,) — (4,),
which implies that y(0) is unique and completely deter-
minate. While, for Problem %, y (0) is arbitrary and viewed
as a control variable. It just needs to satisfy the near-optimal
state constraints at time T So, Problem & is embedded into
Problem 9. Hence, if the triple (x{, y§,u®) is the near-
optimal control of 3%, then u® is near-optimal for Problem
. In the following section, we will adopt the classical
convex variational technique to solve Problem .



3. Necessary Condition of Near-Optimality

This section is devoted to the study of the main theorem. For
simplicity, we denote

) b;=b; (t, x;, Ex,yu4y),
;=0 (t,x,, Ex,, uy),
f] = f] (t, rt, ut),
l] = Z] (t, Ft, ut)’
1 Py = by (om0, (19
P}’o = p}'o (XT’yO)’
je{xy.2%75.2},
I, = (xt,yt, z;, Exy, E)’pEZt)>

[P =h7y.0.

For any u € % and the corresponding state processes
(x, ¥, z), we define the first-order adjoint equation as

( dE, ={fyft +1, +E[f;ft + l;”dt
+{fzft +1,+ E[f;ft + l;]}th,

1 =dn, ={-f & + b, + 0., 1 }dt (15)
+{E[_f§ft +bon, + 070, - l}]}dt - ¢, dwy,
§ = =009, — MoYy, + EThyO’

L T = —fTth T NoYx, 90%,:

Remark 2. Under assumptions (A;) - (A;), the adjoint
equation (15) admits a unique adapted solution
(&,1,0) € M?[0,T]. The well-posedness of the corre-
sponding adjoint system will be provided in the derivation
process of Theorem 1.

Define a metric on % by

T 1/2
d(u,ul) = [EJ lu — ul|2dt] , Yu,ure %. (16)
0

Since U is closed, it can be shown that (%,d) is a
complete metric space. Next, we will present some

T
—-Ce"0,<E ,[o (n; [b(t, x5, Exyyu,) = b(t, x5, Exyup) | + C [0 (8, x5, ExY, uy) — o (8, %3, Exp, uy)]

5[ (BT w) = f (6T u)] = [H(E T u) = 16 T uy)])ds,

where (&, 1%,(%) € M?[0,T] is the solution of the first-order

adjoint equation (15) corresponding to u®.

dy (©,8) = [|xg - Zo|* +]yp = Fo|* + d (1, 7)’]

1/2
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continuity of the state processes and adjoint processes with
respect to the metric d.

Lemma 1. Forany0<a<1and0< p<2, thereisa constant
C =C(a, p) >0 such that, for any u,u € % along with the
corresponding trajectories (x,y,z) and (X,,z), it follows
that

E( sup |x, - Et|p> <Cd(u,m)*",
te[0,T]
(17)
T 2
sup E|y, -7,|" + EJ |z, - Z,[Pdt <Cd (u,m)*""”.
t€[0,7] 0

Proof. Applying the classical methods as Lemma 4 in [5] for
dealing with mean-field FBSDEs, together with Bur-
kholder-Davis—Gundy inequality and Gronwall’s inequality,
we can logically obtain the estimates. O

Lemma 2. Let (A;)- (A;) hold, for any 0<a<1 and
1 < p <2 satisfying (1 + aff)p <2, and there is a constant C =
C(a,f3, p) >0 such that, for any u,u € %, along with the
corresponding trajectories (x, y,z) and (X,y,z) and the
solutions (&,1,() and (&,7,() of the corresponding adjoint
equation (15), it holds that

E JT |ft - Zt|Pdt <Cd(u,w)*P?,
! O (18)
. JO <|m - ﬁ‘lp +'Ct - Zt'p>dt£Cd(u, )2,

Proof. Applying the classical methods as Lemma 5 in [5] for
dealing with mean-field FBSDEs, we can naturally obtain the
estimates. O

Theorem 1. Let (A;) - (A;) hold, for any €>0, u® is an
e-optimal control of problem 3. Then, for any « € [0, (1/3)),
there exist three parameters 0, 93, and 6, with
6512 + E|6,* + E|6,* = 1, and 65> 0 holds that

(19)
Yu e U,

Proof. Under the assumption (A,), it is easy to check that
J (%9, o> 1) is lower semicontinuous on &£ := Rx Rx %,
which is a complete metric space under the following metric:

s VO = (xg, o ), © = (%o, Joo 1) € R. (20)



Mathematical Problems in Engineering

By Ekeland’s variational principle [1], there exists an
admissible control (X, 7§, #i°) € & such that

{ dyy (x5, % 1), (Re, 75, 7)) <225,
T (x5 75 7)) <T (%0 yortt)s V(X0 ¥ 4) € X,

(21)
where
T (0> yoru) = T (%05 yor ut) + 51/3‘1@ ((x0> yor ), (’?8’5’8’ ﬁe))
(22)

It means that (X§, y yo, 1) is optimal for system (12) with
the new cost functional J* (x, ¥,, #). On the contrary, due to
the mixed initial-terminal endpoint constraints in problem
3%, we need to introduce the penalty functional to transform
the original problem with endpoint constraints to the pe-
nalized optimal control problem with no endpoint
constraints.

]6’£(x0 ’)’0 L u® ) Jo* (%5, 76, 8°) = 6,

|0 = %[ + [0 - 35| + dfud<, | <6,

-6 [|xg’£ - x0|2 +|y(‘§"S - y0|2 +d(ud

Therefore, (x3¢, 3, u®®) is optimal for system (13) with
the new cost functional:

T (00 Yoo ) + \/5[ X - xo'z +|J’g’£ - ;V0|2 + d(“6
(26)

So far, we have transformed the original problem with
endpoint constraints to the penalized optimal control
problem w1th no endpoint constraints, and the optimal 3-
tuple (x0%, y5¢, u®®) approaches (%5, ¥, 1) as 6 — 0. In
the following, a convex perturbation is employed to obtain a

&0, _ [1.0¢ 555
dx(? —{b X0y

&0,e _
x7o" = Ve X,

| )’igs = Ve yp»

where for simplicity of notations, we still use p>¢ corre-
sponding to (x%¢, y%¢, z%¢,u%¢), p = b, 0, f. Then, we have

. 2]1/2
W

b%EE[x‘i’f’g] + Ab¥ }dt + {0 xifs

~dyde = { o o foyie v pieatt o fUE(w) ¢ L[yl FUE[0] ¢ Areg far - zibeaw,

Let (X5, ¥§, 1i°) be an optimal control of problem 2, with
the corresponding optimal state process (x°, 3%, z%). Without
loss of generality, we assume that J* (X5, 75, %) = 0. For any
6>0and (xg, ¥o, u) € R, we define the penalty functional:

Jo (%> Yoo 1)

h(xT,yo)Iz]}u2
(23)

= { [78 (on’o’“) + 5]2 + E“xo - Y(XT))’O)|2 +|)VT -

Obviously,
A (%05 yoo 1) >0,

1o (x5, 75,5) = 0<  inf
(xn,y[,,u)ES‘?

7o (x> Yoo tt) + 0. (24)

By Ekeland’s variational principle, there exists a 3-tuple
(x3%, y5¢, u®) € R such that

(25)

212 8¢ Sef 0sE L0 S
u) ] <J% (xg, Yoo 1) = J* (xo’,yo’,u » ), V(x> Yoo tt) € R.

maximum principle for (xJ*, y3*, u%). To this end, let ® =

(x0» yoout) € R such that ©% +@ = (x0* + x,, Y3+
Yoo % + u) € R; then, for any £>0,
O =0 +e0, € R, tel0,T] (27)

Let (x®0¢, y5¢ 280€) be the state processes corre-

sponding to (x5, y5%,u®%¢), and the processes
(xF -0 7 e z7 £9¢) be the solution of the following variational

equations:

+ 0~ E[x‘i‘f‘c‘] + Aa‘s’slssyt}dwp

(28)

the following estimates, whose proofs are similar to those
given in [27]
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) s(Ss oo aep Noting that al(u“s‘g ‘f"g) <Ce, from the last relation in
E| sup |x sup lx - Xy | <Ce, (25), we derive
te[0,T] te[0,T]
E( S[lg};] |30 — xf - x50¢) >SC£2,
te
2
E( s[up]|y“s5 >+E( sup ly“ss yf’sl )SCs,
p te[0,T
E( sop D = A )‘ng’
te
Tl e, 0, d.e)?
EJ ze" dt+EI z;% = z,f| dt <Cg,
0
T
EJ sde _ g0e _ zo0e 4t < G,
0

(29)

—8\/(_3 |x0l2+|y0|2+CS]8,e( &0,¢ y;&s) s&s)_lés(xgs)yo ’u(? )

]85( sBs,y(s),t?, e&s) ]Se(xé,e)yg,s)ués)z
]88( 555,},(5)5 )ue,é‘,s) ]85( 55 uﬁs)

%) o o [T ) o
]6,8( 555’)/(5)5 u£66)+]6£( d,e y‘ss)ué‘s)
gl ]
+
£,0,¢ 555

[ Y55~ (x, yet) -y - h(xd, y5¢) 2]
]6,£(x8’5v5, y(f)’&s’ ua,&,s) + ]8’5()63’8, ygvs) u5,£) (30)

= G0 T (x5 550, ) — T (05, 8, ™))
B{T (" -y (5 8) - [ A))
e B{E (- W 5) - - (s
= (0000 (5570475 ) T (o505
+E[(8) + 0 (0 ) (x8% -y 3% = [0 - v(x 8]

|8+ o)) (5%~ h(x5% y5) - [ - n(st 4]

£,0,¢ &0, . &0, s S, S .0,
X0 V( » Yo _'xo - Y(xT > Yo )

]5,e(x8>5»5) y(f)’&s, us,&,s) + ]B,S(xgﬂ) ygﬁ, u&,e)
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with
Yogel ebe ede | 60
T &,0,€ £,0,€ &£,0,€ TE
. ZJO[A]( Vo U )+(1—/1)](x0,y0,u )+8]d/1
6™ = Joe(xE5, y50,uede) + Joe(xE, y3, ube) ’
3, de . ed, 3, de 0,
§ oo _ 567 - y(385 05%) + 50" - v(x5, ) (31)
0 ]5’5(x6’5’8, yg’a’s’ us,rS,s) + ]5,8()63’3’ yg’f) ué,s)’
0, de . ed, 3, e 0,
geoe _ VI =G 50) + i — (x5
T ]é‘)s( &0, y(s)rSs u£6£)+]68( d,e yg,g,u&sy
and It is lecessary o po1nt out that 93’520, and
) T(x o )+ s IG‘SSI2 +E|90 |2 +E|65£|2 . us, there exists a subse-
g = (E LR ) , quence still denoted by (66 £,0,°,0%) convergent, i.e.,
]6,3 ’yO ’u58 _ —
61130(93’8, 8 ,9%8) - (6,65.65). (33)

d,e

e 0
70 _ Xo Y(xT Yo )

We claim that 6 #0. The detaﬂed illustration of this

16, 5 68 5 (32) point refers to [35]. Here, (65, 9 6% is called the Lagrange
J E( U £) multiplier of the corresponding optlmal 3-tuple (x5, v, 1)
On the contrary,
e PR )
T ]55( S yg,s’u(s,g)'
93,6,5 [‘]‘S(xg,é,s, yg,é,s) us,é,s) _ ‘]‘S(xge’ yg s) ué e)]
_ 98,8,8[]( &0, yeés sé,s) 1/3dg(( £0,¢ sée sé‘s) %8 5}8 ﬁs ) I(x8s y ué‘ )
-0 Yo HU 4 00> 0> Yo >
- 51/351372((’%(3 5 yo u ) (X0 Voo 11" )]
_ 0(8),6,6 [](xg,&e, yg,&s’ ue,&,e) _ ](xge’ yo , u6 )] (34)

1/3 ne,0,e

205" [d g (x5

,0,€ 6,6 &0,
<6, [] (xo » Yo

S%ﬁs[](xgés’y(s)ﬁ,s

50,6 &0, 26,8 ~E ~& ~& d 8¢ 8¢ O ~E ~& ~&
Yo S u ) (X5 Voo i )) - @((xo Vo U ) (X5 Voo i ))]

)ue,é‘,s)_]( gs)ygs’u(%)] +£1/39£6£d92(( e&e’yg,é,s’us,&s) (xgs’ygs, 8,2))

,us,6,£>_](x0 >y0 u 58)] +££1/36£5£ |x0|

|y0|2 +C.
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From (A;) and (29), we can deduce

5, 2525 - (x5 )
B [ (e ) 16 + Bl ) - o)
j (T84, — (£, 15,15)

J J l““ ““ xf’£)+l§,’5€<yf65 )+lj‘“( f‘“ f’f)}d,ldt
j j 0B - ) 0By - By2) + 1204(Bp - B2)*) [ aae
+ E[p(x77, y5%) = o(x75 75™) + o(x75, ¥5) = o(x7, 357)]

=EJO{l(t Ffs uit%) l( 68 6e)+lée s6s+l6e [ eée]_l_lés £6s+168 [yi:f,e]+laszsl(tss+l~ E[Zg(Se]}dt

X lt y lt
O I (Y () e VB o )
(lgd,e _ lés) sés]}dAdt (35)
B [ g (e A ) ) e - )
CE [ g (b A )5 )
=EJo{l(t IO, uf%) — (1,10, 10 4 10500 1 1R 2099 4 2oyt 4 166 E[y50°] + 19255 1 12 E[zf‘”]} ;
+ Bl (5 70 ) + 0, (4 0y}
+EJ {[(Px (xT +A(x‘}5£—xT ) yéae) goxl(xg£ ygs)]xi‘;‘g}d)u
1
v [ {lon (<28 #2055 - 78)) - 0, (<88 id Jd + 00

:EJ {l(t rés s&s)_l(t r&s 6s)+lie i(:s_'_l&s [ sés]_'_lt;s ifs_'_lée [yit:,s]_'_lﬁszife_’_L E[zsés]} ¢

+ (g, (20 205 )207 + 9y, (60 56°) v} + 0 ()

where lj-"s’e = lj (t, I‘f’s + (S(I‘f"Ss F‘Ss) uy ed.e) j=%9z
X, 7,Zz. Similarly,

§ (x(g),(s,g _Y( £0,e y(s)ﬁs) [xgs y(xt?Ts yge)])}
= B (15 - (1R (1P oo
E{_;:&E(y%é’s = (% y5%) = [ - (=, y‘o“)])}

= BB (0~ he (<55 70 )i ~ (10 )i80) | + ot

(36)

Then, taking notice of (30), we can further obtain
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—e|xo|” +]yol* + C(Vs + 81/368’6’8)

Seg,é,eEJ:{l(t rt ,Miss)—l(t rt )u6£)+18£x§fs E[x£6£]+l(§£yti‘(t?s E[yeé‘s]_’_lé‘szirt?s [ 565]} ¢

+ 05 E{g, (x25 5005 + 0y, (x5 0% ) yi0°}
+E{9£8£(xi‘ff P (K95 905 )5 - Vyo(x?’iyg’s)yi’ﬁ‘)}

+ E{Qsas(yi’gf -h, (ng, ygs)xi’)‘}s —h,, (xif, )’gg))’i%s)} +0(e).

Let us introduce the following first-order BSDEs:

eée

{f& sé‘t lz;,e + E[f%g‘é(h + l%s] }dt + {fggzjss + lg’g + E[f’j'ezfss + Lgs] }th,

40, <0 .0, .0, 40,
_d~£55:{ ~FUE BT T -0 4 B[ T b+ o2 T - L - T aw,

~¢,0,€ 858

fT = >

—&.0, —&,0, £,0,¢ 9,

| e = 0oy ot

where p)C —pr(xT ,¥5%), p=h,y,¢. Applying Ito’s for-
mula to ft yi‘fe + 772080 fulfills

—&,0, ,0,€ =¢,0, —
E{O e - (B + 8y - 650 Yt} - VEB{E o + 76w |

T
56,05
_ EJ 0+ B o (18 4 B2 )yt (12 4 B2l 4 70+ T 000
0

858

Combining (37) and (39), yields

- S\onlz +|y0|2 + C(\/S + 81/368’6’8)
e —&0,¢ £,0,e O, 0 Se 01 8 FE0E
< VEE|( " + 70 o + (05790 - 89 - 0 H + B o

+EJ <~s6sAb5£+(f5€ BTN Al‘s‘?)IS dt +o(e).

To derive the first-order adjoint equation with mixed
initial-terminal conditions, divide /¢ in (40) and then send
e —> 0,8 — 0, and we see that

E{(@g + ’ﬁf,)xo +(9§(p£yo - @;y;n - @;hgyo + Zg)yo} >0, V(xp ¥,) € RxR,

which implies

Af‘”}ls dr.

(37)

(38)

(39)

(40)

(41)
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it = _@5, Meanwhile, by taking (x,, ¥,) = (0,0) in (40), dividing
e (42) this inequality by ¢, and then sending e — 0, § — 0, the
fo =- 0<Py - ﬂo)/y + fThj,O- variational inequality follows:

-Ce' 6 <E I FE[b (6, % EXS,u,) - b (6, %5 EXS, )] + ([0 (6 %5, EXS u,) — o (6, %5, EXS, i)

(43)
~E[f(6Thw) - (6T E) ] - [1(6 T w,) - 1T ) ]dt,
where T; = (%, 75, 2¢, EXS, E¥¢, EZ5). On the contrary, from
(38) and (42), we can present the adjoint equation with
mixed initial-terminal conditions as follows:
dE = {f;%j I E[fsz ; l‘i”dt +{f;§f FI E[ <F 4 li]}dwt
) 7 :{_f§£t+b£;1t+a(t—l€+E[ fsft+b£;1t+or~(t—l£]}dt—ztdwt, (44)

§o = =009, — oY), + ET Y

L ﬁ;‘ = _ETth + ﬁOYxT + 9‘(€)¢ch’

whose well-posedness can be deduced directly virus the  etc. Weare about to derive an estimate for the term similar to
above derivative process (Remark 2). Now, consider (43) the right side of (43) with respect to (x%, y*, 2%, u®), etc. To
again but with (X%, 5%, Z%, %), etc., replaced by (x°%, ¥%,2%,u®),  this end, we first estimate the following difference:

T
E [ {7 (b0t BR ) — b (656 ERL )] - o [0 6 Ext) - (e, Exua)

- j ) [b(6 X EX ) - bt & BX 7)) de s
B [ b (0 8 B ) ~ (e B )~ [0, B ) b (0, B
=H +8,+E&;
Due to Lemma 2, for any « € [0, (1/3)), by using the
similar arguments as developed in [7] the proof of Theorem
1, we can also prove that
T ~& ) ~& ~& ~& ~E& ~& K
E,=E Jo (’7t - 77t) [b(t> xt’Ext’ut) - b(t,xt,Ext,ut)]dt <C¢,
T
g, -E jo i (b (655 EXS 1) — b6 x5, Ex,u,)]dt < Ce¥, (46)

T
E,=E .[o i [b(t, %5, EX;, 6y ) — b(t, x;, Ex;, u;)|dt < Ce",
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T
E J {7 [b(t. %, EX;, u,) - b(t, %, EX;, U;)] — 1 [b(t, x7, Ex;,u,) — b(t, x5, Ex;, u; )| }dt < Ce". (47)
0

Similarly, via Lemma 2, we also have

T _
E [ {Tlo(t5Bxw) - o6 0 BRG] - G [0 (6 xf Exio) - o (6,30, vt
0

SE[f(6Tw) - F(6 T+ ELF (B Thu) - f(6Th)] (48)
(. Tw) = (6T, @) | + [1(6 T u,) = 1(t,T5, ;)] Fdt < Ce®.

Therefore, the desired result (20) follows immediately by
combining (43)-(48).

Since (x,, yo,u) is arbitrary, we draw the desired con-
clusion and summarize it as follows. O

Theorem 2. Suppose (A,) — (A;) hold. For any €>0, u® is
an e-optimal control of problem . Then, for an
x € [0, (1/3)), there exist three nonnegative parameters 6, @0,
and 6. with |6* + E|6)* + E|0,1* = 1 and 65> 0 such that,
for any x, € R, y, € R, and u € U, the necessary condition
(20) holds a.e. a.s., where (&,n%, (%) is the solution of (15)
corresponding to u’.

Define the Hamiltonian H (t,x, y,z,u,&,1,{) by

H(t,x, y,z,u,§,n,0) = =Ef (£,T,u) + nb(t, x, Ex, u)

+{o(t,x, Ex,u) - 1(t,T,u),

(49)

then we have the following form of necessity conditions.

Corollary 1. Under the assumptions of Theorem 2, it holds
that

T
B[ H (i 2o G )
0
T
> supE J H(t,x}, y;» 20> uy, &, 15, ) dt — COe”.
0

ue
(50)

Proof. According to the definition of the control u®%, the
point u € U can be replaced by any admissible control
u €%, and the subsequent arguments still go through.
Therefore, the conclusion in Theorem 2 holds for any u € %,
which is an easy variant of our corollary. O

Remark 3. 1f the coeflicients of system (3) do not depend on
the expected values of the states, Theorem 2 reduces to the
near-maximum condition for the classical system under
convex control domain.

Remark 4. For exact optimality, the integral form and the
pointwise form of the maximum condition is equivalent;
however, it is not the case for near-optimality. We can only
deduce the near maximum condition in an integral form.

Remark 5. If € =0, we can obtain a stochastic maximum
principle for controlled mean-field FBSDEs with the control
domain of convexity assumption.

4. Sufficient Condition of Near-Optimality

In this section, we will prove that the near-maximum
condition of the Hamiltonian H in the integral form is
sufficient for near-optimality under some additional
assumptions.

(A,) Let b, 0, f, and I be differentiable in u, and there
exists a constant C >0 such that

{ |b(t, X% up) - b(tx %, u2)| +|bM (t, %, %, uy) = b, (£, x, %, u2)| +|a(t, X% u) - o(tx %, u2)| +|Uu (t, %% uy) — 0, (t, %, X, u2)| £C|u1 - u2|,

|f (6Tow) = f (6T, u,)

Theorem 3. Let (A,;)— (A,) hold, and assume that the
Hamiltonian H (t,---- &, 75, () is concave for a.e.
t € [0,T], P-a.s., h is concave, and ¢ and y are convex. Let

+|fu (6Touy) = fu (G| +|1(6 T uy) = 1(6Touy)| + |1, (6T uy) = 1, (6T, 1y)| < Cluy — uy)

(51)

A; = (&, 1%, (%) be the solution of the adjoint equation (15)
associated with (x%, y*,z%,u®). If, for any u € % and some
>0,
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T
supE J H(t, x}, y;, 25, uy, A} )dt
ue 0

. (52)
<E jo H (x5 y5 25 uf, AS)dt + ¢,
holds, then we have
J(uf) < in?f[](u) +Ce'?, (53)
ue

where C >0 is a constant independent of .

Proof. Fix &> 0, for any u, v € %, and define a new metric d
on % as follows:

_ T
d(u,v) = E j |y — vildt, (54)
0

with ¥ = 1 +|&] + |4¢] + || Obviously, d is a complete
metric on % as a weighted L' norm. Define a functional ] on
U by

T
T = B[ Hxiphzu e (59
0
A simple calculation shows that
T
T (w) - T sCEj g — vildb. (56)
0

Therefore, ] is continuous on % with respect to d. Then,
by using (52) and Ekeland’s variational principle, there exists
a u° € % such that

d (@, u) <, (57)
and

T T
EI (x5, o, 25, 15)dt = ngj (1,55, ¥, 25 u,)dt,
0 ue 0

(58)

where
H(t,x,y,z,u) = H(t,x, y,z,u, A) - s”zvflu -of.  (59)
The integral-form maximum condition (58) implies a

pointwise maximum condition, that is, for a.e. t € [0,T] and
P-as.,

H(t,x, v,z 0;) = max H (6 x, Yz th). - (60)

Then, by Lemma 2.3 of Yong and Zhou [36], we have
0 € 0,H (t,x{, ¥, 25, ii;). By using (59) and the fact that the
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generalized gradient of the sum of two functions is contained
in the sum of the generalized gradients of the two functions,
we deduce

O H (.7, yi> 205 B;) = 0,H (£, x, ¥y 24 B, AY)

(61)
+ [—81/2vf, sl/zvf].

Furthermore, since H is differentiable in u, there exists a
9 € [-e!*9%, e1?9¢], such that

H, (4 i 2070 AS) = =85 ()
Consequently, by (A,), we can prove that
|FL (8 x5 Yo 24t A7)
<[H,, (x> i 2wy Ay) = Hy (657, 1200 A)|
| H, (6 x yi 20855 A7)
<Cviful — | + 9.
(63)
By the concavity of H (t,-,,-,-, Af), we have
H (t % Yo 20t A) — (55 76 20t )
<H%(Ex, - Ex;) + H% (Ey, - Ey;) + H=(Ez, - Ez})
+ H (%, — ;) + H; (ye = yi) + Hy (2, — 2;) + H,, (1, — 1),
(64)
for any (x,y,2z,u), where HS=H;(t x{,y},z;up Ay,

j=%9,2%7,Z.
Taking integrations, from (57) and (63), follows

T
E [ 1F (6 20 )~ H (16 76 2o )
0

T T
<E J H%(Ex, - Ex;)dt + E j HS (Ey, - Ey;)dt
0 0

T T
+E j HE (Ez, - E£5)dt + E J HE (x, - x°)dt
0 0
T T
+E JO H, (y, - y;)dt + E JO H: (z, - 2°)dt + Ce'"2.
(65)

Applying Itd’s formula to & (y, — ¥%) + 15 (x, — x%), we
obtain
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E[&; (h(xp» yo) = b (x5, yo))] + E[(<€0hS, + gy, + 0595, ) (xr — x7)]
— E[(=6505, —mov5, + Erh,) (vo = o) | = Elno (v (x> ) = v (%55 ¥5))]

T
=E J (H (t, % yp 200, A]) = H (8, 7, y5 21 A7) + 1(8 T ) = 1(8,T7, 1) | de

T T
0

(B (- xi)de - £ [ [E15 ] (3, - yi)a

[EHE] (2, - 2)dt - E JT HE (x,
0

(66)

- x;)dt

0
T £ t T £ &
-E Jo H, (7: = y;)dt —E ,[o HZ (z, - z;)dt.

Since h is concave, we have
E{&; (h(xp, yo) = B (x5, ) = &0k, (30 — x7)
- &k (yo - yo)} 20.

Similarly, by the convexity of ¢ and y yielding

(67)

E{gy, (xr = %7) + ¢, (vo = yo)} SE[9 (xrs v0) = 9 (51 70) ]
(68)

E{y,, (xp = x5) + v}, (0o = o)} SEy (1 yo) — v (x5 ¥5)]-
(69)

Combining (65) and (67)-(69), we can finally get the
following result:

J(u®)< T (u) + Ce'?. (70)

Since u is arbitrary, we can draw the conclusion. [

Corollary 2. Under the assumptions of Theorem 3, a
sufficient condition for an admissible control u® to be
e-optimal is

T
supE J H(t,x}, y;» 25> u, Ay )dt
ueu 0

(71)
T £\2
<E j H (6,3 v 2ot AT +(5)
0 C
5. A Linear-Quadratic Problem
Consider the near-optimal control problem.
Problem 9. Minimize  J¢(u) = E[Ié((ﬁ/Z)uf+

(V2 el2)u?)dt + (V2 /2)x% + (V2/2)y2], subject to

dx, ={x, + Ex, + u,}dt +{x, + Ex, + u,}dW,,
-dy, ={x, + y, + z, + Ex, + Ey, + Ez, + u,}dt — z,dW,,

1
Xo = X _EJ’O:

1 1
| 1 =Ex1 +E)’0>

(72)

where ¢>0 is a small parameter, and the control domain is
limited as % = [-1,1].

In view of the practical point, it is difficult to find a near-
optimal control for & directly. So, we adopt the approach,
in which %° is firstly approximated by a simpler one
(Problem &), and then an optimal control u* for & is
obtained. Finally, it is proved that u* is near-optimal for 9.
This method has been applied to the hierarchical controls of
stochastic manufacturing systems [37].

Problem . Minimize ] (u) = E[[, (V2 /2)uldt+
(V2/2)x% + (v/2/2)y2], subject to

(dx, ={x, + Ex, + u,}dt +{x, + Ex, + u,}dW,,
-dy, ={x, + y, + z, + Ex, + Ey, + Ez, + u,}dt — z,dW,,

h 1
Xy = X ‘5)’0)

1 1
| 1 :Exl +E}’0-

(73)

Let u be an optimal admissible control of &, and the
corresponding optimal trajectory is denoted by (x, y, z). Set
6, = (V2 /2), for a given admissible triple (x, y,z,u), the
corresponding first-order adjoint equation is presented as



14

dé, ={&, + E¢, }dt +{&, + E¢, }dw,,

—dn, = {_Et + 1+ Gy + E[_Et 1t (t]}dt - (dw,,

1 1
& =0 +5”Io "'Efl’

1
| T = _551 + 1o + X1
(74)

From Remark 5 and Theorem 2, the candidate optimal
control u should satisfy

gvf -+ ¢ =&, sguf (g +¢-&)u, Yvek
(75)
Then, we have
U e € [-11],
u =11,y € (-oo,-1], (76)

-1, uy, € [1,+00),

with g, = (V2/2) (1, + {, = &,).

We claim that the control u defined by (76) is optimal for
Problem &, which will be illustrated in the following
proposition. Now, we are about to show that the same
optimal control is near-optimal for %*° when ¢ is sufficiently
small. Denote by (x*,y*,z*,u*) the optimal state and
optimal control under (76) and (&%,7%,{") the
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corresponding solution of (74). Then, the Hamiltonian

function for & is

V2
u

H(t’ Xp Y 2o Ups At) = Y

+ (1, + ) (% + Ex,)

f - (Et = Ct)ut

—&(x, +y, +z,+ Ex, + Ey, + Ez,).
(77)

Since u* is optimal, it necessarily maximizes the
Hamiltonian function a.s., namely,

V2 (gt* - ’7: - (t*) =0,

u, +-—
)

P -as.ae. (78)
However, the Hamiltonian function for %¢ is

\2
H, (t> xt’yt’zt’ut’At) = Y (1+ s)uf - (ft N = Ct)ut

+ (1, +C;) (%, + Ex,)
—&(x, +y, +z,+ Ex, + Ey, + Ez,).
(79)

Obviously, it is concave. Moreover, it is maximized at v,
which satisfies

L (80)

Hence,

1 1
supE J H, (t,x, v,z u,\")dt - E Jo H (t.x,y .z u A, )dt

1 1
SEJ. supH, (t,x,, v,z  u, A )dt - EJ H,(t,x,y/.2z u,A)dt

0 ue

According to Theorem 3, u* is near-optimal for ¢ with
an error order of ¢ when ¢ is sufficiently small.

Proposition 1. The control u* defined by (76) together with
the corresponding trajectory (x*,y*,z*) is an optimal so-
lution for Problem .

Proof. Suppose (x,y,z) is the trajectory of system (73)
controlled by u € %. By the convexity of a function, we have

1
= EJ {H, (t’xt*’yt*’zt*’ui’At*) -H, (t’xt*’yt*’zt*’ut*’At*)}dt

0

(81)
2 2 * * %
gxf - g(xl )2 > V2xy (%, - x7),
(82)
2 2, « *
gyé - g(yo)2 = V2y; (30 = 35 )-

Applying 1td’s formula to & (y, — y;*) + 1, (x, — x,),
we obtain

1
Bl (= x0) + 74 (o = 7)) = B[ (6 = =60) o=k
(83)
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Then,

J(u) - I(u)>E{ V2,0 V2

e[ |-

From (76), we have

\/— g ¢t \/—(f ne= 0w Zg(”: )2

(85)
+ V208 - -, Yue.
The inequality above implies that
J(w)-J(u")=0, VYue¥. (86)

*

Therefore, u* is the optimal control for &, and
(x*, y*,z*) is the optimal trajectory. O

6. Conclusion

This paper discussed near-optimal control problems for
mean-field FBSDEs with mixed initial-terminal conditions.
Firstly, we initially introduce three first-order adjoint
equations to operate dual analysis with corresponding
variational processes. Secondly, the reduction method is
adopted to guarantee the well-posedness of the first-order
adjoint equations also with mixed initial-terminal condi-
tions. Furthermore, by introducing the penalty functional,
the original problem with endpoint constraints is trans-
formed as penalized optimal control problem with no
endpoint constraints. Via convex variational technique as
well as Ekeland’s variational principle, the necessary con-
dition of Pontryagin’s type is established. Finally, to illustrate
the application of our theoretical results, a linear-quadratic
problem is worked out. In our future work, we will develop
the research on near-optimality to solve both theoretical and
practical problems.
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