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Abstract. 
Generating relations involving the special functions have already proved their important role in mathematics and other fields of sciences. In this paper, we aim to provide some presumably new generating relations in connection with the generalized multi-index Bessel–Maitland function . The main results presented here, being very general, can yield a number of particular or equivalent identities, some of which are explicitly demonstrated.

1. Introduction and Preliminaries
Here and elsewhere, let , , , , and  be the sets of complex numbers, real numbers, positive real numbers, positive integers, and nonpositive integers, respectively.
The Bessel–Maitland function  is defined as (see Marichev [1])
Pathak [2] gave the following more generalized form of generalized Bessel–Maitland function (1):
Remark 1. Even though Pathak excluded  in (2), the case  yields (1).
If , ,  is replaced by , and  is replaced by  in (2), then generalized Bessel–Maitland function reduces to the Mittag–Leffler function which was studied by Wiman [3] as follows:If  is replaced by  and  is replaced by  in (2), then the generalized Bessel–Maitland function reduces to the well-known generalized Mittag–Leffler function  which was introduced by Shukla and Prajapati [4] as follows:Jain and Agarwal [5] generalized Bessel–Maitland function  (1) as follows:Choi and Agarwal [6] investigated the following generalized multi-index Bessel function:where  and , , , , and  such that
Remark 2. It is easily found that generalized multi-index Bessel–Maitland function (9) is equivalent to the generalized multi-index Mittag–Leffler function defined and studied by Saxena and Nishimoto [7] (see also [8]).
Pohlen [9] introduced the Hadamard product (or the convolution)  of two analytic functions  and  as follows:where . Here,  and  are analytic at  whose Maclaurin series with their respective radii of convergence  and  areThe concept of the Hadamard product has turned out to be useful, particularly, in factorizing a newborn function, which is usually expressed as a Maclaurin series, into two known functions (see, e.g., [10–13]).
The -th derivative of the function  is easily found to be given in terms of gamma function as follows:Generating functions have been widely used in exploring certain properties and formulas involving sequences and polynomials in a wide range of research subjects. Many researchers have developed a remarkably large number of generating functions associated with a variety of special functions. For some works on this subject, one may refer, for example, to an extensive monograph [14–25] and the literature cited therein. In this search, we aim to provide some presumably new generating relations in connection with generalized multi-index Bessel–Maitland function (9). The main results developed here, being very general, can be reduced to produce a large number of presumably new and potentially useful generating relations for other known functions, some of which are demonstrated.
2. Generating Relations
We give two generating relations involving generalized multi-index Bessel–Maitland function (9) asserted by the following theorems.
Theorem 1. Let  and , , , , and  such thatAlso, let . Then,
Proof. We replace  by  in the left-hand side of (15) and denote the resulting expression by . Then, using form (9), on expanding the function in series, givesDifferentiating  times both sides of (16) with respect to  with the aid of (13) (term-by-term differentiation can be verified under the given conditions), we findwhich is simplified to yieldDecomposing series (18) into Hadamard product (11), we obtainExpanding  as the Taylor series givesCombining (16), (19), and (20), we obtainFinally, setting  yields desired result (15).
Theorem 2. Let  and , , , , and  such thatAlso, let . Then,
Proof. Let  be the left-hand side of (23). Using (9), on expanding the function in series, givesInterchanging the order of summations in (24) and using the known identity (see, e.g., [26, p. 5])we haveUsing the generalized binomial expansion, we find that the inner sum in (26) givesFinally, interpreting (26) with the help of (27) yields desired result (23).
3. Further Remarks
Here, we choose to give some equivalent identities and particular cases of the results in Theorems 1 and 2. As noted in Remark 2, setting  by  and  by  in (15) and (23) gives two corresponding generating relations involving the generalized multi-index Mittag–Leffler function , which are asserted, respectively, in Corollaries 1 and 2.
Corollary 1. Let  and , , , , and  such thatAlso, let . Then,
Corollary 2. Let  and , , , , and  such thatAlso, let . Then,
The particular cases of (15), (23), (29), and (31) when  give the following generating relations, stated, respectively, in Corollaries 3–6.
Corollary 3. Let , , , , and  such that , , , and . Also, let . Then,
Corollary 4. Let , , , , and  such that , , , and . Also, let . Then,
Corollary 5. Let , , , , and  such that , , , and . Also, let . Then,
Corollary 6. Let , , , , and  such that , , , and . Also, let . Then,
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