
Research Article
A Genetic Optimization Algorithm Based on Adaptive
Dimensionality Reduction

Tai Kuang ,1 Zhongyi Hu ,2 and Minghai Xu2

1Department of Information Engineering, Zhejiang College of Security Technology, Wenzhou 325016, China
2Institute of Big Data and Information Technology, Wenzhou University, Wenzhou 325000, China

Correspondence should be addressed to Tai Kuang; kuangtaikt@qq.com

Received 19 March 2020; Revised 17 April 2020; Accepted 20 April 2020; Published 11 May 2020

Guest Editor: Weicun Zhang

Copyright © 2020 Tai Kuang et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the rise of big data in cloud computing, many optimization problems have gradually developed into high-dimensional large-
scale optimization problems. In order to address the problem of dimensionality in optimization for genetic algorithms, an
adaptive dimensionality reduction genetic optimization algorithm (ADRGA) is proposed. An adaptive vector angle factor is
introduced in the algorithm. When the angle of an individual’s adjacent dimension is less than the angle factor, the value of the
smaller dimension is marked as 0. *en, the angle between each individual dimension is calculated separately, and the number of
zeros in the population is updated. When the number of zeros of all individuals in a population exceeds a given constant in a
certain dimension, the dimension is considered to have no more information and deleted. Eight high-dimensional test functions
are used to verify the proposed adaptive dimensionality reduction genetic optimization algorithm. *e experimental results show
that the convergence, accuracy, and speed of the proposed algorithm are better than those of the standard genetic algorithm (GA),
the hybrid genetic and simulated annealing algorithm (HGSA), and the adaptive genetic algorithm (AGA).

1. Introduction

High-dimensional optimization problems have become
increasingly prevalent in many fields, for example, radar
waveform optimization [1, 2] and water quality monitoring
[3]. Recently, major breakthroughs have been made with
respect to solving such problems. Tuo et al. [4] proposed a
global optimization algorithm that used the membrane
calculation principle to solve high-dimensional functions in
2011. *eir algorithm, by implementing high-dimensional
segmentation, achieved the segmentation of a high-di-
mensional space into a low-dimensional one, thereby im-
proving the performance. Also addressing the problem of
high-dimensional space processing, Chen et al. [5] described
an approach that established a sparse regression model by
utilizing the geometric structural features of the approxi-
mate solution set, mapping the high-dimensional target
space into a low-dimensional one. In 2015, Chen et al. [6]
designed a congestion control strategy based on the concept
of open angles and compared it against the indication-based

evolutionary algorithm (IBEA) [7], NSGA III (non-
dominated sorting genetic algorithm III) [8], and the grid-
based evolutionary algorithm (GrEA) [9]. *e results in-
dicated a significant improvement by the proposed algo-
rithm. In the same year, Zheng et al. [10] proposed a high-
dimensional multiobjective evolutionary algorithm based on
information separation. Although this algorithm decom-
posed the high-dimensional space into a low-dimensional
one, it did not remove the excess dimensions. In order to
maintain a balance between the convergence and distributed
features of the objective evolutionary algorithms, Bi and
Wang [11] proposed a high-dimensional objective evolu-
tionary algorithm based on an angle penalty. In 2018, He
et al. [12] combined a dimensionality reduction and dif-
ferential evolution algorithm to solve the knapsack problem.
*e experimental results showed that this algorithm
achieved good accuracy and stability and is suited for solving
large-scale problems. Liang et al. [13] first conducted an
analysis of the features of large-scale high-dimensional
problems and developed a coevolutionary dynamic particle
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swarm optimization algorithm, dividing the whole swarm
into different groups. Unlike the improvement targeting the
number of dimensions, Xia et al. [14] proposed a fitness-
based multiplayer swarm optimization algorithm (FMPSO),
with the addition of a new component into the particle
velocity update rules, called the “subspace learning” com-
ponent. During the evolutionary process, two adjustment
operators were introduced to adjust the roles and number of
objective dimensions of the particles. Xu et al. [15] proposed
a multidimensional learning strategy based on the experi-
ence of the best individuals, which was used to discover and
integrate valuable information from the best swarm solution.
In their experimentation, 16 classical benchmark functions,
30 CEC 2014 testing functions, and one actual optimization
problem were used. *is algorithm demonstrated higher
convergence, accuracy, and speed. In 2015, Wu et al. [16]
described a nondominated sorting genetic algorithm uti-
lizing fractal dimensions and an elitist strategy for feature
selection. *is algorithm could successfully reduce the
number of dimensions for the objective problems. *is
algorithm, however, only improved the classification accu-
racy as compared with the standard genetic algorithms to a
limited extent. He and Yen [17] used the minimum included
angle between two vectors to look for similar individuals,
among which the individuals with poor convergence were
deleted. However, it was still difficult to set the difference
threshold. Xiang et al. [18] implemented priority selection
based on the maximum included angle between two vectors,
thereby ensuring the diversity of the swarm. However, a
good strategy for determining the angle threshold was still
not provided. Furthermore, the U-model methodology,
which is a generic systematic approach to convert a non-
linear polynomial model into a controller output u(t− 1)
-based time-varying polynomial model, has been studied for
facilitating a nonlinear control system design over the last
decade [19–22]. Given the aforementioned, we define the
concept of an adaptive vector angle factor, which changes
with the swarm size and number of dimensions. In this
paper, the adaptive vector angle factor is used for realizing
dimensionality reduction with a GA. At the same time, it
also provides a reference for U-model approaches in algo-
rithm implementation.

2. The Proposed ADRGA Algorithm

2.1. Vector Angle Factor. Dimensionality reduction is a good
approach for solving large-scale problems. However, most
dimensionality reduction algorithms are random processes;
those dimensions carrying important information or those
crucial for objective problem solving may be deleted.
Consider a 2D vector coordinate (a, b) in Figure 1. When the
included angle θ between this vector and the x-axis (y-axis) is
infinitely small, the vector coordinate is approximated to (a,
0) or (0, b). In this way, the 2D vector is approximately
mapped into a one-dimensional one, as illustrated in Fig-
ure 2. Similarly, a 3D vector can be approximately mapped
into a 2D or one-dimensional one, depending on the set
threshold for the included angle between the two vectors.

Apparently, setting an appropriate threshold for the in-
cluded angle between the two vectors is very important.

*e dimension describes the precision of the required
solution target characteristics. For example, when describing
a pen in one dimension, only its length or width can be
described, and so it is impossible to perform dimensionality
reduction through mapping. In this case, the threshold for
the included angle θ between the two vectorsmust be close to
0.When a pen has two dimensions, both its length and width
can be described. At this point, if the included angle between
the two vectors is smaller than a certain threshold, the di-
mension where the smaller values are located can be
neglected. In this case, the threshold for the included angle θ
between the two vectors may be close to a value above 0. *e
threshold range can be set according to an individual
problem. When three dimensions are used for the de-
scription, not only the pen’s length and width but also its
cross-sectional radius can be described. *erefore, the
threshold for the included angle θ between the two vectors is
larger than that for the 2D situation. As the number of
dimensions increases, the threshold range of the included
angle θ between the two vectors increases as well. Experi-
ments have shown that the threshold range cannot be in-
finitely large. Whatever the number of dimensions, the
threshold must be maintained within the interval (0, π/4). In
this paper, the vector included angle factor is represented by
the sigma function in equation (1), which is a monotonically
increasing function and also a bounded function:

sigma(x) �
1

1 + e− x
, (1)

where x ∈ (−∞, +∞), sigma ∈ (0, 1).
*e vector included angle factor proposed in this study

must be within the interval (0, π/4). An adaptive vector
angle factor can be obtained by transformation of the sigma

function, as shown in equation (2), where a is the control
parameter, a � 4.3926, b is the adjustment parameter,
b � 3.6072, and D is the number of dimensions. When the
tangent of the included angle between the two vectors in
adjacent dimensions tan θ< tan sigma∗, the dimension
where the smaller value is located is denoted as 0
(θ � xmi/xmj, xmi is the i-th dimension of the m-th individual;
xmj is the j-th dimension of the m-th individual).

sigma∗(D) � a ∗
1

1 + e− D
− b. (2)

(a, b)

x

y

θ

Figure 1: 2D vector representation.
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2.2. ADRGA Workflow. ADRGA targets high-dimensional
swarms. First, the tangent value of the included angle be-
tween the two vectors in adjacent dimensions is calculated
for each individual and is compared against the adaptive
vector angle factor sigma∗. If it is smaller than the latter, the
dimension where the smaller value of the individual is lo-
cated is denoted as 0. *en, using the same method, the
tangent values of the included angle between the two vectors
in adjacent dimensions for all individuals are compared
against sigma∗. Finally, the number of 0 elements in each
dimension in the updated swarm pop is determined; if it is
above the critical value Q, then this dimension is deleted.

Adaptive dimensionality reduction is feasible following
the principle mentioned above.*e pseudocode for ADRGA
is shown in Algorithm 1 (Pc is the probability of crossover,
Pm is the probability of mutation, N is the swarm size, G is
the number of generations upon termination of evolution, T

is the number of tests, Q is the critical value).

3. Experimental Results

Simulation was carried out using MATLAB 2014b under
Windows 7 (also applicable to a higher version). A com-
parison was made between ADRGA, the standard GA [1],
the hybrid genetic and simulated annealing algorithm
(HGSA) [23], and the adaptive genetic algorithm (AGA)
[24].

In this study, 8 standard composite testing functions
were used, namely, F1∼F8, as shown in Table 1. F1∼F3 are
high-dimensional unimodal functions, which only have one
global best solution; F4∼F8 are high-dimensional multi-
modal functions, which have several local best solutions, but
only one global best solution. *e latter are generally hard to
optimize. *e global best solutions of all testing functions
were 0. Since some testing functions have several optimal
solutions, the algorithm is very likely to be trapped in a local
optimum. *is aspect may be challenging for the proposed
ADRGA algorithm.

In the experimentation, the value of the fitness function
f was the function value at the current position. *e pa-
rameters of the GA were configured as follows: crossover
probability Pc � 0.70, mutation probability Pm � 0.05,
number of iterations FEs� 1000, swarm size sizepop � 50,
number of dimensions D � 1000, and the critical value Q � 1.

Each of the four algorithms was run 20 times on the 8
testing functions, and the means and standard deviations are
shown in Table 2. Table 3 presents the improvement per-
centages of the optimal solutions using ADRGA as

compared with the other three algorithms, calculated as
follows: (mean of other algorithm−mean of ADR-
GA) ∕ (mean of other algorithm). When optimizing these 8
classical testing functions, ADRGA could obtain a solution
closer to the global best solution compared to the other
algorithms, as shown in Table 2. *is was especially true for
the testing functions F3, F4, and F6. But on the other testing
functions, although a better solution was obtained using
ADRGA, it failed to find the global optimum and was still far
from achieving this goal. As shown in Table 3, the higher the
improvement percentage, the greater the amplitude of
performance improvement of ADRGA would be, and vice
versa. Although a solution closer to the global optimum was
obtained for F4 in Table 2, its improvement percentage was
smaller than for the other 7 functions, indicating that F4 was
less influenced by the number of dimensions.

*e number of dimensions after dimensionality re-
duction and the average number of dimensions after run-
ning each algorithm 20 times are shown in Table 4. *e
number of residual dimensions varied after each run, in-
dicating that the dimensionality reduction with the pro-
posed algorithm changed with the initialized swarm in each
run. *erefore, valuable information could be preserved
when reducing the number of dimensions. Under the similar
minimum included angle between the two vectors, the larger
the included angle for the newly generated swarm, the
smaller the number of dimensions deleted would be, and
vice versa. As shown in Table 3, the maximum number of
dimensions deleted was 40%, and the minimum was 34%.
*e maximum number of dimensions deleted was not above
50%, but it was ensured that the dimensions were not deleted
randomly. Table 4 provides a better proof of the adaptive
features of the proposed algorithm.

Figure 3 shows the comparison of convergence for the
eight testing functions F1∼F8. *e x-axis is the number of
fitness calculations, and the y-axis is the mean fitness value.
As shown in Figure 3, ADRGA had a faster convergence
speed and accuracy on the functions F1, F2, F5, F6, and F7,
though it was more likely to be trapped in a local optimum.
For the testing function F3, the convergence curves of
ADRGA and GA nearly coincided. *is was because the
value range of the independent variable in function F3 was
[−1, 1]. *erefore, when the numbers of dimensions were
600 and 1000, the difference was negligibly small. *is also
demonstrated that the impact on F3 was small if the number
of dimensions did not change significantly. For the multi-
modal function F4, the convergence curve of ADRGA not
only had a faster convergence speed but also showed a more

(a, b)
(a1, b1)

(a1, 0) 

... ...

θ θ
θ
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Figure 2: Changes of the included angle between the two vectors.
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apparent decreasing trend as compared with the other six
testing functions (except for F8). *is suggested that
ADRGA was not trapped in the local optimum on F4. For

the testing function F8, ADRGA outperformed all the other
algorithms. *ere was a dramatic improvement in the
convergence accuracy and speed with ADRGA, and the

Table 1: Benchmark testing functions.

Testing function Number of dimensions Feasible solution space
F1 � 

D
i�1 x2

i 1000 [−100, 100]
F2 � (x1 − 1)2 + 

D
i�1 i ∗ (2x2

i − xi− 1)
2 1000 [−10, 10]

F3 � 
D
i�1 |xi|

i+1 1000 [−1, 1]

F4 � −a ∗ exp(−b

�����������

(1/D) 
D
i�1 x2

i



) − exp((1/D) 
D
i�1 cos(cxi)) + a + exp(1),

a � 20, b � 0.2, c � 2π
1000 [−32.768, 32.768]

F5 � 
D
i�1(x2

i − 10∗ cos(2∗π∗xi) + 10) 1000 [−5.12, 5.12]

F6 � 
D
i�1(x2

i /4000) − 
D
i�1 cos(xi/

�
i

√
) + 1 1000 [−600, 600]

F7 � sin2(πω1) + 
D−1
i�1 (ωi − 1)2[1 + 10 sin2(πωi + 1)] + (ωD − 1)2[1 + sin2(2πωD)]

ωi � 1 + ((xi − 1)/4)
1000 [−10, 10]

F8 � 418.9829D − 
D
i�1 xi sin(

���
|xi|


) 1000 [−500, 500]

Table 2: Optimization results of the different algorithms on 8 standard composite testing functions.

Function
Mean and standard deviation

GA HGSA AGA ADRGA
F1 1.78e+ 05± 6.12e+ 03 8.44e+ 05± 2.02e+ 05 1.30e+ 06± 2.07e+ 05 9.46e+ 04± 2.65e+ 03
F2 3.65e+ 07± 1.85e+ 06 4.08e+ 08± 1.10e+ 08 8.04e+ 08± 2.36e+ 08 9.97e+ 06± 8.74e+ 05
F3 1.11e− 07± 1.84e− 07 0.1793± 0.0885 3.95e− 06± 5.84e− 06 7.22e− 08± 1.77e− 07
F4 13.2492± 0.1323 18.3028± 0.7001 19.9960± 0.0226 12.6016± 0.2194
F5 9.68e+ 03± 86.5390 1.21e+ 04± 512.6435 1.31e+ 04± 369.5460 5.84e+ 03± 147.5333
F6 1.61e+ 03± 64.0915 7.37e+ 03± 1.56e+ 03 1.17e+ 04± 1.76e+ 03 874.5617± 40.2598
F7 8.62e+ 03± 366.1671 2.83e+ 04± 4.72e+ 03 4.01e+ 04± 5.71e+ 03 4.52e+ 03± 280.3275
F8 3.70e+ 05± 2.42e+ 03 4.17e+ 05± 757.5530 3.98e+ 05± 2.56e+ 03 2.27e+ 05± 5.62e+ 03

Step 1: initialize parameters Pc, Pm, N, G, T, and Q and randomly generate the first swarm pop

Step 2: for i<popsize

Step 3: calculate the tangent value tan(xin/xin+1) of the included angle between the two vectors in adjacent dimensions for each
individual pop(i)

Step 4: if tan(xin/xin+1)< 4.3926(1/(1 + e− D)) − 3.6072, then update the value of the n-th dimension of the i-th individual to 0;
otherwise, do not update the value
Step 5: return to step 2
Step 6: calculate the number of 0 elements in each dimension for the updated swarm pop; if it is above the critical value Q, then delete
this dimension
Step 7: obtain the updated swarm pop

Step 8: calculate the fitness value F(i) of each individual in the swarm pop

Step 9: initialize the new swarm newpop

Step 10: select two individuals from the swarm pop according to the fitness using the proportional selection algorithm
Step 11: if random(0, 1)<Pc, then move on to step 12; otherwise, implement step 13
Step 12: apply the crossover operator according to the crossover probability Pc on the two individuals
Step 13: if random(0, 1)<Pm, then move on to step 14
Step 14: apply the mutation operator according to the mutation probability Pm on the two individuals
Step 15: add the two new individuals into the swarm newpop

Step 16: repeat this process until the N-th generation is produced; otherwise, return to step 4
Step 17: replace pop with newpop

Step 18: repeat this process until the number of generations exceeds G; otherwise, return to step 8
Step 19: end

ALGORITHM 1: ADRGA.
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Table 3: Improvement percentage of optimal solutions for ADRGA.

Function
Algorithm

GA (%) HGSA (%) AGA (%)
F1 46.85 88.79 92.72
F2 72.68 97.56 98.76
F3 34.95 100.00 98.17
F4 4.89 31.15 36.98
F5 39.67 51.74 55.42
F6 45.68 88.13 92.53
F7 47.56 84.03 88.73
F8 38.65 45.56 42.96

Table 4: Number of residual dimensions and means after each cycle of dimensionality reduction using each algorithm.

Function
Experiment

1 2 3 4 · · · 10 11 · · · 16 17 18 19 20 Mean
F1 642 637 635 631 · · · 614 656 · · · 621 633 625 631 641 636.65
F2 620 638 654 622 · · · 656 641 · · · 634 635 649 660 634 639.25
F3 635 657 652 646 · · · 633 637 · · · 620 633 643 612 649 638.45
F4 642 637 635 631 · · · 614 656 · · · 621 633 625 631 641 636.65
F5 620 638 654 622 · · · 656 641 · · · 634 635 649 660 634 639.25
F6 635 657 652 646 · · · 633 637 · · · 620 633 643 612 649 638.45
F7 653 632 638 648 · · · 650 639 · · · 612 661 641 647 619 639.05
F8 646 625 619 641 · · · 649 641 · · · 638 660 647 600 631 638
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Figure 3: Continued.
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convergence curve displayed a more apparent decreasing
trend. For the five high-dimensional multimodal functions,
ADRGA achieved better results on two testing functions,
indicating that this algorithm was more appropriate for
solving high-dimensional multimodal targets.

4. Conclusion

*is paper aims to find the optimal solutions for high-di-
mensional testing functions based on GAs. Similarity, the
minimum included angle between the two vectors is utilized,
and a GA approach for adaptive dimensionality reduction is
proposed.*e specific steps for dimensionality reduction are
provided. *e critical value Q is defined to ensure the di-
versity of the swarm information. It was then demonstrated
via eight testing functions that ADRGA displays faster
convergence speed and higher accuracy than other algo-
rithms. However, a major problem with ADRGA is that the
critical value Q is prespecified instead of changing with the
swarm size and number of dimensions in real-time. In the

future, the critical value Q will be the focus in order to
achieve better control of the number of dimensions in the
swarm and more accurate dimensionality reduction.
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Figure 3: Convergence curve of different algorithms compared with the standard composite test function (including AGA, GA, HGSA, and
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