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In recent years, much attention has been paid to the role of degenerate versions of special functions and polynomials in
mathematical physics and engineering. In the present paper, we introduce a degenerate Euler zeta function, a degenerate digamma
function, and a degenerate polygamma function. We present several properties, recurrence relations, infinite series, and integral
representations for these functions. Furthermore, we establish identities involving hypergeometric functions in terms of de-
generate digamma function.

1. Introduction

(e gamma, digamma, and polygamma functions have an
increasing and recognized role in fractional differential
equations, mathematical physics, the theory of special
functions, statistics, probability theory, and the theory of
infinite series. (e reader may refer, for example, to [1–9].
(ese functions are directly connected with a variety of
special functions such as zeta function, Clausen’s function,
and hypergeometric functions. (e evaluations of series
involving Riemann zeta function ζ(s) and related functions
have a long history that can be traced back to Christian
Goldbach (1690–1764) and Leonhard Euler (1707–1783)
(see, for details, [10]). (e Euler zeta function and its
generalizations and extensions have been widely studied
[11–15].

Later on, these functions arise in the study of matrix-
valued special functions and in the theory of matrix-valued
orthogonal polynomials, see e.g., [16–23] and the references
therein.

Motivated by this great importance of these functions,
their investigations and generalizations to the degenerate

framework have been widely considered in the literature, for
instance, [24–27].

In this section, we present some basic properties and
well-known results on a degenerate gamma function which
we need in this work. In Section 2, we introduce a degenerate
Euler zeta function and discuss its region of convergence,
integral representation, and infinite series representation. In
Section 3, we define a degenerate digamma function along
with its region of convergence and integral representation.
We also give certain recurrence relations and formulae
satisfied by the degenerate digamma function. In Section 4,
we define a degenerate polygamma function and describe its
convergence conditions. Some recurrence relations satisfied
by the degenerate polygamma function are also given here.
Finally, in Section 5, the hypergeometric functions are
expressed in terms of the degenerate digamma function.

In [26], a degenerate gamma function, denoted Γ∗λ , has
been defined by

Γ∗λ(z) � 
∞

0
(1 + λ)

− t/λ
t
z− 1dt, λ ∈ (0, 1),Re(z)> 0.

(1)
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(e basic results of this function, given in [26], can be
summarized in the following lemma.

Lemma 1. Let λ ∈ (0, 1). 1en, for z ∈ C with
Re(z)> 0, Γ∗λ(z) satisfies

Γ∗λ(z + 1) �
λz

log(1 + λ)
Γ∗λ(z),

Γ∗λ(1) �
λ

log(1 + λ)
,

(2)

Γ∗λ(z + 1) �
λk+1z(z − 1) · · · (z − k)

(log(1 + λ))k+1 Γ
∗
λ(z − k), k≥ 0,

(3)

Γ∗λ(k + 1) �
λk+1k!

(log(1 + λ))k+1, k ∈ N. (4)

Also, we can easily show that

Corollary 1. Let λ ∈ (0, 1). 1en, Γ∗λ(z) satisfies

Γ∗λ(z) �
λ

log(1 + λ)
 

z

Γ(z), z ∈ C,Re(z)> 0, (5)

where Γ(z) is the gamma function. Moreover, for m, n ∈N,
we have

Γ∗λ(m)Γ∗λ(n) � B(m, n)Γ∗λ(m + n), (6)

where B(., .) is the beta function.

2. Degenerate Euler Zeta Function

(e Euler zeta function in two complex variables s, z such
that Re(s)> 0 and Re(z)> 0 is defined by (see [12, 24])

ζE(s, z) � 2 
∞

n�0

(− 1)n

(n + z)s. (7)

An integral representation of ζE(s, z) is given as

ζE(s, z) � Γ− 1
(s) 
∞

0
F(− t, z)t

s− 1dt, (8)

where

F(t, z) �
2ezt

1 + et
� 

∞

n�0
En(z)

tn

n!
, (9)

where En(z) is the Euler polynomial of degree n. When
z � 0, En � En(0) are Euler numbers (see, [12, 14]). Kim in
[14] obtained that ζn(− n, z) � En(z), n≥ 0.

In this section, we consider a degenerate analogue of the
Euler zeta function which is given as

ζEλ
(s, z) � Γ− 1(s) 

∞

0
Fλ(− t, z)t

s− 1dt, (10)

where λ ∈ (0, 1), s, z ∈ C with Re(s)> 0,Re(z)> 0, and

Fλ(t, z) �
2

1 +(1 + λ)t/λ(1 + λ)
zt/λ

� 

∞

n�0
E

λ
n(z)

tn

n!
. (11)

By (9) and (11), it follows that

E
λ
n(z) �

λ
ln(1 + λ)

 

n

En(z), (12)

which is the degenerate Euler polynomial of degree n.
From (10) and (11), we obtain that

Γ− 1
(s) 
∞

0
Fλ(− t, z)t

s− 1dt � Γ− 1
(s) 
∞

0
2 
∞

m�0
(− 1)

m
(1 + λ)

− (m+z)t/λ
t
s− 1dt

� 2Γ− 1
(s) 

∞

m�0
(− 1)

m

∞

0
(1 + λ)

− τ/λ τs− 1

(m + z)s dτ

� 2
Γ∗λ(s)

Γ(s)


∞

m�0
(− 1)

m 1
(m + z)s.

(13)

(us, using (10) and (13), we conclude the following
result.

Theorem 1. For s, z ∈ C with Re(s)> 0,Re(z)> 0, and
λ ∈ (0, 1), the degenerate Euler zeta function ζEλ

(s, z) defined
in (10) has the following infinite series representation:

ζEλ
(s, z) � 2

Γ∗λ(s)

Γ(s)


∞

m�0
(− 1)

m 1
(m + z)s. (14)

Moreover, in view of (5), we have

ζEλ
(s, z) � ζE(s, z) λ

ln(1+λ)
 

s
, (15)

where ζE(s, z) is the Euler zeta function defined by (7).

Furthermore, from (11), it follows

Γ− 1
(s) 
∞

0
Fλ(− t, z)t

s− 1dt � Γ− 1
(s) 

∞

m�0
E

λ
n(z)

(− 1)m

m!

∞

0
t
s+m− 1dt.

(16)

Hence, we obtain the following results.
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Theorem 2. For s, z ∈ C with Re(s)> 0,Re(z)> 0, and
λ ∈ (0, 1), the degenerate Euler zeta function ζEλ

(s, z), de-
fined in (10), satisfies

ζEλ
(s, z) � Γ− 1(s) 

∞

m�0
E

λ
n(z)

(− 1)m

m!

∞

0
t
s+m− 1dt. (17)

And for n ∈ N∪ 0{ },

ζEλ
(− n, z) �

2πi(− 1)n

n!Γ(− n)
E

λ
n � E

λ
n(z). (18)

Remark 1. Note that ζEλ
(s, z) is an entire function in the

complex s− plane.

Remark 2.
lim
λ⟶0

ζEλ
(− n, z) � En(z) � ζE(− n, z). (19)

3. Degenerate Digamma Function

(e digamma function, denoted by ψ(z), is the logarithmic
derivative of the gamma function given by [6, 16, 28]:

ψ(z) �
d
dz

log Γ(z) �
Γ′(z)

Γ(z)
. (20)

In this section, we define a degenerate digamma function
as follows:

ψ∗λ(z) �
d
dz

log Γ∗λ(z) �
Γ∗′λ(z)

Γ∗λ(z)
, (21)

where Γ∗λ(z) is the degenerate gamma function defined by
(1). Now, we are going to obtain certain functional equations
involving the degenerate digamma function ψ∗λ(z). Using
(2) and (21), it follows that

ψ∗λ(z + 1) �
Γ∗′λ (z + 1)

Γ∗λ(z + 1)
�

zΓ∗λ(z)( ′
zΓ∗λ(z)

�
Γ∗′λ (z)

Γ∗λ(z)
+
1
z

� ψ∗λ(z) +
1
z

,

Re(z)> 0.

(22)

Generally, we have the following.

Theorem 3. For n ∈ N, z ∈ C, andRe(z)> 0, we have

ψ∗λ(z + n) � ψ∗λ(z) + 
n− 1

m�0

1
z + m

. (23)

Furthermore, using relation (5), we find that

ψ∗λ(z) � ψ(z) + log
λ

log(1 + λ)
 , (24)

where ψ is the digamma function defined by (20). According
to Batir [28], we have

ψ(z) � − c + 
∞

n�0

z − 1
(n + 1)(n + z)

, (25)

where

c � limn⟶∞ 

n

k�1

1
k

− log n⎛⎝ ⎞⎠ � − 0.577215 (26)

is the Euler–Mascheroni constant. Hence, substituting (25)
into (24), one gets the following.

Theorem 4. For z ∈ C, Re(z)> 0, and λ ∈ (0, 1),

ψ∗λ(z) � log
λ

log(1 + λ)
  − limn⟶∞ log n − 

n

j�0

1
z + j

⎡⎣ ⎤⎦,

(27)

ψ∗λ(z) � log
λ

log(1 + λ)
  − c +(z − 1) 

∞

n�0

1
(n + 1)(n + z)

,

(28)

ψ∗λ(z + 1) � log
λ

log(1 + λ)
  − c + z 

∞

n�1

1
n(n + z)

. (29)

Next, the degenerate digamma function ψ∗λ(z) defined
by (21) can be expressed as a series expression in terms of
Riemann’s zeta function. Using

(n + z)
− 1

� n
− 1



∞

m�0

− z

n
 

m

, (30)

equation (29) can be rewritten as

ψ∗λ(z + 1) � log
λ

log(1 + λ)
  − c − 

∞

n�1


∞

m�1
n

− (m+1)
(− z)

m
.

(31)
(us, one gets the following.

Theorem 5. For z ∈ C,Re(z)> 0, and λ ∈ (0, 1),

ψ∗λ(z + 1) � log
λ

log(1 + λ)
  − c − 

∞

m�1
ζ(m + 1)(− z)

m
.

(32)

Note that these series converge absolutely for |z|< 1.
Using the Legendre duplication formula [29]

Γ
1
2

 Γ(2z) � 22z− 1Γ(z)Γ z +
1
2

  (33)

and (5), one can simply find

Γ∗λ
1
2

 Γ∗λ(2z) � 22z− 1Γ∗λ(z)Γ∗λ z +
1
2

  , (34)

ψ∗λ(2z) � log 2 +
1
2
ψ∗λ(z) +

1
2
ψ∗λ z +

1
2

 , Re(z)> 0.

(35)

Equation (35) can be extended to an arbitrary integral
multiplication of z as follows.
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Theorem 6. For z ∈ C,Re(z)> 0, and λ ∈ (0, 1),

ψ∗λ(mz) � logm +
1
m



m

j�1
ψ∗λ z +

j − 1
m

 , Re(z)> 0.

(36)

Figures 1–3 illustrate the degenerate digamma function
ψ∗λ(z) in (24) at different values for λ ∈ (0, 1).

Remark 3. Its worth to mention here that all plotted
functions in the below figures were multiplied by sinx, since
Fourier space, for the sake of clarify the results to the reader.

Now, we are going to find the integral representations for
the degenerate digamma function ψ∗λ(z), defined by (21), as
follows. Note that


1

0
1 − t

z− 1
 (1 − t)

− 1dt � 
∞

n�0

1

0
1 − t

z− 1
 t

ndt

� (z − 1) 
∞

n�0

1
(n + 1)(n + z)

.

(37)

Hence, using (28) and (37), it can be shown that

ψ∗λ(z) � − c + log
λ

log(1 + λ)
  + 

1

0
1 − t

z− 1
 (1 − t)

− 1dt.

(38)

Now, substituting t � (1 + λ)− s/λ in (37) gives

ψ∗λ(z) � − c + log
λ

log(1 + λ)
  +

log(1 + λ)

λ

× 
∞

0
(1 + λ)

− t/λ
− (1 + λ)

− zt/λ
  1 − (1 + λ)

− t/λ
 

− 1
dt.

(39)

Since

z− 1 �
log(1 + λ)

λ

∞

0
(1 + λ)

− zt/λdt (40)

and by integrating from 1 to n, it follows that

log n � 
∞

0


n

1
(1 + λ)

− zt/λ
· log (1 + λ)

1/λdzdt

� 
∞

0


n

1

1
t
dz(1 + λ)

− zt/λdt

� 
∞

0

1
t

(1 + λ)
− t/λ

− (1 + λ)
− nt/λ

 dt.

(41)

Inserting (41) and

(z + j)− 1 �
log(1 + λ)

λ

∞

0
(1 + λ)

− (z+j)t/λdt (42)

in (27), we get

ψ∗λ(z) � log
λ

log(1 + λ)
  + lim

n⟶∞

∞

0
(1 + λ)

− t/λ
− (1 + λ)

− nt/λ
 

1
t

− 

n

j�0

log(1 + λ)

λ
(1 + λ)

− (z+j)t/λ⎡⎢⎢⎣ ⎤⎥⎥⎦dt

� log
λ

log(1 + λ)
  + lim

n⟶∞

∞

0
(1 + λ)

− t
λt

− 1
−
log(1 + λ)

λ
(1 + λ)

− zt
λ 1 − (1 + λ)

− t
λ 

− 1
 dt

− lim
n⟶∞


∞

0
(1 + λ)

− nt
λ t

− 1
−
log(1 + λ)

λ
(1 + λ)

− zt
λ 1 − (1 + λ)

− t
λ 

− 1
 dt.

(43)

Since the last limit equals to zero, it follows

ψ∗λ(z) � log
λ

log(1 + λ)
  + 

∞

0

1
t
(1 + λ)

− t/λ


−
log(1 + λ)

λ
1 − (1 + λ)

− t/λ
 

− 1
(1 + λ)

− zt/λ
dt.

(44)

(e following theorem summarizes the above results.

Theorem 7. For z ∈ C, Re(z)> 0, and λ ∈ (0, 1), the de-
generate digamma function ψ∗λ(z), defined by (10), can be
expressed as (38), (39) as well as (44).

4. Degenerate Polygamma Function

(e polygamma function of order m is obtained by taking
the (m + 1)th derivative of the logarithm of gamma function
(cf. [28]). (us,

ψ(m)(z) �
dm

dzm
ψ(z) �

dm+1

dzm+1 log Γ(z), Re(z)> 0.

(45)

In this section, we define the degenerate polygamma
function of order m as

ψ∗ (m)
λ (z) �

dm

dzm
ψ∗λ(z) �

dm+1

dzm+1 log Γ
∗
λ(z), Re(z)> 0,

(46)
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Figure 1: Absolute plots of the degenerate digamma function. (a) λ� 0.1. (b) λ� 0.5. (c) λ� 1.0.
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Figure 2: Continued.

Mathematical Problems in Engineering 5



where Γ∗λ(z) is the degenerate gamma function defined by
(1) and ψ∗λ(z) is the degenerate digamma function defined
by (21).

By (24), it follows that

ψ∗ (m)
λ (z) � ψ(m)(z), Re(z)> 0. (47)

Using (44), an integral representation for ψ∗ (m)
λ (z),

given in the next theorem, can be obtained.

Theorem 8. Let λ ∈ (0, 1) and m ∈ N. 1en, for z ∈ C with
Re(z)> 0, the degenerate polygamma function ψ∗ (m)

λ (z),
defined by (46), can be expressed as
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Figure 2: Real-part plots of the degenerate digamma function. (a) λ� 0.1. (b) λ� 0.5. (c) λ� 1.0.
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Figure 3: Imagery-part plots of the degenerate digamma function. (a) λ� 0.1. (b) λ� 0.5. (c) λ� 1.0.
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ψ∗ (m)
λ (z) � (− 1)

m log(1 + λ)

λ
 

m+1

× 
∞

0
t
m 1 − (1 + λ)

− t/λ
 

− 1
(1 + λ)

− zt/λdt.

(48)

1e following recurrence relations for the degenerate
polygamma function ψ∗ (m)

λ (z) defined by (47) can be ob-
tained from (22)–(24), (35), and (36) as the following.

Theorem 9. For z ∈ C, Re(z)> 0, λ ∈ (0, 1), and m ∈ N,
the recurrence relations hold true:

ψ∗ (m)
λ (z + 1) � ψ∗ (m)

λ (z) +
(− 1)mΓ(m + 1)

zm+1 ,

ψ∗ (m)
λ (1 − z) � (− 1)mψ∗ (m)

λ (z) +(− 1)mπ d
dz

 
m
cot(πz),

ψ∗ (m)
λ (z + n) � ψ∗ (m)

λ (z) + 
n− 1

k�0

(− 1)mΓ(m + 1)

(z + k)m+1 ,

ψ∗ (m)
λ (2z) �

1
4
ψ∗ (m)
λ (z) +

1
4
ψ∗ (m)
λ z +

1
2

 ,

ψ∗ (m)
λ (nz) �

1
nm+1 

n

k�1
ψ∗ (m)
λ z +

k − 1
n

 , Re(z)> 0.

(49)

From (25), a series representation of the degenerate
polygamma function ψ∗ (m)

λ (z) is given in the following result.

Theorem 10. For z ∈ C,Re(z)> 0, λ ∈ (0, 1), and m ∈ N,
we have

ψ∗ (m)
λ (z) � (− 1)m+1Γ(m + 1) 

∞

n�0

1
(z + n)m+1. (50)

Remark 4. (e degenerate polygamma function
ψ∗ (m)
λ (z) can be expressed in terms of the generalized zeta

function

ζ(m, z) � 
∞

n�0
(z + n)− m

(51)

as

ψ∗ (m)
λ (z) � (− 1)mΓ(m + 1)ζ(m + 1, z). (52)

Finally, using (32), a series representation in terms of the
Riemann zeta function can be obtained, see the following
result.

Theorem 11. For z ∈ C,Re(z)> 0, λ ∈ (0, 1), and m ∈ N,
we have

ψ∗ (m)
λ (z + 1) � 

∞

n�0
(− 1)

m+n+1Γ(m + n + 1)ζ(m + n + 1)
zn

n!
,

m, n ∈ N.

(53)

5. Applications

Let z ∈ C with Re(z)> 0 and n ∈ N. (en, it can be verified
that

3F2

(− n + 2), z + 1, 1

z +(n + 1), 2
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

z + n

z(− n + 1)
× 2F1

(− n + 1), z

z + 1
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − 1⎛⎝ ⎞⎠.

(54)

Now, we can directly use the integral transform of Gauss
hypergeometric function (see [29]) and the formulae:

Γ
1
2

 Γ(2z) � 22z− 1Γ(z)Γ z +
1
2

 , Re(z)> 0, (55)

2F1
(− n + 2), z

z + 1
; 1  � 2− z Γ(z + n)Γ(n − (1/2))

Γ((z/2) + n)Γ((z/2) +(n − (1/2)))
,

Re(z)> 0.

(56)

Using (54) in (56) and L’Hôpital rule for complex
numbers with applying equation (24) yields the following
identity in terms of the degenerate digamma function:

3F2

(− n + 2), z + 1, 1

z +(n + 1), 2
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

z + 1
z

× ψ∗λ
1
2

  + ψ∗λ(z + 1) − ψ∗λ
1
2

(z + 1)  − ψ∗λ
1
2

z + 1  , Re(z)> 0. (57)
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Similarly, we can present another identity involving
hypergeometric function in terms of our degenerate
digamma function in the following form:

4F3

1, 1, 1, − n

2, 2, z + 1
; 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ × ψ∗λ(n + 2) − log

λ
log(1 + λ)

   ψ∗λ(z + n + 1) − ψ∗λ(z)( 

− 
n

s�1

ψ∗λ(s + 1) − log(λ/log(1 + λ))

z + 1
⎤⎦, Re(z)> 0.

(58)
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