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.e weapon target assignment (WTA) is a classical problem of defense-related applications which is proved to be a NP-complete
problem. In this paper, a practical and available dynamic weapon target assignment (DWTA) formulation is given which in-
corporates two meaningful and conflicting objectives, that is, minimizing weapon costs and maximizing combat benefits. As we
know, heuristic methods have some shortcomings such as slow convergence speed and local optimum in solving the nonlinear
integer optimization problem. To this end, a novel DWTA algorithm based on cross-entropy (CE) method is introduced, where
the resources requirement condition for targets is taken into consideration..e CEmethod associates an estimation problem with
the DWTA optimization problem, and then, the estimation problem is transformed into a convex optimization problem. .e
Karush–Kuhn–Tucker conditions are applied to solve the convex optimization problem, and the iteration formulas to find the
optimal solution are deducted. Furthermore, in order to verify the performance of CE method in dealing with the DWTA
problem, several simulations in different combat scenarios are implemented. .e results reveal that, compared with the
benchmark heuristic andMonte-Carlo (MC)methods, there are some notable advantages in solving the DWTA problem based on
CE method with regard to the solution quality and time consumption.

1. Introduction

Weapon target assignment (WTA) problem is the core
content in the research of combat command aided decision-
making, which can be categorized as a combinatorial op-
timization problem and nondeterministic polynomial
complete problem [1], whose solution space expands ex-
ponentially with the increasing of the number of weapons
and targets. Generally, WTA problem can be divided into
static weapon target assignment (SWTA) problem [2, 3] and
dynamic weapon target assignment (DWTA) problem [4–6].
In SWTA, all weapons are assigned to targets simultaneously
and all information is known; however, in DWTA, many
dynamic changes such as time window and weapon con-
sumption should be considered; in that case, the solving
algorithm for DWTA problem must have the good real-time
performance. Furthermore, some researchers pay much
attention to sensor weapon target assignment problem
[7–9], where small and sensitive sensors loaded by weapons

play a critical role to enhance the combat effectiveness, and
in order to fit the combat scene pertinently, multiobjective
optimization problem [10, 11] is researched to depict the
combat purpose in different perspectives.

Concretely, Kline et al. [2] proposed a nonlinear branch
and bound algorithm to solve the SWTA problem which
sought to minimize the residual value of each target. Zhou
et al. [3] proposed a discrete particle swarm optimization
(PSO) algorithm to maximize the ratio of global operation
effectiveness to the costs of consumed weapons. Lai and Wu
[4] proposed an improved simplified swarm optimization
method with two novel schemes to minimize the threat value
in the multistage WTA. Chang et al. [5] proposed an arti-
ficial bee colony algorithm with heuristic factor initialization
to get the minimal expected value of surviving targets for all
stages. Mu et al. [7] built a sensor WTA model with the
probability of detection and killing, and then multiscale
quantum harmonic oscillator algorithm was applied to solve
the optimization problem, and Chen et al. [8] used the
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particle swarm optimization algorithm to solve the sensor
WTA problem while Xin et al. [9] proposed a marginal-
return-based constructive heuristic method to deal with and
solve sensor WTA problem. Juan et al. [12] built a multi-
objective WTA formulation and NSGAII algorithm was
applied to solve the problem, and Li et al. [10] compared the
adaptive NSGAII algorithm and adaptive MOEA/D algo-
rithm and gave a comparison study. Gao et al. [11] proposed
the D-NSGA-III-A algorithm with the adaptive operator
selection mechanism. Both NSGAII and D-NSGA-III-A are
extensions of the GA algorithm.

With the development of computer performance, nu-
merous methods are developed to solve the WTA problems,
such as branch and bound [2], PSO [3, 8, 13], artificial bee
colony algorithm [5], genetic algorithm [10–12], large-scale
neighborhood algorithm [14, 15], and ant colony algorithm
[16, 17]. Some new methods are also applied to deal with the
WTA problem such as simplified swarm optimization [4],
multiscale quantum harmonic oscillator algorithm [7],
marginal-return-based constructive heuristic [9], and
Markov decision model [18]. Some scholars are also in-
terested in hybrid algorithms [19–21]. Although the appli-
cation of these methods provides a variety of ideas for
solving WTA problems, it is necessary to further expand the
optimization method for the realistic and dynamic combat
scenarios. Rubinstein [22] indicated that it is feasible and
effective to utilize CE method to estimate the probability of
rare event and solve complicated nonlinear combination
optimization problems. As a simple but powerful tool, CE
method is available for numerous practical applications,
such as combination optimization problems [23], deep
learning [24], and multi-UAVs task allocation [25, 26].

As an efficient deterministic optimization method,
branch and bound method is involved to solve nonlinear
optimization problem [2, 25]. Le.i et al. [25] compared the
performance of CE method and branch and bound method
in terms of solving the nonlinear UAV task assignment
problem. To evaluate the effectiveness of CE method, Huang
et al. [26] applied it in various test problems and compared it
with the exhaust search method. .e comparable research,
among CE method and other benchmark heuristic methods,
is insufficient; in this paper, in order to verify the perfor-
mance of solving the DWTA problem based on CE method,
two benchmark heuristic algorithms (PSO and GA) and
Monte-Carlo algorithm are compared with the CE method.

.e aim of this paper is to reveal the detail process of
applying cross-entropy to solve the discrete nonlinear
DWTA problem under the multiple resources requirement
condition. .e contribution of this paper is as follows:

(i) A novel DWTA formulation with two significant and
conflicting objectives is constructed, which minimize
the weapon costs and maximize the combat benefits.
Multiple resources requirement conditions change-
able are taken into consideration which limit the
feasibility of weapon in multistage combat. .e kill
probability is randomly selected between zero and
one which is distinct from those models with an
assumption that all firepower units have the same kill

probability for different types of targets [15]. With
these considerations, the DWTA formulation given
in this paper is more practical and realistic.

(ii) .e idea of estimating rare event probability with
CE is extended to the solution of discrete nonlinear
DWTA problem. To be specific, the DWTA prob-
lem depicted in this paper is transformed into an
estimation problem, and then it is subsequently
transformed into a convex optimization problem,
detailed iteration formulas are deducted in the
following text, and then the algorithm of solving
DWTA problem based on CE method is acquired.

(iii) 24DWTAproblems of different scales are simulated to
cover the different combat scenarios; furthermore, the
benchmark heuristic and Monte-Carlo methods are
implemented to verify the performance of CEmethod.

.e rest of the paper is structured as follows: in Section 2,
a DWTA formulation based on weapon costs and combat
benefits under multiple resources requirement condition is
presented. Furthermore, in Section 3 we apply CEmethod to
solve the DWTA problem and give the elaborate deduction
procedure based on Lagrange multiplier method and KKT
conditions. Section 4 employs several combat scenarios to
verify the performance of CE method compared with
benchmark heuristic and MC methods. Section 5 summa-
rizes the research contents of this paper and prospects the
follow-up research work.

2. DWTA Formulation

2.1.CombatScenario. .epurpose ofWTA problem is to get
maximal combat benefits by utilizing weapons to intercept
targets under certain or uncertain combat environment. In
this paper, we present a DWTA formulation based on
consumed weapon costs and combat benefits incorporating
multiple resources requirement condition, and a typical
scenario of the weapons against the targets is shown in
Figure 1. We assume that there are n targets and m types of
weapon, and each target has different combat ability value
and resources requirement in the combat scenario; at the
same time, the resources contained by each weapon and the
inventory quantity of each weapon are taken into consid-
eration. .e solution of the DWTA problem is based on the
following assumptions.

Assumption 1. .e kill probability of using the same
weapon to intercept different target is different and the
kill probability of using different weapon to intercept
the same target is different. .e value of kill probability
is randomly selected.
Assumption 2. .e weapon satisfied with the resources
requirement condition of target can be used to inter-
ception task. As depicted in Figure 1, weapon 1 can
intercept target 1; however, weapon 2, which does not
satisfy the resources condition of target 1, is limited to
intercept target 1.
Assumption 3. Every type of weapon can be launched
once simultaneously, so the objective of WTA is to
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assign m weapons to n targets in every stage, and then
the evaluation of the combat result is implemented,
which allows us to decide whether to go on the next
weapon target assignment. Actually, this DWTAmodel
belongs to shoot-look-shoot variant.
Assumption 4. .e evaluation process is deterministic
as long as the solution of WTA is acquired, which
allows us to decide the next procedure according to the
cessation conditions. .e detail of cessation conditions
will be described later.

2.2. Design of DWTA Formulation. After the description of
the combat scenario in Figure 1, the detailed DWTA for-
mulation will be introduced in this subsection, cost function
constituted by consumed weapons and benefit function
described by the combat ability value in each combat stage
are defined at first, and the DWTA formulation is built based
on a tradeoff between cost function and benefit function.
Some notations used in this paper are described in Table 1.

In order to describe the cost of consumedweapons clearly,
g(xi(t), j)is the auxiliary function of decision variable we
defined, which depicts whether to assignweapon i to target j at
stage t, the specific definition is as follows:

g xi(t), j( 􏼁 �
1, ifxi(t) � j,

0, otherwise,
􏼨

∀i ∈W, j ∈ J, xi ∈ J.

(1)

Furthermore, we define the auxiliary function of combat
feasibility h(i, j, t) which is utilized to decide whether the
weapon i could intercept the target j:

h(i, j, t) �
1, ∀k � 1, . . . , K, s.t.rik(t)≥ qjk(t),

0, otherwise,
􏼨

∀i ∈W, j ∈ J, t � 1, 2, . . . , T,

(2)

where rik(t) is the number of resource k contained by
weapon i at stage t, qjk(t) is the number of resource k

required by target j at stage t, and both rik(t) and qjk(t) are
nonnegative integers. Weapon i can be used to intercept
target j if and only if the available resource number of the
weapon i meets the requirement condition of target j.

Consequently, we get the cost function at stage t.

SC(X(t)) � 􏽘
j∈J

􏽘
i∈W

cig xi(t), j( 􏼁h(i, j, t). (3)

After the t stage, the benefit function is equal to the sum
of the combat ability value of all targets.

SB(X(t)) � 􏽘
j∈J

uj(t) 􏽙
i∈W

1 − ωij(t)􏼐 􏼑
g xi(t),j( )h(i,j,t)⎛⎝ ⎞⎠.

(4)

Hence, we have built the cost function and the benefit
function, weight strategy is adopted to balance the two
conflicting objectives, and the DWTA objective function at
stage t is acquired as follows:

S(X(t)) � α1SC(X(t)) + α2SB(X(t))

� α1 􏽘
j∈J

􏽘
i∈W

cig xi(t), j( 􏼁h(i, j, t) + α2 􏽘
j∈J

uj(t)

· 􏽙
i∈W

1 − ωij(t)􏼐 􏼑
g xi(t),j( )h(i,j,t)⎛⎝ ⎞⎠,

(5)

where α1 + α2 � 1, α1 and α2 are the weight parameters. Let
α1 � 0, which means destroying targets regardless of cost,
and let α2 � 0, which means destroying targets at the lowest
cost.

.e constraint conditions of the WTA problem are
depicted in the following formulas:

􏽘
j∈J

g xi(t), j( 􏼁 � 1, ∀i ∈W, t � 1, . . . , T, (6)

􏽘
j∈J

g xi(t), j( 􏼁≤ vi(t), ∀i ∈W, t � 1, . . . , T, (7)

xi(t) ∈ J and xi(t) is a positive integer. (8)

Constraint (6) depicts that each weapon must be
assigned to one of the targets at stage t. Constraint (7) depicts
that it is necessary to stockpile enough weapons to complete
weapon target assignment. Constraint (8) limits the range of
xi(t); that is, xi(t) is a positive integer and belongs to the set
J. .ere are two noticeable situations as follows:

Situation 1. A certain type of weapon is exhausted.

Situation 2. A certain type of weapon does not satisfy the
resource requirement condition of any target.

In these two conditions which mean that this weapon
cannot intercept any target, in order to deal with the two
situations, we set up a new hypothetical target named target
n+ 1 and get a new target set 􏽥J � J + n + 1{ }, we can assign
this type of weapon to target n+ 1, and we set

Combat ability value

Weapons inventory

Task
assignment 

Evaluation

Resource type

Target

Weapon cost

Weapon

Purpose: intercept

Weapon 1

Weapon 2

Weapon m

Target 1

Target 2

Target n 

Purpose: attack

Figure 1: Drawing of DWTA.
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g(xi(t), j) � 0,∀xi(t) � n + 1, i ∈W. It is an excellent
technique to deal with these two situations. Consequently,
we can summarize that the DWTA formulation at stage t

min
X(t)

S(X(t)) � α1SC(X(t)) + α2SB(X(t))

� α1 􏽘

j∈􏽥J

􏽘
i∈W

cig xi(t), j( 􏼁h(i, j, t) + α2 􏽘

j∈􏽥J

uj(t)

· 􏽙
i∈W

1 − ωij(t)􏼐 􏼑
g xi(t),j( )h(i,j,t)⎛⎝ ⎞⎠,

􏽘

j∈􏽥J

g xi(t), j( 􏼁 � 1, ∀i ∈W,

􏽘

j∈􏽥J

g xi(t), j( 􏼁≤ vi(t), ∀i ∈W,

xi(t) ∈ 􏽥J andxi(t) is a positive integer.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

3. Algorithm Design Based on Cross-Entropy

3.1. &e Cross-Entropy Method. Originally, CE method is
based on importance sampling and used to estimate the
probability of rare event, and Rubinstein [22] put forward an
optimization method based on the idea of CE, which could
solve the discrete multiextreme value problems. Consider
the following general minimization problem: let S be a real-
valued function on χ, where χ is a finite set of states. Our goal
is to find the minimum of S over χ, which is denoted as c∗,
and X∗ is the corresponding state.

S X
∗

( 􏼁 � c
∗

� min
X∈χ

S(X). (10)

.e basic idea of CE method applied to formula (10) is to
associate an estimation problem with the optimization

problem. In that case, the optimization problem is converted
into an estimation problemwith probability density function
(pdf) f(·, β).

l � Ρβ(S(X) ≤ c) � ΕβI S(X)≤c{ }, (11)

where c is a value close to c∗, Ρβ is the probability measure,
Εβ denotes the corresponding expectation operator, and
I S(X)≤c{ } is the indicator function.

I S(X)≤c{ } �
1, if S(X)≤ c,

0, if S(X)> c.
􏼨 (12)

A better way to estimate l is to use another pdf g, and we
can represent l as in the following formula:

l � 􏽚 I S(X)≤c{ }
f(X)

g(X)
g(X)dx � ΕβI S(X)≤c{ }

f(X)

g(X)
. (13)

An unbiased estimator of l is depicted in the following
formula:

􏽢l �
1
N

􏽘

N

i�1
I S Xi( )≤c{ }

f Xi; β( 􏼁

g Xi( 􏼁
, (14)

where X1, X2, . . . , XN is generated from pdf g.
It is well known that the best way to estimate l is to use

the change of measure with the pdf g∗(X):

g
∗
(X) �

I S Xi( )≤c{ }f(X; β)

l
. (15)

In order to choose the pdf g∗ from the family of pdf
f(·; δ)􏼈 􏼉, the idea is to choose the reference parameter δ such
that the distance between the densities gand f(·; δ) is min-
imal. Minimizing the Kullback–Leibler distance between the
densities gand f(·; δ) is equivalent to the following formula:

Table 1: Notation description.

n: number of targets, J is the target set and J � 1, . . . , n{ }, target j (j ∈ J) represents the j-th target
n+ 1: hypothetical target, 􏽥J is the target set and 􏽥J � J + n + 1{ }

m: number of weapon types, W is the weapon set and W � 1, 2, . . . , m{ }, weapon i (i ∈W) represents the i − th type of weapon
T: final combat stage, t represents the t stage and t � 1, . . . , T

K: number of the resource types, k represents the k-th kind of resource and k � 1, . . . , K

uj(t): combat ability value of target j at stage t
ci: unit cost of weapon i

vi(t): inventory quantity of weapon i at stage t
X(t) � [xi(t)]m×1: decision vector at stage t, xi(t) is the i-th decision variable

g(xi(t), j): auxiliary function of decision variable at stage t
h(i, j, t): auxiliary function of combat feasibility at stage t
Q(t) � [qjk(t)]n×K: resources matrix of targets at stage t
R(t) � [rik(t)]m×K: resource matrix of weapons at stage t

Ω(t) � [ωij(t)]m×n: kill probability matrix at stage t
SC(X(t)): cost of consumed weapons at stage t

SB(X(t)): combat ability values of targets at stage t
S(X(t)): objective function at stage t

α1, α2: weight parameters
ς∗: expected combat purpose

X∗: optimum solution and S∗is the corresponding objective function value
TCE: iteration number of CE method, and TCE(t) is the iteration number of CE method at stage t

D: iteration number of GA and PSO method
Num: population size of GA and PSO method

NMC: sample size of MC method
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min
δ

D(δ) � min
δ
Εg∗ ln

g∗(X)

f(X; δ)
� min

δ
􏽚 g
∗
(X)ln g

∗
(X)dX

− 􏽚 g
∗
(X)lnf(X; δ)dX.

(16)

It is obvious that minimizing problem (16) is equivalent
to solving the minimization problem.

min
δ

− 􏽚 g
∗
(X)lnf(X; δ)dX � min

δ
− 􏽚

I S Xi( )≤c{ }f(X; β)

l

· lnf(X; δ)dX.

(17)

Finally, formula (17) is converted into the following
formula:

min
δ

−ΕβI S Xi( )≤c{ } lnf(X; δ) � min
δ

−
1
N

􏽘

N

i�1
I S Xi( )≤c{ } lnf Xi; δ( 􏼁,

(18)

where X1, X2, . . . , XN is the random sample from f(·; β). In
typical applications, the function D(δ)in formula (16) is
convex and differentiable with respect to δ [27]..us, we can
get the solution of (18) from the following equation:

−
1
N

􏽘

N

i�1
I S Xi( )≤c{ }∇ lnf Xi; δ( 􏼁 � 0, (19)

where the gradient is with respect to δ.
.e idea of CE method is to construct simultaneously

two sequences of levels c1, c2, . . . , cTCE
and parameters

δ1, δ2, . . . , δTCE
, where cTCE

is close to the optimal c∗ and δTCE
is the corresponding parameter of pdf g∗. In other words,
each iteration of the CE method has two main phases. In the
first phase, ctCE

is updated, and in the secondδtCE
is updated.

To be specific, starting δ0 � β, we can obtain the two se-
quences as follows:

Phase 1: adaptive updating of ctCE

For a fixed δtCE−1, let ctCE
be a θ-quantile of S(X) under

δtCE−1; that is, ctCE
satisfies

Ρβ(S(X)≤ c)≥ θ, (20)

where X is generated from f(·; δtCE−1).
A simple estimator 􏽢ctCE

of ctCE
can be obtained by

drawing a random sample X1, X2, . . . , XN from
f(·; δtCE−1), calculating the performances S(Xi) for all I,
ordering them from the smallest to the biggest,
S(1) ≤ S(2) ≤ · · · ≤ S(N), and evaluating the θ-quantile as

􏽢ctCE
� S(⌈θN⌉). (21)

Phase 2: adaptive updating of δtCE

For fixed ctCE
and δtCE−1, derive δtCE

from the solution of
(19), to be specific

3.2. Solving DWTA Problem Based on CE Method. In this
paper, our purpose is to apply CE method to solve the
DWTA problem modeled above, and interested readers
can get detailed theory of CE method in [22, 28]. In order
to solve formulation (9) at stage t, we construct the fol-
lowing discrete Probability Distribution Matrix (PDM)
M(t):

M(t) �

p(1 | 1, t) · · · p(n | 1, t) p(n + 1 | 1, t)

p(1 | 2, t) · · · p(n | 2, t) p(n + 1 | 2, t)

⋮ ⋮ ⋮

p(1 | m, t) · · · p(n | m, t) p(n + 1 | m, t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×(n+1)

,

(22)

where the element p(j | i, t) in PDM denotes the prob-
ability of allocating weapon i to target j at stage t, and
if every element p(j | i, t) belongs to 0, 1{ }, we can get
the final solution according to the PDM. Furthermore,
the PDM M(t) satisfies the following constraint
condition:

􏽘

j∈􏽥J

p(j | i, t) � 1, ∀i ∈W, t � 1, . . . , T,
(23)

where the set 􏽥J � J + n + 1{ } because we use target n+ 1 to
deal with Situation 1 and Situation 2, and it is obvious that
constraint condition (6) is equivalent to constraint condition
(23). It is worth noting that initializing the PDM M0(t) at
stage t according to the following formula can assure that
sample X generated from PDM M(t) meets the resources
requirement:

p(j | i, t) �

1
􏽐

j∈􏽥Jh(i, j, t)
, if h(i, j, t)≠ 0,

0, if h(i, j, t) � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀i ∈W, t � 1, . . . , T.

(24)

According to the PDM M(t) at stage t, we can get the
probability distribution function f(X(t);M(t)):

f(X(t);M(t)) � 􏽙
i∈W

p xi(t)
􏼌􏼌􏼌􏼌 i, t􏼐 􏼑, (25)

where p(xi(t) | i) is the element of column xi(t) in line i of
PDM M(t).

Furthermore, we can get the following probability dis-
tribution function:

f(X(t);M(t)) � 􏽙
i∈W

p xi(t)
􏼌􏼌􏼌􏼌 i, t􏼐 􏼑 � 􏽙

i∈W
􏽙

j∈􏽥J

p(j | i, t)
g xi(t),j( ),

(26)

where formulas (25) and (26) are equivalent, and the reader
can refer to Appendix for details.

In each iteration process of CE method,
X1(t), . . . ,XN(t) are N samples generated from the
PDM M(t), and we can compute the objective function
values S(Xl(t)),∀l � 1, . . . , N, and then we sort the N

Mathematical Problems in Engineering 5



objective function values in ascending order, and we
can get the sequence of objective function values
S(X(1)(t))≤ · · · ≤ S(X(N)(t)) and the sequence of samples
X(1)(t), . . . ,X(N)(t); let H � ⌊θN⌋, and ⌊⌋ is the symbol of
rounding down, which is the θ-quantile. We select H
samples corresponding to the H minimum objective
function values; that is, X(1)(t), . . . ,X(H)(t), to update the
PDM M(t). We can get the following optimization
problem according to formula (18):

min
M(t)

− 􏽘
H

s�1
ln(f(X(t);M(t))),

s.t. 􏽘

j∈􏽥J

p(j | i, t) � 1, ∀i ∈W, t � 1, . . . , T,

p(j | i, t)≥ 0, ∀i ∈W, j ∈ 􏽥J, t � 1, . . . , T.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

According to formula (26), we can simplify formula (27):

min
M(t)

− 􏽘
H

s�1
ln f Xs

(t);M(t)( 􏼁( 􏼁 � min
M(t)

− 􏽘
H

s�1
ln 􏽙

i∈W
p x

s
i (t)

􏼌􏼌􏼌􏼌 i, t􏼐 􏼑⎛⎝ ⎞⎠

� min
M

− 􏽘
H

s�1
ln 􏽙

i∈W
􏽙

j∈􏽥J

p(j | i, t)
g xs

i
(t),j( )⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠

� min
M

− 􏽘

H

s�1
􏽘

m

i�1
􏽘

n+1

j�1
g x

s
i (t), j( 􏼁ln(p(j | i, t)).

(28)

In order to simplify the description, let rji(t) � p(j | i, t),
bs

ji(t) � g(xs
i (t), j), and then optimization problem (27) can

be rewritten as follows:

min
M(t)

− 􏽘
H

s�1
􏽘

m

i�1
􏽘

n+1

j�1
b

s
ji(t)ln rji(t)􏼐 􏼑,

s.t. 􏽘
n+1

j�1
rji(t) � 1, ∀i ∈W, t � 1, . . . , T,

rji(t)≥ 0, ∀i ∈W, j ∈ 􏽥J, t � 1, . . . , T.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

It is obvious that problem (29) belongs to a convex
optimization problem, and we can construct the Lagrange
function as follows:

L rji(t), λi(t), αji(t)􏼐 􏼑 � − 􏽘
H

s�1
􏽘

m

i�1
􏽘

n+1

j�1
b

s
ji(t)ln rji(t)􏼐 􏼑

+ 􏽘
m

i�1
λi(t) 􏽘

n+1

j�1
rji(t) − 1⎛⎝ ⎞⎠

+ 􏽘
m

i�1
􏽘

n+1

j�1
αji(t) −rji(t)􏼐 􏼑.

(30)

According to Karush–Kuhn–Tucker conditions, we can
get the following formula:

−
􏽐

H
s�1 bs

ji(t)

rji(t)
+ λi(t) − αji(t) � 0,

αji(t) −rji(t)􏼐 􏼑 � 0,

􏽘

n+1

j�1
rji(t) − 1 � 0,

αji(t)≥ 0,

−rji(t)≤ 0,

λi(t)> 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)

and the following formula is derived according to the
upper formula (31):

rji(t) �
􏽐

H
s�1 bs

ji(t)

H
,

αji(t) � 0,

λi(t) � H.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

.en, the element p(j | i, t) in PDMM(t) can be updated
according to the following formula:
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p(j | i, t) �
􏽐

H
s�1 bs

ji(t)

H
�

􏽐
H
s�1 g xs

i (t), j( 􏼁

H
. (33)

Before the cessation conditions of the DWTA are ana-
lyzed, we give the updated formula of the remaining weapon
inventory and the remaining combat ability value after the t
stage.

vi(t + 1) � vi(t) − 􏽘
j∈J

g xi(t), j( 􏼁,

uj(t + 1) � uj(t) 􏽙
i∈W

1 − ωij(t)􏼐 􏼑
g xi(t),j( )h(i,j,t)⎛⎝ ⎞⎠,

(34)

where j ∈ 􏽥J, i ∈W, t � 1, . . . , T.
.e cessation conditions of the DWTA include two

points:

Cessation condition 1: all available weapons are
exhausted
Cessation condition 2: the combat purpose is imple-
mented, which means the percentage of the remaining
combat ability value is less than the preselected per-
centage ς∗

Consequently, we can get the DWTA algorithm based on
CE method as follows (Algorithm 1).

3.3. Complexity Analysis. Let N denote the sample size, TCE
denote the iteration number of CE method, m denote the
number of weapon types, and T denote the final combat
stage. .e computational cost of CE method includes four
parts: the initialization (Cini), sample (Csample), sort (Csort),
and update (Cupdate); the computational complexity of CE
method can be denoted as CCE � Cini + Csample + Csort+

Cupdate, to be specific, CCE � m + TCE[mN + N + mθN];
therefore, the time complexity of the CE method can
be computed as O(TCEmN), and the time complexity
of the DWTA algorithm based on CE method can be
denoted as O(TTCEmN). Let Num denote the population
size of PSO and GA. Let D denote the iteration number
of PSO and GA, and we can get the complexity of
DWTA algorithm based on PSO ang GA denoted as
O(TD · Num).

4. DWTA Simulations

4.1. Parameter Setting for DWTA. .e following contents in
this subsection include three parts: parameters setting rules
of combat scenario, parameters selection of algorithms,
performance index design and parameters setting of combat
scenario. .e first part is the parameters setting rules of
combat scenario which is depicted in Table 2. Both the
number of weapon types (m) and the number of targets (n)
are integers between 1 and 80, that is, m, n ∈ [1, 80]. .e
combat ability value of every target at the first stage is a
random number between 70 and 200, that is,
uj(1) ∈ (70, 200), ∀j ∈ J; it is worth noting that the combat
ability value of the hypothetical target is equal to zero, that is,
un+1(t) � 0,∀t � 1, . . . , T. .e cost of every single weapon is

a random number between 20 and 80, that is,
ci ∈ (20, 80),∀i ∈W. .e kill probability of weapon i to
target j is a random number between 0.5 and 1, that is,
ωij(t) ∈ (0.5, 1). qjk(t) is integer between 0 and 3. rik(t) is
integer between 0 and 5..e expected combat purpose ς∗ is a
random number between 0 and 1.

Subsequently, we give the scheme of parameter selection
of CE, PSO, GA, and MC methods in Table 3. .e CE
method includes two parameters, sample size and quantile,
and the main parameters of PSO and GA methods are
population size Num and iteration number D, and we set
sample size of MC method equal to 5e4 in the simulation.

.e third part is performance index design depicted in
Table 4 which measures the solution quality of different
algorithms. .e percentage between the sum of the cost of
weapon consumed in all stages and the total value of
weapons, denoted as PSCWC, is to depict combat costs in
whole combat.

PSCWC �
􏽐

T
t�1 􏽐

j∈􏽥J􏽐i∈Wcig x∗i (t), j( 􏼁

􏽐i∈Wcivi(1)
× 100%. (35)

.e index PRCAVTdenotes the percentage between the
remaining combat ability value of targets at T stage and the
initial combat value of targets, which measures whether to
achieve the expected combat purpose.

PRCAVT �
􏽐j∈Juj(T)

􏽐j∈Juj(1)
× 100%. (36)

.e index CI is the product of the index PRCAVTand the
index PSCWC. .e index avg-PSCWC is the average of
PSCWC corresponding to the six DWTA problems..e index
avg-PRCAVT is the average of PRCAVTcorresponding to the
six DWTA problems. .e computation time (CT) is used to
depict the solving speed of different algorithms.

Finally, we categorize the number of weapon stockpiles
and weight parameters of DWTA model into the following
four situations so as to cover different combat scenarios.

Scenario 1. Weapon stockpiles are sufficient, and the
weapon costs are important the same as with the combat
benefits.

vi � ⌊6 + 4 · rand(m, 1)⌋,

α1 � α2 � 0.5.
(37)

Scenario 2. Weapon stockpiles are sufficient, and the
combat benefits are more important than the weapon costs.

vi � ⌊6 + 4 · rand(m, 1)⌋,

α1 � 0.1,

α2 � 0.9.

(38)

Scenario 3. Weapon stockpiles are not sufficient, and the
weapon costs are important the same as with the combat
benefits.

Mathematical Problems in Engineering 7



Table 2: Combat scenario parameter setting rules.

Parameter Parameter setting rules
n .e number of weapon types (m) is integer between 1 and 80
m .e number of targets (n) is integer between 1 and 80
K .e number of the resource types is integer between 1 and 9
uj(1) .e combat ability value of target j at the first stage is a random number between 70 and 200 and un+1(1) � 0
ci .e cost of every single weapon is a random number between 20 and 80
vi(1) .e inventory quantity of weapon i at the first stage is integer between 0 and 10
qjk(t) .e quantity of resource k required by target j at stage t is integer between 0 and 3
rik(t) .e quantity of resource k contained by weapon i at stage t is integer between 0 and 5
ωij(t) .e kill probability of weapon i to target j is a random number between 0.5 and 1
ς∗ .e expected combat purpose is a random number between 0 and 1

Table 3: Parameters setting of different methods.

Method Parameter Parameter setting rules

CE N .e sample size of CE method is integer between 50 and 200
θ .e quantile θ is a random number between 0 and 1

PSO Num .e population size of PSO is integer between 50 and 200
D .e iteration number of PSO is integer between 50 and 100

GA Num .e population size of GA is integer between 50 and 200
D .e iteration number of GA is integer between 50 and 100

MC NMC .e sample size of MC method is 5e4

Table 4: Description of several indexes.

Index Description
PSCWC .e percentage between the sum of the cost of weapon consumed in all stages and the total value of weapons
PRCAVT .e percentage between the remaining combat ability value of targets at stage T and the initial combat value of targets
CI .e composite index which is the product of the index PRCAVT and the index PSCWC
avg-PSCWC .e average of PSCWC corresponding to the six DWTA problems
avg-PRCAVT .e average of PRCAVT corresponding to the six DWTA problems
CT Computation time of all stages

Input: t, n, m, K, uj, ci, ]i, ζ
∗
,Q,R,Ω, θ, N

Output: T, S∗,X∗
(1) Let t� 1, begin the dynamic weapon target assignment.
(2) Compute the initial PDM M0(t) according to formula (24) and let tCE � 0.
(3) Generate N samples θ � 0.1 according to PDM MtCE

(t).
(4) Compute the objective function values S(X1(t)), . . . , S(XN(t)).
(5) Sort the N objective function values in ascending order and select H samples corresponding to theHminimum objective function

values.
(6) Update the PDM MtCE

(t) using the H samples according to formula (33).
(7) If all elements of PDMMtCE

(t) belong to {0, 1}, setTCE � tCE, output the optimumX∗ and S∗, else let tCE � tCE + 1, goto step 3 until
the CE method achieves the convergence conditions.

(8) Update the remaining combat ability value of every target uj(t + 1) and the remaining weapon inventory vi(t + 1).
(9) If any of the two cessation conditions is reached, let T � t, output T, S∗(t),X∗(t). Otherwise, let t � t + 1, go to step 2.

ALGORITHM 1: .e DWTA algorithm based on CE method.

Table 5: Six DWTA problems of different scales.

No. 1 2 3 4 5 6
n 12 24 25 40 45 64
m 16 16 32 32 54 54
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vi � ⌊2 + 1 · rand(m, 1)⌋,

α1 � α2 � 0.5.
(39)

Scenario 4. Weapon stockpiles are not sufficient, and the
combat benefits are more important than the weapon costs.

vi � ⌊2 + 1 · rand(m, 1)⌋,

α1 � 0.1,

α2 � 0.9.

(40)

It is worth noting that the same scale DWTA problems in
Scenario 1 and Scenario 2 have the same parameters such as
the inventory quantity of weapons and kill probability, and
the same is true for Scenario 3 and Scenario 4. Besides, in
order to describe the effectiveness of the DWTA model and
the advantages of CE method in solving different scales of
DWTA problems, we set up the following six scales DWTA
problems. .e choices of parameter m and parameter n are
shown in Table 5.

We set the expected combat purpose ς∗ � 10% in ad-
vance, which depicts that we stop the combat task when the
index PRCAVT is less than ς∗; note that another stop
condition is that all available weapons are exhausted. We set

the relevant parameters of CE, PSO, and GA methods as
follows, N � 200 and θ � 0.1, Num � 50, D � 100. In this
paper, ten simulations of the same scale DWTA problem are
carried out to calculate the statistical average of PSCWC,
PRCAVT, and CT. All algorithms are implemented in an
Intel Core I5 @ 3.06GHz processor with 8GB RAM.

4.2. Results and Analysis. .e results of simulation are
presented in Figures 2–4 and Tables 6–8. What needs to be
pointed out is that the smaller the indexes PSCWC and avg-
PSCWC are, the smaller the cost of weapons consumed is.
.e smaller the indexes PRCAVTand avg-PRCAVTare, the
greater the combat benefits are. .e smaller the index CI is,
the better the solution quality is. .e smaller the CT index is,
the faster the solving speed is.

Figures 2(a), 3(a), and 4(a) depict the combat results in
Scenario 1; the index PSCWC has the ascending sequence,
that is, CE<GA< PSO<MC; furthermore, Figure 4(a) in-
dicates that the value of index CI for CE method is the
smallest among others, and from Tables 6 and 7, the indexes
avg-PSCWC of CE, GA, PSO, and MC methods are 21.98%,
29.98%, 37.16%, and 44.96%, and the indexes avg-PRCAVT
of CE, GA, PSO, and MC methods are 7.97%, 8.28%, 7.18%,
and 6.85%, which indicates that the solution of CEmethod is
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Figure 2: Comparative results of CE, GA, PSO, and MCmethods with respect to PSCWC index. (a) Scenario 1. (b) Scenario 2. (c) Scenario
3. (d) Scenario 4.
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Figure 3: Comparative results of CE, GA, PSO, and MCmethods with respect to PSCWC index. (a) Scenario 1. (b) Scenario 2. (c) Scenario
3. (d) Scenario 4.
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Figure 4: Continued.
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more excellent than these solutions of GA, PSO, and MC
methods; that is, the expected combat purpose is achieved
and multitudes of weapon costs are saved. .e same con-
clusion can be reached in Scenario 2.

As for Scenario 3, the CE, GA, PSO, andMCmethods have
nearly the same PSCWC index depicted in Figure 2(c), and
from Figure 3(c), the PRCAVT index has the ascending se-
quence, that is, CE<GA<PSO<MC, and Figure 4(c) indi-
cates that the value of index CI for CE method is the smallest
among others; furthermore, from Tables 6 and 7, the indexes
avg-PSCWC of CE, GA, PSO, and MC methods are 61.31%,
61.62%, 63.61%, and 64.46%, and the indexes avg-PRCAVTof
CE, GA, PSO, and MC methods are 27.19%, 33.30%, 37.61%,
and 42.82%. Consequently, compared with the GA, PSO, and
MC methods, the assignment results of CE method are more
effective in the condition that the number of weapons con-
sumed is the same. According to the combat result of Scenario
3, we can get the conclusion that the defense can get better
combat benefits when using CE method to complete the
DWTA task under the condition that the weapons are in-
adequate. .e same conclusion can be reached in Scenario 4.

Comparing Scenario 1 with Scenario 2 and comparing
Scenario 3 with Scenario 4, the simulation results are shown in
Figures 2 and 3. From the indexes PSCWC and PRCAVT, the
defense gets more combat benefits in Scenario 2 and Scenario 4
but spends more weapon costs. We can get the conclusion that
the defense can save weapon costs to some extent by adjusting
weight parameters α1 and α2 in different scenarios.

.e computation time of solving the different scales
DWTA problem is recorded in the four combat scenarios,
and the relevant results are shown in Table 8; it is obvious
that the index CT presents ascending sequence, that is,

Table 6: Comparative results of CE, GA, PSO, and MC methods
with respect to the statistic average PSCWC index.

Method CE (%) GA (%) PSO (%) MC (%)
Scenario 1 21.98 29.98 37.16 44.96
Scenario 2 29.64 35.19 41.81 48.84
Scenario 3 61.31 61.62 63.61 64.46
Scenario 4 67.69 67.30 66.99 66.37

Table 7: Comparative results of CE, GA, PSO, and MC methods
with respect to the index avg-PRCAVT.

Method CE (%) GA (%) PSO (%) MC (%)
Scenario 1 7.97 8.28 7.18 6.85
Scenario 2 4.71 6.96 6.83 6.41
Scenario 3 27.19 33.30 37.61 42.82
Scenario 4 24.82 31.97 35.96 42.15
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Figure 4: Comparative results of CE, GA, PSO, and MCmethods with respect to the index CI. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.
(d) Scenario 4.

Table 8: Comparative results of CE, GA, PSO, and MC methods
with respect to the index CT (s).

No. Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

1

CE 0.51 0.26 0.13 0.14
GA 6.78 2.59 1.23 1.22
PSO 3.81 2.68 1.31 1.32
MC 24.66 18.16 8.67 8.79

2

CE 0.97 0.62 0.21 0.21
GA 8.06 5.42 1.42 1.41
PSO 7.65 5.49 1.79 1.8
MC 50 46.97 11 11.03

3

CE 1.43 1.02 0.53 0.54
GA 10.8 5.94 2.88 2.93
PSO 9.52 7.46 3.83 3.95
MC 59.57 51.65 21.77 22.46

4

CE 2.73 1.76 0.78 0.75
GA 15.23 11.87 3.47 3.46
PSO 19.95 15.84 5.02 5.01
MC 135.52 121.49 28.22 28.2

5

CE 2.85 3.05 1.50 1.52
GA 18.48 13.48 6.03 6.02
PSO 24.56 19.56 8.69 8.7
MC 156.1 159.42 48.71 48.96

6

CE 5.83 4.08 2.04 2
GA 26.78 23.31 7.34 7.26
PSO 34.34 34.72 11.31 11.11
MC 261.23 260.37 62.43 62.31
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CE<GA ≈ PSO<MC, and the computation cost of CE
method is one-order-of-magnitude lower than that of GA
and PSO method; consequently, we could get that the CE
method has great advantage in solving speed over GA, PSO,
and MC methods.

5. Conclusion

In this paper, a novel DWTA model under the resource
requirement condition which is shoot-look-shoot variant is
constructed, where weight parameters are introduced to
balance the weapon costs and combat benefits. Subse-
quently, a hypothetical target is constructed to deal with the
resource requirement condition, a new dynamic weapon
target assignment method based on CE is introduced, and
the detailed derivation process of using CE method to solve
DWTA problem is given. Finally, to evaluate the solution
quality of CE method, the dynamic weapon target assign-
ment task based on CE, GA, PSO, and MC methods is
simulated in several combat scenarios..ree conclusions are
summarized based on the simulation results. Firstly, the

expected combat purpose is achieved and a good supply of
weapon costs are saved by dealing with the DWTA problem
based on CE method under the condition that weapon
inventory is adequate. Secondly, more combat benefits are
acquired by dealing with the DWTA problem based on CE
method under the condition that weapon inventory is in-
adequate. .irdly, the solving speed of CE method is ob-
viously faster than GA, PSO, and MC methods which more
fit the real-time combat scenario. Besides, another strong
point of the DWTA formulation is that adjusting weight
parameters in different scenarios can save weapon costs to
some extent.

For future research, we will focus on the promotion of
CEmethod in its efficiency and time consumption by sample
selection and appropriate parameter settings.

Appendix

Proof: Formulas (25) and (26) are equivalent.
Let xi(t) � j∗i , j∗i ∈ 􏽥J,∀i ∈W, so 􏽑i∈Wp(xi(t) | i, t) �

p(j∗1 | i, t) · · · p(j∗i | i, t) · · · p(j ∗m | i, t).

􏽙

j∈􏽥J

p(j | i, t)
g xi(t),j( ) � p(1 | i, t)

g xi(t),1( ) · · · p j
∗
i

􏼌􏼌􏼌􏼌 i, t􏼐 􏼑
g xi(t),j∗

i( )
· · · p(n + 1 | i, t)

g xi(t),n+1( ). (A.1)

Because of xi(t) � j∗i , we can get g(xi(t), j∗i ) � 1 and
g(xi(t), j) � 0,∀j ∈ 􏽥J and j≠ j∗i .

.en, we can get the following formula:
􏽑

j∈􏽥Jp(j|i, t)g(xi(t),j) � p(j∗i | i, t)g(xi(t),j∗
i

) � p(j∗i | i, t).
Finally, we can get

􏽙
i∈W

􏽙

j∈􏽥J

p(j | i, t)
g xi(t),j( ) � 􏽙

i∈W
p j
∗
i

􏼌􏼌􏼌􏼌 i, t􏼐 􏼑
g xi(t),j∗

i( )

� p j
∗
1

􏼌􏼌􏼌􏼌 1, t􏼐 􏼑 · · · p j
∗
i

􏼌􏼌􏼌􏼌 i, t􏼐 􏼑 · · · p j
∗
m

􏼌􏼌􏼌􏼌 m, t􏼐 􏼑 � 􏽙
i∈W

p xi(t)
􏼌􏼌􏼌􏼌 i􏼐 􏼑.

(A.2)

Consequently, formulas (25) and (26) are equivalent.
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