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'e intention of the present study is to scrutinize the three-dimensional MHDmixed convection flow of Casson nanofluid over an
exponentially stretching sheet using the impacts of Hall and ion slip currents. Moreover, the impacts of thermal radiation and heat
source are considered in this study.'e governing partial differential equations are transformed into a system of joined nonlinear
ordinary differential equations using similarity transformations, and they are solved numerically employing a spectral relaxation
method (SRM). 'e obtained results are contrasted with existing specific cases, and a reasonable harmony is established. 'e
impacts of noteworthy physical parameters on the velocities, thermal and concentration distributions, skin friction coefficients,
local Nusselt number, and local Sherwood number are investigated graphically. It is found that the rise in Casson fluid and
magnetic field parameters reduce the velocity profiles along both x− and y− directions while the reverse tendency is observed with
an increment in Hall, ion slip, and mixed convection parameters. Moreover, the increase in both radiation and heat source
parameters enhances the temperature profile. It is also observed that both the skin friction coefficients reduced with an increase in
Casson fluid, Hall, and ion slip parameters. Furthermore, the local Nusselt number enhances with an augment in radiation
parameter, whereas the opposite trends of local Nusselt and Sherwood numbers are found with an increase in heat
source parameter.

1. Introduction

Nanofluid is a kind of heat transport medium containing
nanoparticles less than 100 nm which are consistently and
steadily dispersed in a base fluid like water, oil, and
ethylene glycol. 'ese dispersed nanoparticles, mostly a
metal or metal oxide, enormously improve the thermal
conductivity of the nanofluid and enhance conduction
and convection coefficients taking into consideration
more heat transport. Reddy et al. [1] utilized finite element
method to portray the impact of magnetohydrodynamic
boundary layer stream and heat transport of nanofluid
over a porous contracting sheet with divider mass suction
and heat source/sink. 'ey found that an increase in
magnetic field and suction parameters leads to a rise in
velocity profile, whereas opposite trends of the

temperature and nanoparticle volume fraction profiles are
observed. Also, Ramya et al. [2] numerically dissected the
boundary layer viscous flow of nanofluids and heat
transport over a nonlinearly extending sheet within the
sight of a magnetic field utilizing Keller box method and
found that the temperature profile and nanoparticle
concentration increment with expanding values of the
magnetic parameter. Zhao et al. [3] have explored the
three-dimensional stream and heat transport of a nano-
fluid in the boundary layer region over a flat sheet ex-
tended constantly in two lateral directions utilizing
homotopy analysis method (HAM), and they reported
that the heat transport conductivity of the nanofluid is
greater than that of the pure fluids. Furthermore, Khan
et al. [4] examined the three-dimensional flow of nano-
fluid over a skin friction exponentially extending sheet
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utilizing Keller box method. 'ey reported the existence
of remarkable Sparrow–Gregg-type hills for temperature
profile in line with some range of parametric values.
Moreover, Hayat et al. [5] computed three-dimensional
boundary layer stream of viscous nanofluid over a bi-
directional linearly extending sheet within the sight of
Cattaneo–Christov two fold diffusion and reported that
temperature and concentration profiles reduced with an
increment in thermal and concentration relaxation
parameters.

Recently, Shah et al. [6] investigated natural convection
flow of hybrid nanofuid (Fe3O4 + MWCNT) with H2O as
base fluid in a porous media via control volume finite
element method (CVFEM). 'ey confirmed that the
Nusselt number is an increasing function of porosity pa-
rameter, whereas opposite trend is noticed for Lorentz
forces. Most recently, Shah et al. [7] scrutinized the effect of
thermal radiation on Darcy–Forchheimer flow of micro-
polar ferrofluid with H2O as base fluid and iron oxide
(Fe3O4) as electromagnetite nanoparticles in a porous and
dynamic sheet exposed to both suction and injection. 'ey
found that the velocity profile enhances with the increment
in microrotation and electric field strength parameters for
the stretching sheet, whereas the opposite result is observed
for the shrinking sheet in both suction and injection cases.
Moreover, Shah et al. [8] described the flow and heat
diffusion of blood that carries the micropolar nanofluid of
gold in a porous channel in presence of thermal radiation
and found that the temperature distribution for the
micropolar nanoparticles augments when the suction/in-
jection parameter β is positive, i.e., β > 0 and it reduces
when β< 0 for either moving or stationary walls of porous
channel. Further, Alreshidi et al. [9] have discussed the
time-independent and incompressible flow of MHD
nanofluid past a permeable rotating disc with slip condi-
tions. Besides, they studied the mass and heat diffusion with
viscous dissipation effect and found that the fluid velocities
diminish with the intensification in velocity slip, porosity,
and magnetic parameters.

A mixed convection flow is the method of heat
transport happened due to the consolidated impacts of
free and forced convection flows. As of late, investigation
of mixed convection boundary layer flow past a plate has
increased striking consideration as it expects a vital part in
numerous industrial and technological applications in
nature, for example, streams in the sea and in the am-
biance, sun oriented recipients exposed to wind currents,
atomic reactors cooled during emergency shutdown,
electronic devices cooled by fans, heat exchangers put in a
low-velocity condition, etc. Izadi et al. [10] numerically
contemplated the mixed convection heat transport and
entropy generation of a nanofluid containing carbon
nanotube flowing in a three-dimensional rectangular
channel exposed to contradicted buoyant forces utilizing
finite volume technique and found that with an expansion
in the contradicted buoyancy parameter the nanofluid
velocity close to the channel divider definitely lessens and,
in this way, causes a decrease in the Nusselt number. Also,
numerical simulation of mixed convection heat transport

in a lid driven triangular hole filled with power law
nanofluid and with an opening was performed under the
impact of a slanted magnetic field by Selimefendigil and
Chamkha [11]. 'ey found that average heat transport
reduces with Hartmann number, and in the company of
magnetic field heat transfer rate is superior for dilatant
fluid, while without the magnetic field a pseudoplastic
fluid provides the maximum value of average heat
transport. Most recently, numerous scholars concentrated
on the examination of mixed convection flow of fluids by
taking different angles and geometries [12–14].

Non-Newtonian fluids has obtained significant at-
tention because of its wide range of applications in dif-
ferent industries, for example, structure of strong lattice
heat, atomic waste transfer, synthetic synergist reactors,
geothermal energy creation, ground water hydrology,
transpiration cooling, oil supplies, and so forth. 'ese
fluids are progressively confounded when contrasted with
Newtonian fluids because of nonlinear connection among
stress and strain rate. Numerous models have been pro-
posed for the investigation of non-Newtonian liquids,
however, yet not a solitary model is built up that displays
all properties of non-Newtonian fluids. Among various
non-Newtonian fluids, Casson fluid is the most famous
fluid which has many applications in nourishment han-
dling, metallurgy, drilling activities, and bio-engineering
tasks. Casson fluid is a shear thinning fluid which is ac-
cepted to have a limitless viscosity at zero rate of shear, a
yield stress underneath which no flow happens and a zero
viscosity at a boundless rate of shear. Some common
examples of Casson fluid are honey, tomato sauce, jelly,
soup, concentrated fruit juices, blood, and so on. Casson
fluid model is a non-Newtonian fluid with yield stress
which is extensively used for modeling blood flow in
narrow arteries. Furthermore, Casson fluid possesses yield
stress and has great importance in polymer processing
industries and biomechanics. Hayat et al. [15] considered
the mixed convection stream of Casson nanofluid over an
extending surface in nearness of thermal radiation, heat
source/sink, and first order chemical reaction. 'ey re-
ported that thermal boundary layer thickness is an in-
creasing function of thermal radiation and internal heat
generation. Moreover, Concentration distribution and
associated boundary layer thickness increase with the
increment in generative chemical reaction while reverse
tendency is observed for destructive chemical reaction.
Also, Kamran et al. [16] numerically examined Casson
nanofluid past flat extending surface with magnetic im-
pact and Joule heating considering slip and thermal
convective boundary conditions utilizing Keller box
method and they established that the effect of expanding
Hartmann number resulted in the decline of both Sher-
wood and Nusselt number. Afify [17] numerically
researched the effects of multiple slips with viscous dis-
sipation on the boundary layer stream and heat transfer of
a Casson nanofluid over an extending surface utilizing a
shooting strategy with fourth-order Runge–Kutta inte-
gration scheme and they found inverse impact with
generative chemical reaction and concentration slip
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parameter. Recently, boundary layer flow of Casson
nanofluids stream over various geometries was considered
by numerous authors in references [18–24].

'e investigation of MHD flows, the Hall current and
ion slip relations in Ohms law have been disregarded in
order to effortlessly lead scientific examination of the flow.
Nevertheless, the result of the Hall current and ion slip is
significant within the sight of a high magnetic field. 'us, in
various characteristic conditions, it is fundamental to in-
volve the impact of Hall current and ion slip terms of the
magnetohydrodynamics articulations. Attributable to these
realities, numerous investigations have been accounted for
MHD streams within the sight of Hall and ion slip currents.
Accordingly, Nawaz et al. [25] have investigated the Hall and
ion slip impacts on three-dimensional combined free and
forced convection flow of a Maxwell liquid over an
extending vertical surface and they reported that the Hall
parameter has similar impacts on both tangential and lateral
velocities whereas the ion slip parameter has opposite im-
pacts on both velocities. In addition, Nawaz and Zubair [26]
studied the Hall and ion slip effects on three-dimensional
flow equations of nano-plasma fluid in the company of
homogeneous applied magnetic field and found that the
inclusion of copper (Cu) and silver (Ag) nanoparticles
greatly influences the velocity components and temperature
of the nano-plasma. Some more investigations related to
Hall and ion slip currents can be found in references
[27–29].

'ermal radiation assumes a significant role in
manufacturing industries for the design of atomic power
plants and a few designing applications. Because of its
essential applications various scientists have given their
consideration to thermal radiation impact. Hayat et al.
[30] scrutinized the impact of thermal radiation on three-
dimensional mixed convection stream of viscoelastic
fluid and reported that mixed convection parameter has
opposite effect on velocity and temperature boundary
layers. Makanda et al. [31] investigated the impacts of
radiation on MHD natural convection flow of Casson
fluid from a horizontal circular cylinder with partial slip
in non-Darcy permeable medium and they established
that both velocity and temperature profiles are increasing
functions of the radiation parameter. Ullah et al. [32]
numerically examined the results of chemical reaction on
hydromagnetic free convection flow of Casson nanofluid
induced as a result of nonlinearly extending sheet im-
mersed in a permeable medium under the impact of
convective boundary condition and thermal radiation.
'ey found that Casson fluids are superior to manage the
temperature and nanoparticle concentration as con-
trasted to Newtonian fluid for nonlinearly extending
sheet. 'e inclusive references and in detail under-
standing on thermal radiation can be read in recent ar-
ticles [33–37].

'e aim of the present study is to investigate the Hall and
ion slip impacts on the flow of MHD mixed convection flow

of Casson nanofluid in presence of thermal radiation and
heat source. Up to the authors’ knowledge, there is no work
is reported like the investigation of three-dimensional mixed
convection flow of Casson nanofluid over an exponentially
stretching sheet under the effect of Hall and ion slip currents.
Along these lines, inspiration of the present examination is
to direct the Hall and ion slip effects for mixed convection
flow of Casson nanofluid over an exponentially stretching
sheet employing spectral relaxation method. In particular,
the study of the effects of mixed convection, Hall, ion slip,
thermal radiation, and heat source parameters makes this
work a novel one.

2. Mathematical Formulation

Consider the steady three-dimensional incompressible
mixed convection flow of Casson nanofluid over an expo-
nentially extending sheet in two lateral directions. 'e sheet
is situated at z � 0 and the flow is restricted to z≥ 0. 'e
fluid is electrically conducted by a consistent applied
magnetic field B0 in the z−direction orthogonal to the
xy−plane. 'e induced magnetic field is ignored under the
supposition of small magnetic Reynolds number. Suppose
the velocities of the sheet along x−and y−directions be
Uw(x, y) � U0e

(((x+y)/L)) and Vw(x, y) � V0e
(((x+y)/L)), re-

spectively, where U0 and V0 are constants. 'e sheet is kept
up at temperature Tw(x, y) � T∞ + T0e

(n(x+y)/2L) and the
concentration Cw(x, y) � C∞ + C0e

(n(x+y)/2L) where T0 and
C0 are constants, and T∞ and C∞ are the ambient values of
temperature and concentration, respectively, as shown in
Figure 1.

'e rheological equation of state for an isotropic and
incompressible flow of Casson nanofluid can be composed
as [23, 36, 38]

τij �

2 μB +
Py
���
2π

√ eij, π > πc,

2 μB +
Py
���
2πc

 eij, π < πc,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where π � eijeij and eij is the (i, j)th component of the
deformation rate, π is the product of the component of
deformation rate with itself, πc is a critical value of this
product based on the non-Newtonianmodel, μB is the plastic
dynamic viscosity of the Casson fluid, and Py is the yield
stress of the fluid.

'e generalized Ohm’s law with Hall and ion slip
consequences is given by [39–41]

J � σ(Ε +(V × B)) −
ωeτe

B0
(J × B) +

ωeτeβi

B2
0

(J × B) × B,

(2)

where J � (Jx, Jy, Jz) is the current density vector,E is the
intensity vector of the electric field,V is the velocity vector,B
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is the magnetic field, ωe is the cyclotron frequency, and τe is
the electrical collision time.

'us, with the above assumptions and under the stan-
dard boundary layer suppositions, the equations governing
the conservations of mass, momentum, energy, and nano-
particles mass are [26, 40–43]

zu

zx
+

zv

zy
+

zw

zz
� 0, (3)
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DT
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z2T

zz2 ,

(7)

where u, v, andw are the velocity components along the
x−, y−, and z− directions, respectively.

'e boundary conditions for the considered flow
problem are

u � Uw,

v � Vw,

w � 0,

T � Tw,

C � Cw,

at z � 0,

u⟶ 0,

v⟶ 0,

T⟶ T∞,

C⟶ C∞,

as z⟶∞,

(8)

where Uw � U0e
(x+y/L), Vw � V0e

(x+y/ L), Tw(x, y) � T∞+

T0e
(n(x+y)/2L), and Cw(x, y) � C∞ + C0e

(n(x+y)/2L).

'e radiative heat flux qr expressed in relation to Ros-
seland approximation is set as

qr �
−4σ∗

3k∗
zT4

zz
, (9)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the
mean absorption coefficient. T4 can be conveyed as linear
function of temperature. By expanding T4 in a Taylor series
about T∞ and disregarding higher terms, we can write

T
4

� 4T
3
∞ − 3T

4
∞. (10)

Substituting equations (9) and (10) into equation (6), we
obtain

B0

z

x

y
Vw = V0e (x + y/L)

Uw = U0e (x + y/L) Tw (x,y) = T∞ + T0e (n(x + y)/2L)
Cw (x,y) = C∞ + C0e (n(x + y)/2L)

Figure 1: Physical model of the flow problem.
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(11)

Use the following dimensionless variables [44, 45]:

u � U0e
(x+y/L)

f′,

v � U0e
(x+y/L)

g′,

w � −

����
]U0

2L



e
(x+y/2L)

f + ηf′ + g + ηg′( ,

T � T∞ + T0e
(n(x+y)/2L)

,

C � C∞ + C0e
(n(x+y)/2L)

,

η �

���
U0

2]L



e
(x+y/2L)

z.

(12)

Equation (3) is identically satisfied and Equations
(4)−(8) and (11) take the following forms:

1 +
1
β

 f″′ − 2 f′ + g′( f′ +(f + g)f″ + λ(θ + Nrϕ)

+
M

α2e + β2e 
βeg′ − αef′(  � 0,

(13)

1 +
1
β

 g″′ − 2 f′ + g′( g′ +(f + g)g″ −
M

α2e + β2e 

· βef′ + αeg′(  � 0,

(14)

1
Pr

1 +
4
3

R θ″ +(f + g)θ′ − n f′ + g′( θ + Nbθ′ϕ′

+ Ntθ′2 + Qθ � 0,

(15)

ϕ″ − Sc.n f′ + g′( ϕ + Sc(f + g)ϕ′ +
Nt

Nb
θ″ � 0, (16)

f(0) � 0,

f′(0) � 1,

g(0) � 0,

g′(0) � c,

θ(0) � 1,

ϕ(0) � 1,

for η � 0,

f′ ⟶ 0,

g′ ⟶ 0,

θ⟶ 0,

ϕ⟶ 0,

as η⟶∞,

(17)

where M � 2LσB2
0/ρUw, αe � 1 + βeβi, Pr � υ/α, R � (4σ∗

T3
∞/κ
∗κ), Nb � τDB(Cw − C∞)/υ.

'e skin friction coefficients Cfx and Cfy, the local
Nusselt number Nux, and Sherwood number Shx are de-
fined as follows:

Cfx �
2τwx

ρU2
w

,

Cfy �
2τwy

ρV2
w

,

Nux �
xqw

k TW − T∞( 
,

Shx �
xjm

DB CW − C∞( 
,

(18)

where τwx and τwy are the wall shear stress along the x− and
y− directions, respectively, qw is the wall heat flux and jw is
the wall mass flux. 'ese are as under:

τwx �μ 1 +
1
β
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1
β

 
zv
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z�0

,

qw � −k 1 +
4
3

R 
zT
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z�0

,

jw � −DB

zC

zz
 


z�0

.

(19)

From equations (12) and (18) and (19), we obtain
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Cfx

���
Rex

2



� 1 +
1
β

 f″(0),

Cfy

����
Rey

2



� 1 +
1
β

 g″(0),

Nux���
Rex

 � − 1 +
4
3

R θ′(0),

Shx���
Rex

 � −ϕ′(0),

(20)

where Rex � UwL/] and Rey � VwL/].

3. Method of Solution

Equations (13)–(16) depending on the boundary conditions (17)
are solved employing the spectral relaxationmethod [42, 45–50].
'is method is chosen as it has been exposed to be accurate and
in general easier to employ compared to other ordinary nu-
merical methods, for instance finite difference method. 'e
spectral relaxation algorithm utilizes the notion of Gauss–Seidel
method to decouple the system of governing Equations
(13)–(16). 'e method is developed by evaluating the linear
terms at the present iteration level r + 1 and nonlinear terms at
the preceding iteration level r. 'e Chebyshev pseudospectral
strategy is utilized to solve the decoupled equations. In this
method, we present a differentiation matrix D which is roughly
the derivative of the unknown variables, for instance, f(η) at
collocation points as the matrix vector product is

df

dη
� 

N

k�0
Djkf ζk(  � Df , j � 0, 1, 2, . . . , N, (21)

where N + 1 is the number of collocation points (or grid
points), D � 2D/η∞, and f � f(ζ0) f(ζ1) . . . f(ζN) 

T

is the vector function at the collocation points. η∞ is a finite
length which is sufficiently large so that we can easily include
the condition at infinity in this point. A variable ζ is used to
map the truncated interval [0, η∞] to the interval [−1, 1] on
which the spectral method can be executed.

'e algorithm for the SRMmay be summarized as follows:

(1) Introduce the transformation f′(η) � p(η) and
convey the original equation in terms ofp(η) to reduce
the order of the momentum equation (13) for f(η).

(2) Assuming that f(η) is identified from a prior iteration
(denoted by fr), make an iteration scheme for p(η) by
assuming that only linear terms in p(η) are to be
calculated at the recent iteration level (denoted by pr+1),
and all other linear and nonlinear terms are understood
to be known from the prior iteration. Besides, nonlinear
terms in p are calculated at the prior iteration.

(3) Introduce the transformation g′(η) � h(η) and con-
vey the original equation in terms of h(η) to reduce the
order of the momentum equation (14) for g(η).

(4) Assuming that g(η) is identified from a prior iteration
(denoted by gr), make an iteration scheme for h(η) by
assuming that only linear terms in h(η) are to be

calculated at the recent iteration level (denoted by hr+1)
and all other linear and nonlinear terms are understood
to be known from the prior iteration. Besides, non-
linear terms in h are calculated at the prior iteration.

(5) 'e iteration schemes for the remaining governing
dependent variables are developed correspondingly
but at the present using the updated solutions of the
variables determined in the preceding equation.

(6) Chose suitable initial guesses which satisfy the given
boundary conditions.

'us, to employ the SRM, we begin by reducing the
order of the momentum, equations (13) and (14), from third
to second order introducing the transformation
f′ � p andg′ � h so that f″ � p′, f″′ � p″,
g″ � h′, andg″′ � h″. 'us, equations (13)–(16) become

f′ � p, (22)

1 +
1
β

 p″ +(f + g)p′ − 2h +
Mαe

α2e + β2e 
⎛⎝ ⎞⎠p

� 2p
2

− λ(θ + Nrϕ) −
Mβe

α2e + β2e 
h,

(23)

g′ � h, (24)

1 +
1
β

 h″ +(f + g)h′ − 2p +
Mαe

α2e + β2e 
⎛⎝ ⎞⎠h

� 2h
2

+
Mβe

α2e + β2e 
p,

(25)

1
Pr

1 +
4
3

R θ″ + f + g + Nbϕ′( θ′ − n p + h +
Q

n
 θ � −Ntθ′2,

(26)

ϕ″ + Sc(f + g)ϕ′ − Sc.n(p + h)ϕ � −
Nt

Nb
θ″, (27)

and the boundary conditions are written as

f(0) � 0,

p(0) � 1,

g(0) � 0,

h(0) � c,

θ(0) � 1,

ϕ(0) � 1,

for η � 0,

p⟶ 0,

h⟶ 0,

θ⟶ 0,

ϕ⟶ 0,

as η⟶∞.

(28)
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Implementing the SRM to equations (22)–(27), we get
the subsequent iteration scheme:

1 +
1
β

 pr+1″ + fr + gr( pr+1′ − 2hr +
Mαe

α2e + β2e 
⎛⎝ ⎞⎠pr+1

� 2p
2
r − λ θr + Nrϕr(  −

Mβe

α2e + β2e 
hr,

fr+1′ � pr+1,

1 +
1
β

 hr+1″ + fr+1 + gr( hr+1′ − 2pr+1 +
Mαe

α2e + β2e 
⎛⎝ ⎞⎠hr+1

� 2h
2
r +

Mβe

α2e + β2e 
pr+1 ,

gr+1′ � hr+1,

1
Pr

1 +
4
3

R θr+1″ + fr+1 + gr+1 + Nbϕr
′( θr+1′ − n

· pr+1 + hr+1 + Q/n( θr+1

ϕr+1″ + Sc fr+1 + gr+1( ϕr+1′ − Sc.n pr+1 + hr+1( ϕr+1

� −
Nt

Nb
θr+1″ ,

(29)

and the boundary conditions are written as

fr+1(0) � 0,

pr+1(0) � 1,

gr+1(0) � 0,

hr+1(0) � c,

θr+1(0) � 1,

ϕr+1(0) � 1,

for η � 0,

pr+1⟶ 0,

hr+1⟶ 0,

θr+1⟶ 0,

ϕr+1⟶ 0,

as η⟶∞.

(30)

'e system of the equations along with the boundary
conditions are written in a matrix form as

A1pr+1 � B1,

pr+1 ζN(  � 1,

pr+1 ζ0(  � 0,

(31)

A2fr+1 � B2,

fr+1 ζN(  � 0,
(32)

A3hr+1 � B3,

hr+1 ζN(  � c,

hr+1 ζ0(  � 0,

(33)

A4gr+1 � B4,

gr+1 ζN(  � 0,
(34)

A5θr+1 � B5,

θr+1 ζN(  � 1,

θr+1 ζ0(  � 0,

(35)

A6ϕr+1 � B6,

ϕr+1 ζN(  � 1,

ϕr+1 ζ0(  � 0,

(36)

and the matrices are defined as

A1 � 1 +
1
β

 D2
+ diag fr + gr( D − 2hr +

Mαe

α2e + β2e 
⎛⎝ ⎞⎠I,

B1 � 2p
2
r − λ θr + Nrϕr(  −

Mβe

α2e + β2e 
hr,

A2 � D,

B2 � pr+1,

A3 � 1 +
1
β

 D2
+ diag fr+1 + gr( D − 2pr+1 +

Mαe

α2e + β2e 
⎛⎝ ⎞⎠I,

B3 � 2h
2
r +

Mβe

α2e + β2e 
pr+1,

A4 � D,

B4 � hr+1,

A5 �
1

Pr
1 +

4
3

R D2
+ diag fr+1 + gr+1 + Nbϕr

′( D

− n pr+1 + hr+1 + Q/A( I,

B5 � −Ntθ′2r,

A6 � D2
+ Sc fr+1 + gr+1( D − Sc.n pr+1 + hr+1( I,

B6 � −
Nt

Nb
θr+1″ ,

(37)

where I and diag [·] are the identity and diagonal matrices of
order (N + 1) × (N + 1), respectively, and f , p, g, h, θ, and
ϕ are, respectively, the values of f, p, g, h, θ, and ϕ, when

Mathematical Problems in Engineering 7



evaluated at the collocation (or grid) points. equations
(31)–(36) constitute the SRM scheme. Since they are
decoupled, they may be solved separately. 'is is preceded
by applying boundary conditions as shown follows:

1 0 . . . 0

A1

0 . . . 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

pr+1 ξ0( 

⋮

pr+1 ξN( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

B1

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

A2

0 . . . 0 1
⎛⎝ ⎞⎠

fr+1 ξ0( 

⋮

fr+1 ξN( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
B2

0
⎛⎝ ⎞⎠,

1 0 . . . 0

A3

0 . . . 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

hr+1 ξ0( 

⋮

hr+1 ξN( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

B3

c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

A4

0 . . . 0 1
⎛⎝ ⎞⎠

gr+1 ξ0( 

⋮

gr+1 ξN( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
B4

0
⎛⎝ ⎞⎠,

1 0 . . . 0

A5

0 . . . 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

θr+1 ξ0( 

⋮

θr+1 ξN( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

B5

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

1 0 . . . 0

A6

0 . . . 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕr+1 ξ0( 

⋮

ϕr+1 ξN( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0

B6

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(38)

Selected initial guesses that gratify the given boundary
conditions (17) are

f0(η) � 1 − e
−η

,

p0(η) � e
− η

,

g0(η) � c 1 − e
−η

( ,

h0(η) � ce
−η

,

θ0(η) � ϕ0(η) � e
−η

.

(39)

4. Results and Discussions

Equations (13)–(16) subject to the boundary conditions (17)
are solved numerically employing SRM. 'e numerical
solutions for the given flow problem are obtained for ve-
locities, thermal and concentration distributions, skin fric-
tion coefficients, local Nusselt, and Sherwood numbers for
different values of physical parameters through graphs
shown in Figures 2–18. Unless otherwise stated, the default
numerical values for the parameters are taken to be fixed as
β � λ � Nb � Nt � c � 0.5,M � 3.0,βe � βi � 2.0, Nr � Q �

1.0,Pr � 10,R � n � 2.0, and Sc � 5.0. 'e ranges of pa-
rameters used in Figures 2–18 are 0.4≤ β≤ 1.0,

2.0≤M≤ 6.0,1.0≤ βe ≤ 6.0,1.0≤ βi ≤ 6.0,0.1≤ λ≤ 1.0, 10 ≤P

r≤ 20,1.0≤R≤ 3.0,0.4≤ c≤ 0.8,0.2≤Nb≤ 0.6,0.5≤Nt≤ 1.5,

2.0≤ n≤ 4.0,3.0≤ Sc≤ 6.0,0.0≤Nr≤ 10.0, and 0.0≤Q≤ 1.0.

'e numerical values for the physical parameters are cal-
culated in the chosen interval in an attempt to understand
the flow behavior in a better way and to be sufficient in
providing accurate solution.

For the substantiation of the numerical method used, the
results are compared with the previously obtained results for
various values of parameters, and it indicates an excellent
agreement as depicted in Tables 1 and 2.

Figure 2 shows the impact of Casson fluid parameter (β)

on the velocity distributions f′(η) andg′(η). An expansion
in Casson fluid parameter (β) leads to a decrease in the yield
stress and momentum boundary layer thickness. Owing to
this fact, velocity distributions reduce with an increment in
the values of β. Physically, the fluid turns out to be more
viscous with mounting Casson fluid parameter (β). Figure 3
outlines the impact of magnetic parameter M on the velocity
profiles f′(η) andg′(η). As the value of M expands, velocity
diminishes because of Lorentz forces which slow down the
velocity of the fluid. Along these lines both boundary layer
thickness and the magnitude of the velocity profiles
f′(η) andg′(η) diminish. 'e impact of Hall parameter
(βe) on velocity profiles f′(η) andg′(η) is shown in Fig-
ure 4. It is noticed that velocity profiles f′(η) andg′(η) have
expanding tendency when Hall parameter (βe) is expanded.
Moreover, the momentum boundary layer thickness is ex-
panded by expanding the Hall parameter (βe). 'is is be-
cause of the fact that magnetic field and Lorentz force decline
when Hall parameter is expanded.

'e impact of ion slip parameter (βi) on the velocity
profiles f′(η) and g′(η) is shown in Figure 5. It is clear from
Figure 5 that both boundary layer thickness and the mag-
nitude of the velocity profiles f′(η) andg′(η) increment
when ion slip parameter is expanded in light of the fact that
magnetic field impacts because ion slip is inverse to applied
magnetic field. 'is opposes the impacts of Lorentz force
because of the applied magnetic field. It implies Lorentz force
diminishes when ion slip parameter is expanded and therefore
f′(η) andg′(η) increment when ion slip parameter (βi) is
expanded. Figure 6 exhibits the impact of the mixed

β = 0.4, 0.6, 1

Solid line: f′(η)
Dashed line: g′(η)

63 80 521 4 7
η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′(
η)

, g
′
(η

)

Figure 2: Influence of β on f′(η) andg′(η).
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M = 2, 4, 6

Solid line: f′(η)
Dashed line: g′(η)

1 2 3 4 5 6 70
η

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f′(
η)

, g
′
(η

)

Figure 3: Influence of M on f′(η) andg′(η).
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′
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)
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η

βe = 1, 2, 6

Figure 4: Influence of βe on f′(η) andg′(η).
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Solid line: f′(η)
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)
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Figure 5: Influence of βi on f′(η) andg′(η).
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Figure 6: Influence of λ on f′(η).
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Figure 7: Influence of R on θ(η).

c = 0.4, 0.6, 0.8
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Figure 8: Influence of c on f′(η) andg′(η).
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convection parameter (λ) on the velocity profile f′(η). It is
seen that the velocity distribution increments as the value of λ
rises because of buoyancy impact. Figure 7 uncovers the

alterations that are seen in nanofluid temperature profiles
because of increment in the values of radiation parameter
(R). It merits seeing that the nanofluid temperature in-
crements as thermal radiation increment because of the
way that the conduction effect of the nanofluid improves
within the sight of thermal radiation. Henceforth, higher
values of radiation parameter imply higher surface heat
flux and thus upgrade the temperature inside the
boundary layer area. Figure 8 portrays the impact of
velocity ratio parameter (c) on f′(η) andg′(η). An ex-
pansion in ratio parameter (c) diminishes the boundary
layer thickness for f′(η) and increments g′(η). Physically,
when c enhances, the stretching rate augments in the
y−direction. Subsequently, the velocity amplifies in the
y−direction. Here, c � 0 denotes two-dimensional cases.
In the event that c � 1, the characteristics of the stream
along both directions are alike.

0.1 0.15 0.2
0.5

0.55

0.6

0.65

0.7

Nt = 0.5, 1, 1.5

Solid line: ϕ (η)
Dashed line: θ (η)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

θ 
(η

), 
ϕ 

(η
)

0.5 1 1.5 2 2.5 3.53 40
η

Figure 10: Influence of Nt on θ(η) and ϕ(η).
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Dashed line: θ (η)
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0.3

0.4
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0.7
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1
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), 
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Figure 11: Influence of n on θ(η) and ϕ(η).
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Figure 12: Influence of Q on θ(η).
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Figure 13: Influence of βe, βi , and λ on the skin friction coefficient
–(1 + (1/β))f″(0).
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Figure 9: Influence of Nb on θ(η) and ϕ(η).
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'e impact of Brownian motion parameter (Nb) on
temperature θ(η) and concentration ϕ(η) is exhibited in
Figure 9. Brownian motion is the arbitrary movement of
small colloidal particles suspended in a fluid, brought about
by the collision of the fluid atoms with the particles. An
improvement in the Brownian motion yields noteworthy
movement of the nanoparticles that offers an increment in
the fluid kinetic energy, and as a result the fluid temperature
increases. In addition, thermal boundary layer thickens
when Nb is expanded. In contrast, it is seen that the con-
centration ϕ(η) and related boundary layer thickness lessens
with an improvement in Nb. Figure 10 explains the impact
of thermophoresis parameter (Nt) on the temperature θ(η)

and nanoparticle volume fraction ϕ(η). Escalating values of
Nt shows stronger thermophoretic force because of tem-
perature gradient which moves the nanoparticles from the

n = 2, 3, 4
2

3

4

5

6

7

8

–θ
′
(0

)

2.61.81.6 2.8 32.2 2.41.41.2 21
R

Figure 15: Influence of n andR on the local Nusselt number
–θ′(0).
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6.5
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′
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)
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Figure 16: Influence of Nb, Nt, andQ on the local Nusselt number
–θ′(0).
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Figure 17:'e influence of n andR on the local Sherwood number,
–ϕ′(0).
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Figure 18: 'e influence of Nt andQ on the local Sherwood
number, –ϕ′(0).
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Figure 14: Influence of β, βe, and βi on the skin friction coefficient
–(1 + (1/β))g″(0).
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hot sheet to the quiescent fluid accordingly mounting the
temperature and nanoparticle volume fraction boundary
layer.

Figure 11 indicates that an augment in temperature
exponent parameter (n) caused a decrease in both tem-
perature and concentration profiles. Besides, the thermal
and concentration boundary layer thickness lessen with
increment in temperature exponent parameter (n). Fig-
ure 12 explains the impact of heat source parameter (Q) on
the temperature distribution θ(η). Overall, heat generation
parameter in the fluid expands the temperature. Accord-
ingly, an expansion in Q upgrades the temperature and
thermal boundary layer thickness.

Figure 13 demonstrates the skin friction coefficient
–(1 + (1/β))f″(0) for different values of ion slip parameter
(βi)and mixed convection parameter (λ). 'e skin friction
coefficient –(1 + (1/β))f″(0) is a decreasing function of Hall
parameter (βe). Moreover, the increase in βi and λ decreases
the skin friction coefficient –(1 + (1/β))f″(0). Similarly, the
skin friction coefficient –(1 + (1/β))g″(0) is a diminishing
function of Casson fluid parameter (β) and the augment in
βe and βi reduces the skin friction coefficient
–(1 + (1/β))g″(0) as shown in Figure 14. Furthermore,
Figure 15 depicts that the local Nusselt number –θ′(0) is an
escalating function of radiation parameter (R), and the rise
in temperature exponent parameter (n) enhances the local
Nusselt number –θ′(0). On the contrary, Figure 16 shows
that the local Nusselt number –θ′(0) is a declining function
of thermophoresis parameter (Nt), and the increase in
Brownian motion parameter (Nb) and heat source pa-
rameter (Q) decreases the local Nusselt number –θ′(0).
Moreover, Figure 17 represents that the local Sherwood
number –ϕ′(0) is an increasing function of radiation

parameter (R), and the increase in temperature exponent
parameter (n) amplifies the local Sherwood number –ϕ′(0).
In contrast, the local Sherwood number –ϕ′(0) is a de-
creasing function of thermophoresis parameter (Nt), and
the augment in heat source parameter Q boosts the local
Sherwood number –ϕ′(0) as depicted in Figure 18.

5. Conclusions

A numerical study of three-dimensional MHD mixed
convection flow of Casson nanofluid over an exponentially
stretching sheet with Hall and ion slip effects has been in-
vestigated. 'e numerical solutions for the considered flow
problem are obtained employing spectral relaxation method
(SRM). 'e impacts of different significant parameters on
the velocities, temperature, and nanoparticle concentration
distributions have been considered graphically. Moreover,
the numerical results for the skin friction coefficients, local
Nusselt, and Sherwood numbers have been presented
graphically. Accordingly, the major results of the present
study are

(a) 'e velocity profiles along both x− and y−directions
enhance with an increment in the Hall parameter
(βe) and ion slip parameter (βi) while the opposite
inclination is observed with a rise in Casson fluid
parameter (β) and magnetic field parameter (M).

(b) 'e velocity distribution along x−direction boosts
with a rise in mixed convection parameter (λ).

(c) 'e temperature profile enhances with increasing
values of the Brownian motion parameter (Nb),
thermophoresis parameter (Nt), thermal radiation
parameter (R), and heat source parameter (Q), and it

Table 1: Comparison of –f ′(0) and − g′(0) for different values of c when M � λ � 0 and β �∞.

Liu et al. [44] Hayat et al. [51] Present results
c −f″(0) −g″(0) −f″(0) −g″(0) −f″(0) −g″(0)

0.5 1.56988846 0.78494423 1.569889 0.784944 1.5698884578 0.7849442289
1.0 1.81275105 1.81275105 1.812751 1.812751 1.8127510474 1.8127510474

Table 2: Comparison of –θ, (0) in case of ordinary fluids (Nb � Nt � 10− 9) for different values of c,Pr, and n when M � λ � 0 and
β �∞.

c Pr n Liu et al. [44] Khan et al. [4] Rao et al. [45] Present results

0.5

0.7
−2 −0.76378454 −0.76367407 −0.7637932240 −0.7637845438
0 0.52154103 0.52152683 0.5215376637 0.5215410326
5 2.01061361 2.0102735 2.0106070569 2.0106136104

7
−2 −7.27614126 −7.2596204 −7.2763849638 −7.2761413999
0 2.26162085 2.2631841 2.2616092689 2.2616208431
5 7.22330493 7.2229124 7.2232801587 7.2233049205

1

0.7
−2 −0.88194314 −0.88177213 −0.8819517699 −0.8819431406
0 0.60222359 0.6022019 0.6022200405 0.6022235865
5 2.32165661 2.3211331 2.3216491323 2.3216566118

7
−2 −8.40176423 −8.3764364 −8.4020449202 −8.4017643908
0 2.61149481 2.6139021 2.6114815046 2.6114948052
5 8.34075409 8.3401528 8.3407255264 8.3407540806
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declines for increasing values of stretching ratio pa-
rameter (c) and temperature exponent parameter (n).

(d) 'e concentration distribution rises with an incre-
ment in the thermophoresis parameter (Nt) and it
diminishes as the Brownianmotion parameter (Nb),
stretching ratio parameter (c), and temperature
exponent parameter (n) enlarge.

(e) Both the skin friction coefficients reduce as Casson
fluid parameter (β), Hall parameter (βe), and ion
slip parameter (βi) rise.

(f ) Both the local Nusselt and Sherwood numbers are
increasing functions of the thermal radiation pa-
rameter (R) and temperature exponent parameter
(n). Moreover, opposite conditions are noticed for
the local Nusselt and Sherwood numbers as Brow-
nian motion parameter (Nb) and heat source pa-
rameter (Q) increase.

5.1. Recommendations. It is important to emphasize few
limitations about this research work. Such limitations will
help researchers to analyze and provide an extension of the
present work. 'us, the following assumptions and limi-
tations can be considered:

(i) 'e same problem can be calculated under the de-
liberation of different nanoparticles, viscous dissi-
pation, ohmic heating, Newtonian heating, etc.

(ii) To extend present results using convective boundary
condition or/and slip condition.

Nomenclature

x, y, z: Cartesian coordinates
u, v, w: Velocity components
Uw, Vw: Velocities of the stretching sheet
B0: Constant magnetic field
g: Acceleration due to gravity
T: Fluid temperature
Tw: Surface temperature
T∞: Ambient temperature
C: Concentration of fluid
Cw: Surface concentration
C∞: Ambient concentration
M: Magnetic field parameter
Grx: Local grashof number
Rex: Local reynolds number
Nr: Buoyancy ratio
Pr: Prandtl number
DB: Brownian diffusion coefficient
DT: 'ermophoresis diffusion coefficient
Nb: Brownian motion parameter
Nt: 'ermophoresis parameter
Sc: Schmidt number
Cfx: Skin friction coefficient in x−direction
Cfy: Skin friction coefficient in y−direction
Nux: Local nusselt number
Shx: Local sherwood number

c: Velocity ratio parameter
L: Reference length
N: Temperature exponent parameter
R: Radiation parameter
Q0: 'e dimensional heat generation
Q: Heat source parameter
f, g: Dimensionless stream functions

Greek letters
ρ: Density of fluid
υ: Kinematic viscosity of the fluid
β: Casson fluid parameter
λ: Mixed convection parameter
α: 'ermal diffusivity
κ: 'ermal conductivity
σ: Electrical conductivity
βe: Hall parameter
βi: Ion slip parameter
βt: Coefficient of thermal expansion
βc: Coefficient of concentration expansion
η: Dimensionless similarity variable
θ: Dimensionless temperature
ϕ: Dimensionless concentration
(ρC)p: Effective heat capacity of a nanoparticle
(ρC)f: Heat capacity of the fluid τ � (ρC)p/(ρC)f

Subscripts
f: Fluid
p: Nanoparticle
w: Condition at the surface
∞: Ambient condition

Superscripts

′: Differentiation w. r. t. η
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