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Information fusion is an important part of multiple-attribute decision-making, and aggregation operator is an important tool of
decision information fusion. Integration operators in a variety of fuzzy information environments have a slight lack of con-
sideration for the correlation between variables. Archimedean copula provides information fusion patterns that rely on the
intrinsic relevance of information. *is paper extends the Archimedean copula to the aggregation of hesitant fuzzy information.
Firstly, the Archimedean copula is used to generate the operation rules of the hesitant fuzzy elements. Secondly, the hesitant fuzzy
copula Bonferroni mean operator and hesitant fuzzy weighted copula Bonferroni mean operator are propounded, and several
properties are proved in detail. Furthermore, a decision-making method based on the operators is proposed, and the specific
decision steps are given. Finally, an example is presented to illustrate the practical advantages of the method, and the sensitivity
analysis of the decision results with the change of parameters is carried out.

1. Introduction

In the practical problem of multiple-attribute decision-
making (MADM), the decision maker (DM) vacillates be-
tween several values on the evaluation of the alternative. So
traditional fuzzy sets show limitations in describing this
uncertain information. As an important generalisation of
fuzzy set [1], hesitant fuzzy set (HFS) is proposed by Torra
[2, 3]. It allows DM to give multiple possible values flexi-
bility, which is better to solve the indecision of DM and
difficulty of reaching consensus. As a new information
description tool for uncertain decision-making, the theory
and its application in decision-making have attracted the
attention of scholars at home and abroad. Xu and Xia [4, 5]
proposed the mathematical form of the HFS and studied the
hesitant fuzzy (HF) integration operator, similarity measure,
distance of the hesitant fuzzy elements (HFEs), and so on.
*e following researchers further studied the theory of HF
and applied it to the MADM problem [6–11].

*e aggregation operator is the basis of many decision
methods in the MADM problems. *erefore, the study of
aggregation operator is particularly important under the HF
environment. Common aggregation operators include
weighted average (WA) operator, weighted geometric (WG)
operator, power average (PA) operator, power geometric
(PG) operator, Choquet integral operator, Bonferroni mean
(BM) operator, and so on. *e researchers improved these
operators and applied them to the aggregation of HF in-
formation. Xia and Xu [4] presented eight HF aggregation
operators, such as hesitant fuzzy weighted averaging
(HFWA) operator and hesitant fuzzy weighted geometric
(HFWG) operator. Zhang [12] propounded ten operators
like hesitant fuzzy power average (HFPA) operator and
hesitant fuzzy power geometric (HFPG) operator. Wei [13]
defined hesitant fuzzy Choquet ordered averaging
(GHFCOA) operator and hesitant fuzzy Choquet ordered
geometric (HFCOG) operator to solve the MADM problem
with HF information. Zhu [14] developed hesitant fuzzy
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Bonferroni mean (HFBM) operator and weighted hesitant
fuzzy Bonferroni mean (WHFBM) operator, which can deal
with the MADM problem well. He [15] combined the power
average operator with the Bonferroni mean in hesitant fuzzy
environments and developed HFPBM and HFPGBM for
hesitant fuzzy multiple-attribute group decision-making.

Each operator has its own characteristics, which can
solve the corresponding problems well. *ese operators are
basically derived from the t-norms and t-conorms. Most of
the above operators only consider the influence of the lo-
cation of data, but the correlation between attributes is
slightly deficient. Because many decision problems do not
satisfy the independence principle, there is some connection
between attributes. For example, a factory needs to purchase
a kind of equipment according to the four attributes of
product price, technology, after-sales service level, and
supplier reputation. Price may depend upon technology and
supplier reputation. *e after-sales service level may in-
fluence the supplier reputation. On the basis of t-norms and
s-norms, the correlation between variables has gradually
become an important aspect of consideration in MADM.

*e copulas and co-copulas [16–18] are the general-
isations of various t-norms and t-conorms. At first, copulas
and co-copulas were widely used in the fields of finance and
insurance, etc. In recent years, the application of copulas and
co-copulas in decision problems has widely been concerned
by scholars. *is is mainly based on the following points: (1)
Copulas and co-copulas can reveal the dependence among
attributes; (2) Copulas and co-copulas can prevent infor-
mation losing in the midst of aggregation; and (3) Copulas
and co-copulas are flexible because DMs can select different
types of copulas and co-copulas to define the operations
under fuzzy environment, and the results obtained from
these operations are closed. Archimedean copulas (ACs) and
co-copulas [19] have the advantages of symmetry, associ-
ability, and simple operation. On the basis of AC, Tao [20]
studied a new computational model for unbalanced lin-
guistic variables. Chen [21] defined new aggregation oper-
ators in linguistic neutrosophic set based on copulas and
applied them to settle MCDM problems.

So we propose the more general and flexible aggregation
operators on the basis of BM operator and AC to solve
MADM problem. Hesitant fuzzy copula Bonferroni mean
(HFCBM) operator and hesitant fuzzy weight copula
Bonferroni mean (HFWCBM) operator can not only reflect
the interrelation among attributes but also have more
flexible and diversified forms. *ey can solve the MADM
problem well and provide a preference choice for DM. For
the above goals, the structure of this work is arranged as
follows: some notions on HFS, BM, and AC are reviewed
firstly in Section 2. *e HFCBM and HFWCBM are given in
Section 3, and different forms of aggregation operators are
investigated based on different AC functions. In Section 4,
the MADM approach based on the propounded operators is
constructed, case analysis will be carried out, some com-
parisons with existing approaches under the HF environ-
ment, and merits of the proposed MADM approach based
on HFCBM operators are analysed. *e conclusion is ob-
tained in Section 5.

2. Preliminaries

In this section, several basis knowledge such as HFS, BM
operator, HFBM operator, and AC is succinctly retrospected.

2.1. Hesitant Fuzzy Sets

Definition 1 (see [2]). Let S be a finite reference set. A
hesitant fuzzy set G on S is in terms of a function when
applied to S returning a subset of [0, 1] denoted by

G � 〈s, g(h)〉|∀s ∈ S􏼈 􏼉, (1)

where g(h) is a collection of numbers hi from [0, 1],
indicating the possible membership degrees of ∀s ∈ S to G.
We call g(h) a hesitant fuzzy element (HFE) and G the set of
all HFEs.

To compare the HFEs, the comparison laws are defined
as follows.

Definition 2 (see [4]). For a HFE g(h) � ∪ ègi�1 hi􏼈 􏼉, π(g) �

1/èg􏽐
èg
i�1hi is called the score function of g(h), where èg is

the number of possible elements in g(h).
For two HFEs g1(h) and g2(h),

(i) if π(g1)> π(g2), then g1≻g2

(ii) if π(g1) � π(g2), then g1 � g2

Definition 3 (see [4]). Let g1(h) � ∪ èg1m1�1 h1m1
􏽮 􏽯,

g2(h) � ∪ èg2m2�1 h2m2
􏽮 􏽯, and g(h) � ∪ ègi�1 hi􏼈 􏼉 be three HFEs,

ρ≥ 0, and the novel operational rules of HFEs are given as
follows:

g1 ⊕ g2 � ∪
h1m1∈g1h2m2∈g2

h1m1
+ h2m2

− h1m1
h2m2

􏽮 􏽯,

g1 ⊗g2 � ∪
h1m1∈g1h2m2∈g2

h1m1
h2m2

􏽮 􏽯,

ρg � ∪
hi∈g

1 − 1 − hi( 􏼁
ρ
|i � 1, 2, . . . , èg􏼈 􏼉,

g
ρ

� ∪
hi∈g

h
ρ
i |i � 1, 2, . . . , èg􏼈 􏼉,

(2)

where m1 � 1, 2, . . . , èg1 andm2 � 1, 2, . . . , èg2.

2.2. BM Operator and HFBM Operator

Definition 4 (see [22]). Assume ak(k � 1, 2, . . . , n) is a
family of positive real number and μ, ]≥ 0, then the ag-
gregated mapping

BMμ,]
a1, a2, . . . , an( 􏼁 �

1
n(n − 1)

􏽘

n

k,j�1
k≠j

a
μ
ka

]
j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/μ+]

. (3)

is named BM operator.
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Definition 5 (see [14]). Let
gi(h) � ∪ ègimi�1 himi

|it � n1, 2q, h . . ., xn􏽮 􏽯 and μ, ]≥ 0. *en
the hesitant fuzzy Bonferroni mean (HFBM) operator is
expressed as

HFBMμ,]
g1, g2, . . . , gn( 􏼁 �

1
n(n − 1)

􏽘

n

k,j�1
k≠j

g
μ
k ⊗g

]
j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/μ+]

� ∪
himi
∈gihjmj
∈gj

1 − 􏽙
n

i,j�1i≠j
1 − h

μ
imi

h
]
jmj

􏼒 􏼓
1/n(n− 1)

⎛⎝ ⎞⎠

1/μ+]⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (4)

Definition 6 (see [14]). Let gi(h) � ∪ ègimi�1 himi
|i � 1, 2, . . . ,􏽮

n} and μ, ]≥ 0. *en the hesitant fuzzy weight Bonferroni
mean (HFWBM) operator is expressed as

HFWBMμ,]
g1, g2, . . . , gn( 􏼁 �

1
n(n − 1)

􏽘

n

k,j�1k≠ j

nωkgk( 􏼁
μ ⊗ nωjgj􏼐 􏼑

]⎛⎝ ⎞⎠

1/μ+]

� ∪
himi
∈gihjmj
∈gj

1 − 􏽙
n

i,j�1i≠ j

1 − 1 − 1 − himi
􏼐 􏼑

nωi
􏼐 􏼑

μ
1 − 1 − hjmj

􏼒 􏼓
nωj

􏼒 􏼓
]

􏼒 􏼓
1/n(n− 1)

⎛⎝ ⎞⎠

1/μ+]⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(5)

2.3. Archimedean Copula

Definition 7 (see [16]). A two-dimensional mapping
5: [0, 1] × [0, 1]⟶ [0, 1] is called a copula, if it contents
the following properties:

(1) ô(s, 1) � ô(1, s) � s;
(2) ô(s, 0) � ô(0, u) � 0;
(3) ô(s1, t1) − ô(s1, t2) − ô(s2, t1) + ô(s2, t2)≥ 0.

Definition 8 (see [17]). A copula ô: [0, 1] × [0, 1]⟶ [0, 1]

is said to be the Archimedean copula if there exists a
continuous and strictly decreasing function ς from [0, 1] to
[0,∞) with ς(1) � 0, and function τ from [0,∞) to [0, 1] is
defined by

τ(r) �
ς− 1

(r), r ∈ [0, ς(0)];

0, r ∈ [ς(0), +∞).

⎧⎨

⎩ (6)

such that for any (t1, t2) ∈ [0, 1] × [0, 1],

5 t1, t2( 􏼁 � τ ς t1( 􏼁 + ς t2( 􏼁( 􏼁. (7)

*e AC is propounded based on the following state-
ments: (1) If ô is strictly increasing on [0, 1] × [0, 1], then we
can obtain ς(0) � +∞; (2) If τ accords ς− 1 on [0, +∞). *en
equation (7) is transformed as

5 t1, t2( 􏼁 � ς− 1 ς t1( 􏼁 + ς t2( 􏼁( 􏼁, (8)

where the functions ς and ô are named strict generator and
Archimedean copulas, respectively.

Definition 9 (see [18]). Suppose 5: [0, 1] × [0, 1]⟶ [0, 1]

be a copula, then co-copula is expressed as

5
∗

t1, t2( 􏼁 � 1 − 5 1 − t1, 1 − t2( 􏼁. (9)

3. New Operators Based on AC and BM

3.1. Generalised Operations for HFEs. To deal with HF in-
formation, we propose a generalised version of operational
rules based on AC.

Definition 10 (see [23]). Let g1(h) � ∪ èg1m1�1 h1m1
􏽮 􏽯, g2(h) �

∪ èg2m2�1 h2m2
􏽮 􏽯, and g(h) � ∪ ègi�1 hi􏼈 􏼉 be three HFEs, ρ≥ 0, and

the novel operational rules of HFEs are given as follows:

g1 ⊕ g2 � ∪
h1m1∈g1h2m2∈g2

1 − ς− 1 ς 1 − h1m1
􏼐 􏼑 + ς 1 − h2m2

􏼐 􏼑􏼐 􏼑􏽮 􏽯,

g1 ⊗g2 � ∪
h1m1∈g1h2m2∈g2

ς− 1 ς h1m1
􏼐 􏼑 + ς h2m2

􏼐 􏼑􏼐 􏼑􏽮 􏽯,

ρg � ∪
hi∈g

1 − ς− 1 ρς 1 − hi( 􏼁( 􏼁|i � 1, 2, . . . , èg􏽮 􏽯,

g
ρ

� ∪
hi∈g

ς− 1 ρς hi( 􏼁( 􏼁|i � 1, 2, . . . , èg􏽮 􏽯,

(10)

where m1 � 1, 2, . . . , èg1 andm2 � 1, 2, . . . , èg2.

3.2. HFCBM Operator. Based on Definitions 5 and 10, the
HFCBM operator can be proposed.

Theorem 1. Let gi(h) � ∪ ègimi�1 himi
|it � n1, 2q, h . . ., xn􏽮 􏽯 ,

and μ, ]≥ 0. >en the hesitant fuzzy copula Bonferroni mean
(HFCBM) operator is expressed as
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HFCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gi

hjmj
∈gj

ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(11)

Proof. Since

g
μ
i � ∪

himi
∈gi

ς− 1 μς himi
􏼐 􏼑􏼐 􏼑|i � 1, 2, . . . , ègi􏽮 􏽯,

g
]
j � ∪

hjmj
∈gj

ς− 1 ]ς hjmj
􏼒 􏼓􏼒 􏼓|j � 1, 2, . . . , ègj􏼚 􏼛.

(12)

□

*en

g
μ
i ⊗g

]
j � ∪

himi
∈gi

hjmj
∈gj

ς− 1 ς ς− 1 μς himi
􏼐 􏼑􏼐 􏼑􏼐 􏼑 + ς ς− 1 ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓􏼒 􏼓|mi � 1, 2, . . . , ègi,mj � 1, 2, . . . , ègj􏼚 􏼛,

􏽘

n

i,j�1

i≠j

g
μ
i ⊗g

]
j � ∪

himi
∈gi

hjmj
∈gj

1 − ς− 1
􏽘

n

i,j�1

i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(13)

Furthermore

1
n(n − 1)

􏽘

n

i,j�1i≠ j

g
μ
i ⊗g

]
j � ∪

himi
∈gihjmj
∈gj

1 − ς− 1 1
n(n − 1)

ς ς− 1
􏽘

n

i,j�1i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (14)

Accordingly

1
n(n − 1)

􏽘
n

i,j�1i≠ j

g
μ
i ⊗g

]
j

⎛⎝ ⎞⎠

1/μ+]

� ∪
himi
∈gihjmj
∈gj

ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘
n

i,j�1i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(15)

Accordingly, we can attain the establishment of*eorem
1.

In what follows, several desired characteristics of
HFCBM operator are proved.

Theorem 2. Let gi(h) � ∪ ègimi�1 himi
|it � n1, 2q, h . . ., xn􏽮 􏽯,

and μ, ]≥ 0, then

(1) (Idempotency) If g1 � g2 � · · · gn � h{ }, then
HFCBMμ,](g1, g2, . . . , gn) � h{ }

(2) (Monotonicity) Let g∗i (h) � ∪ èg
∗
i

mi�1 h∗imi
|i � 1, 2, . . . ,􏽮

n}, if himi
≤ h∗imi

, so

HFCBMμ,]
g1, g2, . . . , gn( 􏼁≤HFCBMμ,]

g
∗
1 , g
∗
2 , . . . , g

∗
n( 􏼁.

(16)

(3) (Boudedness) If h− � mini�1,2,...,n himi
􏽮 􏽯 ,h+ �

maxi�1,2,...,n himi
􏽮 􏽯,
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h
− ≤HFCBMμ,]

g1, g2, . . . , gn( 􏼁≤ h
+
. (17)

Proof. (1) If g1 � g2 � · · · gn � h{ },

ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1

i≠ j

ς 1 − ς− 1
((μ + ])ς(h))􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

n(n − 1)ς 1 − ς− 1
((μ + ])ς(h))􏼐 􏼑􏼐 􏼑􏼠 􏼡􏼠 􏼡􏼠 􏼡

� ς− 1 1
μ + ]

ς 1 − ς− 1 ς 1 − ς− 1
((μ + ])ς(h))􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼠 􏼡

� ς− 1 1
μ + ]

(μ + ])ς(α)􏼠 􏼡 � ς− 1ς(h) � h.

(18)

*en

HFCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gi

hjmj
∈gj

ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

k,j�1
k≠ j

ς 1 − ς− 1
((μ + ])ς(h))􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� h{ }. (19)

Accordingly, the idempotency of the HFCBM op-
erator is proved.

(2) Since himi
≤ h∗imi

, hjmj
≤ h∗ijmj

, ς(t) and ς− 1(t) are
decreasing functions and 1 − ς(t) and 1 − ς− 1(t) are
increasing functions. *en, we have

μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓≥ μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓,

1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓≥ 1 − ς− 1 μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓􏼒 􏼓.

(20)
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*en,

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓≤ 􏽘
n

i,j�1
i≠ j

ς 1 − ς− 1 μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓,

1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓≤
1

n(n − 1)
􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓.

(21)

Furthermore,

1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤ 1 − ς− 1 1

n(n − 1)
􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ ς 1 − ς− 1 1

n(n − 1)
􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(22)

Moreover,

1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥
1

μ + ]
ς 1 − ς− 1 1

n(n − 1)
􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(23)

Hence

ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς himi
􏼐 􏼑 + ]ς hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1 μς h
∗
imi

􏼐 􏼑 + ]ς h
∗
jmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(24)
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Accordingly, the monotonicity of the HFCBM op-
erator is proved.

(3) Let g− � h−{ } and g+ � h+{ }; according to the
monotonicity, we can acquire

HFCBMμ,]
g

−
, g

−
, . . . , g

−
( 􏼁≤HFCBMμ,]

g1, g2, . . . , gn( 􏼁

≤HFCBMμ,]
g

+
, g

+
, . . . , g

+
( 􏼁.

(25)

According to idempotency, we can acquire

HFCBMμ,]
g

−
, g

−
, . . . , g

−
( 􏼁 � h

−
{ };

HFCBMμ,]
g

+
, g

+
, . . . , g

+
( 􏼁 � h

+
􏼈 􏼉.

(26)

Accordingly, we can acquire
h− ≤HFCBMμ,](g1, g2, . . . , gn)≤ h+. □

3.3. HFWCBM Operator. To overcome the disadvantage of
the HFCBM operator not considering attribute weight, the
HFWCBM operator is given as follows.

Theorem 3. Let gi(h) � ∪ ègimi�1 himi
|it � n1, 2q, h . . ., xn􏽮 􏽯,

and μ, ]≥ 0. >en the hesitant fuzzy weight copula Bonferroni
mean (HFWCBM) operator is expressed as

HFWCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gi

hjmj
∈gj

ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

i,j�1
i≠ j

ς 1 − ς− 1
(ζ)􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(27)

where

ζ �μς 1 − ς− 1
nωkς 1 − hkmk

􏼐 􏼑􏼐 􏼑􏼐 􏼑

+ ]ς 1 − ς− 1
nωjς 1 − hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓.
(28)

Proof. *e proof of *eorem 3 is similar to *eorem 1, we
can utilize the proof of (nωkgk)μ ⊗ (nωjgj)

] to replace
(ωkgk)μ ⊗ (ωjgj)

] in equation (1).
*en

nωkgk � 1 − ς− 1
nωkς 1 − hkmk

􏼐 􏼑􏼐 􏼑,

nωjgj � 1 − ς− 1
nωjς 1 − hjmj

􏼒 􏼓􏼒 􏼓,

nωkgk( 􏼁
μ

� ς− 1 μς 1 − ς− 1
nωkς 1 − hkmk

􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑,

nωjgj􏼐 􏼑
]

� ς− 1 ]ς 1 − ς− 1
nωjς 1 − hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓􏼒 􏼓.

(29)

*en

nωkgk( 􏼁
μ ⊗ nωjgj􏼐 􏼑

]
� ς− 1 μς 1 − ς− 1

nωkς 1 − hkmk
􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐

+ ]ς 1 − ς− 1
nωjς 1 − hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓􏼓.

(30)

Hence

1
n(n − 1)

􏽘

n

k,j�1
k≠ j

nωkgk( 􏼁
μ ⊗ nωjgj􏼐 􏼑

]⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/μ+]

� ∪
himi
∈gi

hjmj
∈gj

ς− 1 1
μ + ]

ς 1 − ς− 1 1
n(n − 1)

􏽘

n

k,j�1
k≠ j

ς 1 − ς− 1
(ζ)􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (31)
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where

ζ � μς 1 − ς− 1
nωkς 1 − hkmk

􏼐 􏼑􏼐 􏼑􏼐 􏼑 + ]ς 1 − ς− 1
nωjς 1 − hjmj

􏼒 􏼓􏼒 􏼓􏼒 􏼓.

(32)

So we can attain the establishment of *eorem 3. □
In what follows, several desired characteristics of

HFWCBM operator are proved. □

Theorem 4. Let gi(h) � ∪ ègimi�1 himi
|it � n1, 2q, h . . ., xn􏽮 􏽯,

and μ, ]≥ 0, then

(1) (Idempotency) If g1 � g2 � · · · gn � h{ },
HFWCBMμ,](g1, g2, . . . , gn) � h{ }

(2) (Monotonicity) Let
g∗i (h) � ∪ èg

∗
i

mi�1 h∗imi
|it � n1, 2q, h . . ., xn􏽮 􏽯; if

himi
≤ h∗imi

,

HFWCBMμ,]
g1, g2, . . . , gn( 􏼁≤HFWCBMμ,]

g
∗
1 , g
∗
2 , . . . , g

∗
n( 􏼁;

(33)

(3) (Boudedness) If h− � min
i�1,2,...,n

himi
􏽮 􏽯

,h+ � max
i�1,2,...,n

himi
􏽮 􏽯,

h
− ≤HFWCBMμ,]

g1, g2, . . . , gn( 􏼁≤ h
+
. (34)

Theorem 4 is similar to *eorem 2, so the proofs are
omitted here.

3.4.Different Forms ofHFCBMandHFWCBM. Next, we will
explore sever particular cases through taking diverse AC
function ς(t).

Case 1. When ς(t) � (− ln t)κ(κ≥ 1), then

HFCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gihjmj
∈gj

e
− 1/μ+] − ln 1− e

− ζ1/κ1􏼐 􏼑􏼐 􏼑
κ

􏼐 􏼑
1/κ

􏼨 􏼩,

(35)

where

ζ1 �
1

n(n − 1)
􏽘

n

i,j�1

i≠j

− ln 1 − e
− ζ1′

1/κ

􏼒 􏼓􏼒 􏼓
κ
,

ζ1′ � μ − ln himi
􏼐 􏼑

κ
+ ] − ln hjmj

􏼒 􏼓
κ
,

HFWCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gihjmj
∈gj

e
− 1/μ+] − ln 1− e

− φ1/κ1􏼐 􏼑􏼐 􏼑
κ

􏼐 􏼑
1/κ

􏼨 􏼩,

(36)

where

φ1 �
1

n(n − 1)
􏽘

n

i,j�1
i≠j

− ln 1 − e
− φ1′

1/κ

􏼒 􏼓􏼒 􏼓
κ
,

φ1′ � μ − ln 1 − e
− nωk − ln 1− himi

􏼐 􏼑􏼐 􏼑
κ

􏼐 􏼑
1/κ

􏼠 􏼡􏼠 􏼡

κ

+ ] − ln 1 − e
− nωj − ln 1− hjmj

􏼐 􏼑􏼐 􏼑
κ

􏼐 􏼑
1/κ

􏼠 􏼡􏼠 􏼡

κ

.

(37)

Specifically, when κ � 1, ς(t) � − ln t, then they are the
operators proposed by Zhu [14].

Case 2. When ς(t) � t− κ − 1 with κ≥ − 1, κ≠ 0, then

HFCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gihjmj
∈gj

1
μ + ]

1 − ζ2 + 1( 􏼁
− 1/κ

􏼐 􏼑
− κ

􏼠 􏼡

− 1/κ⎧⎨

⎩

⎫⎬

⎭, (38)
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where

ζ2 �
1

n(n − 1)
􏽘

n

i,j�1

i≠ j

1 − ζ2′ + 1( 􏼁
− 1/κ

􏼐 􏼑
− κ

− 1􏼒 􏼓,

ζ2′ � μh
− κ
imi

+ ]h
− κ
jmj

− 2,

HFWCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gihjmj
∈gj

1
μ + ]

1 − φ2 + 1( 􏼁
− 1/κ

􏼐 􏼑
− κ

􏼠 􏼡

− 1/κ⎧⎨

⎩

⎫⎬

⎭,

(39)

where

φ2 �
1

n(n − 1)
􏽘

n

i,j�1

i≠j

1 − φ2′ + 1( 􏼁
− 1/κ

􏼐 􏼑
− κ

− 1􏼒 􏼓,

φ2′ � μ 1 − nωi 1 − himi
􏼐 􏼑

− κ
􏼐 􏼑

− 1/κ
􏼒 􏼓

− κ
+ ] 1 − nωj 1 − hjmj

􏼒 􏼓
− κ

􏼒 􏼓
− 1/κ

􏼠 􏼡

− κ

− 2.

(40)

Case 3. When ς(t) � ln(e− κt − 1/e− κ − 1)(κ≠ 0), then

HFCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gihjmj
∈gj

−
1
κ
ln ζ3 e

− κ
− 1( 􏼁 + 1( 􏼁􏼚 􏼛,

(41)

where

ζ3 �
e− κ 1+1/κ ln ζ3′ e− κ − 1( )+1( )( ) − 1

e− κ − 1
􏼠 􏼡

1/μ+]

,

ζ3′ � 􏽙
n

i,j�1

i≠ j

e− κ 1+1/κ ln ζ3″ e− κ− 1( )+1( )( ) − 1
e− κ − 1

􏼠 􏼡􏼠 􏼡

1/n(n− 1)

,

ζ3″ �
e− κhimi − 1

e− κ − 1
􏼠 􏼡

μ
e

− κhjmj − 1
e− κ − 1

⎛⎝ ⎞⎠

]

,

HFWCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gihjmj
∈gj

−
1
κ
ln φ3 e

− κ
− 1( 􏼁 + 1( 􏼁􏼚 􏼛,

(42)
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where

φ3 �
e− κ 1+1/κ ln φ3′ e− κ − 1( )+1( )( ) − 1

e− κ − 1
􏼠 􏼡

1/μ+]

,

φ3′ � 􏽙
n

i,j�1i≠ j

e− κ 1+1/κ ln φ3″ e− κ − 1( )+1( )( ) − 1
e− κ − 1

􏼠 􏼡

1/n(n− 1)

,

φ3″ �
e

− κ φi

3″
􏼐 􏼑

− 1
e− κ − 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

μ

e
− κ φj

3″
􏼐 􏼑

− 1
e− κ − 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

]

,

φi
3″ � 1 +

1
κ
ln

e
− κ 1− himi

􏼐 􏼑
− 1

e− κ − 1
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

nωk

e
− κ

− 1( 􏼁 + 1⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

φj

3″ � 1 +
1
κ
ln

e
− κ 1− hjmj

􏼐 􏼑
− 1

e− κ − 1
⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

nωj

e
− κ

− 1( 􏼁 + 1⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠.

(43)

Case 4. When ς(t) � ln(1 − κ(1 − t)/t) with κ ∈ [− 1, 1), we
have

HFCBMμ,]
g1, g2, . . . , gn( 􏼁 � ∪

himi
∈gihjmj
∈gj

1 − κ
ζ4 − κ

􏼨 􏼩, (44)

where

ζ4 �
1 − κ 1 − κ/ζ4′ − κ( 􏼁

1 − 1 − κ/ζ4′ − κ( 􏼁
􏼠 􏼡

1/μ+]

,

ζ4′ � 􏽙
n

i,j�1

i≠ j

1 − κ 1 − κ/ζ4″ − κ( 􏼁

1 − 1 − κ/ζ4″ − κ( 􏼁
􏼠 􏼡

1/n(n− 1)

,

ζ4″ �
1 − κ 1 − himi

􏼐 􏼑

himi

⎛⎝ ⎞⎠

μ 1 − κ 1 − hjmj
􏼒 􏼓

hjmj

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

]

,

HFWCBMμ,]
g1, g2, . . . , gn( 􏼁

� ∪
himi
∈gihjmj
∈gj

1 − κ
φ4 − κ

􏼨 􏼩,

(45)

where

φ4 �
1 − κ 1 − κ/φ4′ − κ( 􏼁

1 − 1 − κ/φ4′ − κ( 􏼁
􏼠 􏼡

1/μ+]

,

φ4′ � 􏽙
n

i,j�1

i≠ j

1 − κ 1 − κ/φ4″ − κ( 􏼁

1 − 1 − κ/φ4″ − κ( 􏼁
􏼠 􏼡

1/n(n− 1)

,

φ4″ �
1 − ς 1 − ς/φi

4″ − ς􏼐 􏼑

1 − 1 − ς/φi
4″ − ς􏼐 􏼑

⎛⎝ ⎞⎠

μ
1 − ς 1 − ς/φj

4″ − ς􏼐 􏼑

1 − 1 − ς/φj

4″ − ς􏼐 􏼑
⎛⎝ ⎞⎠

]

,

φi
4″ �

1 − κhimi

1 − himi

􏼠 􏼡

nωi

,

φj
4 �

1 − κhjmj

1 − hjmj

⎛⎝ ⎞⎠

nωj

.

(46)

Case 5. When ς(t) � − ln(1 − (1 − t)κ), κ≥ 1, then

HFCBMμ,]
g1, g2, . . . , gn( 􏼁

� ∪
himi
∈gihjmj
∈gj

1 − 1 − 1 − ζκ5( 􏼁
1/μ+]

􏼐 􏼑
1/κ

􏼚 􏼛,
(47)

where

ζ5 � 􏽙

n

i,j�1

i≠j

1 − 1 − 1 − ζ5′( 􏼁
1/κ

􏼐 􏼑
κ

􏼒 􏼓
1/n(n− 1)

,

ζ5′ � 1 − 1 − himi
􏼐 􏼑

κ
􏼐 􏼑

μ
1 − 1 − hjmj

􏼒 􏼓
κ

􏼒 􏼓
]
,

HFWCBMμ,]
g1, g2, . . . , gn( 􏼁

� ∪
himi
∈gihjmj
∈gj

1 − 1 − 1 − φκ
5( 􏼁

1/μ+]
􏼐 􏼑

1/κ
􏼚 􏼛,

(48)

where
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φ5 � 􏽙
n

i,j�1

i≠ j

1 − 1 − 1 − φ5′( 􏼁
1/κ

􏼐 􏼑
κ

􏼒 􏼓
1/n(n− 1)

,

φ5′ � 1 − 1 − 1 − 1 − h
κ
imi

􏼐 􏼑
nωk

􏼐 􏼑
1/κ

􏼒 􏼓
κ

􏼒 􏼓
μ

1 − 1 − 1 − 1 − h
κ
jmj

􏼒 􏼓
nωj

􏼒 􏼓
1/κ

􏼠 􏼡

κ

􏼠 􏼡

]

.

(49)

4. Novel MADM Approach Based on the
Propounded Operators

In this section, we will propound a novel approach based on
the presented operators for handling MADM issues.

Suppose that there are m alternatives Υi(i � 1, 2, . . . , m),
n attributes Gj(j � 1, 2, . . . , n). If DMs provide several
values for the alternative Υi under the attribute
Gj(j � 1, 2, . . . , n) with anonymity, these values can be
considered as a HFE hij. In the case, if two DMs provide the
same value, then the value emerges only once in hij. In what
follows, the specific algorithm for MADM problems under
the HF environment will be designed.

Step 1: DMs provide their evaluations about the al-
ternative Υi under the attribute Gj , denoted by the
hesitant fuzzy elements
hij, i � 1, 2, . . . , m; j � 1, 2, . . . , n

Step 2: use the HFCBM or HFWCBM to fuse the HFE
yi(i � 1, 2, . . . , m) for Υi(i � 1, 2, . . . , m)

Step 3: the score values π(yi)(i � 1, 2, . . . , m) of yi are
calculated using Definition 2 and compared
Step 4: the optimal alternatives Υi(i � 1, 2, . . . , m) are
made by ranking π(yi)(i � 1, 2, . . . , m)

4.1. Empirical Example

Example 1. Selection of Equipment Purchase. Assume that
there are four short-term stocks Υ1,Υ2,Υ3, andΥ4. *e
following four attributes: G1, G2, G3, andG4, should be
considered. G1: product price; G2: technology; G3: after-sales
service level; G4: supplier reputation.

Next, we use the developedmethod to find the ranking of
the alternatives and the optimal choice.

Step 1: the decisionmatrix is given by expert and shown
in Table 1

Step 2: use equation (35), let ς(t) � (− ln t)1.2 and μ � 1,
] � 1 to aggregate the HFE yi(i � 1, . . . , 4) for
Υi(i � 1, . . . , 4).
Step 3: compute the score values π(yi)(i � 1, . . . , 4) of
yi(i � 1, . . . , 4) by Definition 2. We have
π(y1) � 0.5794, π(y2) � 0.5744, π(y3) � 0.5487, and
π(y4) � 0.5738.

Step 4: rank the alternatives Υi(i � 1, . . . , 4), and select
the desirable one in term of comparison rules. Since
π(y1)> π(y2)> π(y4)> π(y3), we can obtain the rank
of alternatives Υ1≻Υ2≻Υ4≻Υ3, and Υ1 is the best
alternative.

4.2. Sensitivity Analysis. Next, we first analyse the sensitivity
of sorting results obtained by diverse operations from AC. In
addition, the effect of parameters μ, ], and κ on the final
sorting results of alternatives are also analysed in detail.

Firstly, we analyse the sorting results on the basis of
different generators produced diverse copulas. *e sorting
results of alternatives using diverse generators are listed in
Table 2. From Table 2, although the score values of alter-
natives obtained by diverse operations from AC, the final
sorting relation are basically same, which can further il-
lustrate that the diverse copulas are relatively stable for the
ultimate decision outcomes.

Secondly, we research the effect of parameter κ in the
HFCBM operator on the ultimate orders of alternatives.
Table 3 shows the values of score functions with the different
κ when μ � 1 and ] � 1. Figure 1 shows how the score
functions obtained by Case 1 change with the parameter κ
under different values of μ and ]. As can be seen from the
results of the chart, the score values increase with the in-
crease of κ for the same alternatives.

*irdly, we explore the effect of parameters μ and ] in the
HFCBM operator on the ranking results of alternatives. *e
ranking results of alternatives based on diverse values of μ
and ] can be generated in Table 4 (we select Case 1 as an
example and let κ � 2). Figure 2 shows the variation of the
score function with μ and ]. *e results indicate that the
scores of alternatives by the HFCBM operator increase as the
parameter μ ranges from 0 to 10 and the parameter ] ranges
from 0 to 10, but the ranking results of factors vary con-
siderably, which provide DMs with flexible options. *e
DMs can adjust the value of μ and ] to get the desired
ranking result.

4.3. Comparative Analysis. Next, we conduct a contrastive
analysis between the propounded MADM method with the
previous approaches to confirm the validity and to reveal the
significant advantages of the propounded approach.
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4.3.1. Testification of Validity. To demonstrate the validity of
the propounded approach, we utilize three previously
existing methodologies to address the aforementioned ex-
ample and perform a comparison study. *e previous
methods include HFWA and HFWG operators proposed by
Xia and Xu [4], HFBM operator proposed by Zhu and Xu
[14], and HFFWA and HFFWG operators proposed by Qin
et al. [24]. Using the data in Reference [24] and different
operators, Table 5 is obtained.

From Table 5, we can observe that the orders are
marginally diverse, but the optimal selections are all Υ6. So
the propounded approach in this paper is workable and
efficient.

4.3.2. Further Comparison and Analysis

(i) Compared with the method based upon the HFWA
(or HFWG) operator propounded by Xia and Xu [4],
although the HFWA operator can fuse HF infor-
mation and the computation is simple, it has the
following weakness: (1) it assumes that all attributes
are independent in the course of information inte-
gration; (2) it ignores the correction of dissimilar
attribute assessment information; and (3) it lacks
flexibility and robustness because its operational
rules are constructed by the Algebraic operations.
However, the proposed approach can effectively
overcome these disadvantages through the following
aspects: (a) the BM operator can take into consid-
eration the interconnection of diverse attributes in
this paper, and the operational laws are established
based upon different copula with a flexible param-
eter, which can overcome the weakness (1) and (2);
(b) the AC can make decision course more general
and flexible because five copulas with their flexible
parameters can be selected according to DMs’ atti-
tude, which can conquer the weakness (3).

(ii) Compared with the approach based upon the
HFFWA operator propounded by Qin et al. [24],
although it can aggregate vagueness information
validly and make the aggregation process flexible by

the adjustable parameter, it ignores the interrela-
tionship of different attributes during the production
of fusion. In comparison, the propoundedmethod in
this paper based on the HFCBM operator not only
takes into account the correction of diverse attri-
butes but also provides a more universal and flexible
aggregation operator, and the HFCBM can regard
five aggregation functions through assigning diverse
copulas to it.
(iii)Compared with the method based upon the
HFBM operator propounded by Zhu and Xu [14], it
can consider the relevance of dissimilar attributes
through the BM operator. But the operational laws of
the HFBM operator are defined by the algebraic
operation, which lacks flexibility and robustness in
the course of information aggregation. In contrast,
the HFBM operator supplies universal operations
based on the Archimedean copula. Specially, when
κ � 1 in the Gumbel copula and Joe copula, they
shall degenerate into algebraic operations, i.e., the
HFBM operator is a particular instance of HFCBM
operator. Hence, the proposed method is more
universal and flexible. Hence, the developed ap-
proach can utilize an ocean of practical decision
issues and especially needs to consider the relevance
of diverse attributes.

4.3.3.>e Distinct Merits of the Propounded Approach in>is
Paper. A detailed contrastive analysis for aforementioned
approaches is displayed in Table 5, and the propounded
method based on the HFCBM operator has the following
distinct advantages during the course of information fusion:
(1) It provides a universal method through selection different
copulas to attain diverse aggregation operator; (2) *e
flexibility and robustness of the presented methodology is
shown through the parameter in each copula, and it supplies
more selection to choose parameters that accord with their
preferences attitude; and (3) *e interconnection between
diverse attributes is taken into consideration during the
information aggregation proceeding.

Table 1: Hesitant fuzzy decision matrix [4].

Alternatives G1 G2 G3 G4

Υ1 0.2, 0.4, 0.7{ } 0.2, 0.6, 0.8{ } 0.2, 0.3, 0.6, 0.7, 0.9{ } 0.3, 0.4, 0.5, 0.7, 0.8{ }

Υ2 0.2, 0.4, 0.7, 0.9{ } 0.1, 0.2, 0.4, 0.5{ } 0.3, 0.4, 0.6, 0.9{ } 0.5, 0.6, 0.8, 0.9{ }

Υ3 0.3, 0.5, 0.6, 0.7{ } 0.2, 0.4, 0.5, 0.6{ } 0.3, 0.5, 0.7, 0.8{ } 0.2, 0.5, 0.6, 0.7{ }

Υ4 0.3, 0.5, 0.6{ } 0.2, 0.4{ } 0.5, 0.6, 0.7{ } 0.8, 0.9{ }

Table 2: Decision results obtained by the HFCBM operator with diverse copulas.

Generator ς(t) π(Υ1) π(Υ2) π(Υ3) π(Υ4) Ranking

Case 1 (− ln t)κ(κ � 1) 0.5810 0.5778 0.5495 0.5791 Υ1≻Υ4≻Υ2≻Υ3
Case 2 t− κ − 1(κ � 1) 0.8275 0.8236 0.7546 0.7976 Υ1≻Υ2≻Υ4≻Υ3
Case 3 ln(e− κt − 1/e− κ − 1)(κ � 1) 0.5782 0.5747 0.5476 0.5746 Υ1≻Υ2≻Υ4≻Υ3
Case 4 ln(1 − κ(1 − t)/t)(κ � − 1) 0.5868 0.5833 0.5526 0.5862 Υ1≻Υ4≻Υ2≻Υ3
Case 5 − ln(1 − (1 − t)κ)(κ � 1) 0.5810 0.5778 0.5495 0.5791 Υ1≻Υ4≻Υ2≻Υ3
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Table 3: Decision results obtained by Case 1 with diverse κ.

κ π(Υ1) π(Υ2) π(Υ3) π(Υ4) Ranking

2 0.5832 0.5689 0.5490 0.5606 Υ1≻Υ2≻Υ4≻Υ3
5 0.6194 0.5849 0.5629 0.5611 Υ1≻Υ2≻Υ3≻Υ4
7 0.6334 0.5950 0.5703 0.5689 Υ1≻Υ2≻Υ3≻Υ4
10 0.6460 0.6054 0.5780 0.5782 Υ1≻Υ2≻Υ4≻Υ3
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Figure 1: *e score functions obtained by Case 1 with respect to parameter κ.
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Table 4: Decision results obtained by Case 1 with diverse μ and ].

Parameter μ Parameter ] π(Υ1) π(Υ2) π(Υ3) π(Υ4) Ranking

0

1 0.6832 0.6734 0.6386 0.6873 Υ4≻Υ1≻Υ2≻Υ3
3 0.7041 0.6922 0.6046 0.7104 Υ4≻Υ1≻Υ2≻Υ3
6 0.7186 0.7061 0.6139 0.7278 Υ4≻Υ1≻Υ2≻Υ3
10 0.7294 0.7169 0.6215 0.7415 Υ4≻Υ1≻Υ2≻Υ3

1

1 0.5832 0.5689 0.5490 0.5606 Υ1≻Υ2≻Υ4≻Υ3
3 0.6124 0.5944 0.5649 0.5903 Υ1≻Υ2≻Υ4≻Υ3
6 0.6359 0.6265 0.5831 0.6300 Υ1≻Υ4≻Υ2≻Υ3
10 0.6712 0.6535 0.5978 0.6640 Υ1≻Υ2≻Υ4≻Υ3

2

1 0.5975 0.5807 0.5566 0.5738 Υ1≻Υ2≻Υ4≻Υ3
3 0.6378 0.5841 0.5600 0.5753 Υ1≻Υ2≻Υ4≻Υ3
6 0.6294 0.6072 0.5739 0.6036 Υ1≻Υ2≻Υ4≻Υ3
10 0.6537 0.6322 0.5879 0.6352 Υ1≻Υ4≻Υ2≻Υ3

5

1 0.6359 0.6173 0.5780 0.6185 Υ1≻Υ4≻Υ2≻Υ3
3 0.6180 0.5939 0.5670 0.5854 Υ1≻Υ2≻Υ4≻Υ3
6 0.6233 0.5964 0.5698 0.5867 Υ1≻Υ2≻Υ4≻Υ3
10 0.6378 0.6103 0.5782 0.6038 Υ1≻Υ2≻Υ4≻Υ3
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Figure 2: *e score functions obtained by Case 1 with respect to μ and ].
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5. Conclusions

In order to better accomplish the procedure of infor-
mation aggregation and decrease information loss under
the HF environment, this paper propounds HFCBM
operator and HFWCBM operator to aggregate HF in-
formation and exert it to tackle MADM issues. *e pri-
marily contribution of our research was that the proposed
operators can capture the connection between attributes
and provide additional choice for DMs by using the
generalised Archimedean copula functions. *e com-
parative analysis showed that this method was more
flexible, practical, general, and better than the existing
methods. However, this article also has some shortcom-
ings and limitations. First, the proposed method only
solved a numerical example making the study incomplete.
Second, we overlooked the scope of each Archimedean
copula function making the study less rigorous. In the
future, the propounded method will be applied to other
actual application such as supplier selection, investment
analysis, and pattern recognition. We will also continue to
study the MADM problems under the HF environment
[25–27]. Besides, we will explore other theories of copulas
in different fuzzy settings [28–31], as well as the large-scale
decision-making algorithm based upon linguistic assess-
ment theory and methodology will become our focal point
research target.
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