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In the present paper, a quasiuniform stability result for fractional order neural networks with mixed delay is developed, based on
the generalized Gronwall inequality and the Caputo fractional derivative. Sufficient conditions are derived to ensure the
quasiuniform stability of the considered neural nets system. A clarification example is carried out not only to validate the authors’
theoretical results but also to show the superiority of the developed work (in terms of improved stability), compared with other
similar works already published in the literature.

1. Introduction

A fractional order system is a dynamical system that can be
modeled by fractional differential equations, carried with a
noninteger derivative [1]. Such systems are said to have
fractional dynamics. Integrals and derivatives of fractional
orders are used to illustrate objects that can be described by
power-law nonlocality [2] or power-law long-range depen-
dence or fractal properties. Note that the fractional-order
calculus has been used in studying the systems’ dynamics in
many fields such as electrochemistry, physics, viscoelasticity,
biology, and chaotic systems [1]. In a related context, the
evolution of science and engineering systems has considerably
stimulated the employment of the fractional calculus in many
areas of the control theory, in the last decades, and this includes
stability [3–6], finite-time stability (FTS) [7–9], stabilization
[10], observer design [10, 11], and fault estimation [12–14].

Currently, the analysis of stability for fractional order
neural network systems has received some attention, and some
results have been published in this context. For example, in [9],
the authors have presented an original scheme, in order to
study the finite-time stability of the equilibrium point and to

prove its existence and uniqueness, for Caputo–Katugampola
fractional-order neural networks, with time delay. &e pro-
posed scheme, therein, has used a newly introduced fractional
derivative concept in the literature, which is the Capu-
to–Katugampola fractional derivative. In another relevant work
[15], the authors have studied the quasiuniform stability of
Caputo-type fractional-order neural networks with mixed
delay. In [16], the authors have investigated the impulsive
effects on stability and passivity analysis of memristor-based
fractional order competitive neural networks. In [17], the idea
was to study the globalMittag–Leffler stability and stabilization
of fractional order quaternion-valued memristive neural net-
works. In a related context, another research work [18] has
focused on the hybrid control problem for projective lag
synchronization of Riemann–Liouville fractional order
memristive BAM neural networks with mixed delays.

On another hand, note that time delays are so frequent in
the electronic implementation of neural networks. &is is
why it is of great importance to consider these delays in
studying the stability of neural nets. So far, various works
have been developed by researchers, on this issue. For in-
stance, in [19], the authors have developed an asymptotic
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stability analysis for discrete-time stochastic quaternion-
valued neural networks with time delays. In [20], the authors
have considered a delay-dividing approach to robust sta-
bility investigation of uncertain stochastic complex-valued
Hopfield delayed neural networks. In another work [21], the
idea was to study the robust stability of complex-valued
stochastic neural networks with time-varying delays and
parameter uncertainties.

Motivated by the above discussion, the present paper
aims to present an improved quasiuniform stability result for
fractional order neural networks with mixed delay, using the
generalized Gronwall inequality. Establishing sufficient
criteria for the resolution of such a problem is quite im-
portant and challenging. It is important to mention that the
present work is a generalization of [7]. Finally, and to show
the superiority of the present developed work (in terms of
improved stability), the same numerical example as in [15] is
studied, and it is shown that our theoretical results are more
accurate than those presented in [15].

As a summary, here are the advantages of the proposed
work, compared to other existing literature works:

(i) Compared to [15], where exactly the same problem
is considered for the same class of neural networks,
the present paper presents an improved quasiuni-
form stability result (see Section 5, for comparison
between both papers)

(ii) Compared to [16, 17], where time-delay is not
considered, the present paper presents the advan-
tage of taking delay into consideration

(iii) Compared to [9], where the authors have studied
the finite-time stability for Caputo–Katugampola
fractional order delayed neural networks, the
present paper present the advantage of considering
mixed delay (with two delay parameters), not only
one delay parameter (as in [9])

(iv) Compared to [19–21], the present paper presents the
advantage of considering a fractional order model of
neural networks, which is more general of integer-
order models

&e rest of the paper is organized as follows. Some
necessary definitions and lemmas are given in Section 2. In
Section 3, the fractional-order neural network model is
introduced. Sufficient conditions ensuring the quasiuniform
stability of the fractional order neural nets with mixed delay
are presented in Section 4. Finally, a numerical example is
investigated in Section 5.

2. Preliminaries

In this section, some definitions and results related to the
fractional calculus are presented. &e literature contains
different definitions of the fractional derivative [22, 23]. In
this paper, the Caputo definition is adopted.

Definition 1. Given 0< α< 1, the Caputo fractional deriv-
ative is defined as

C
D

α
t0 ,tx(t) �

1
Γ(1 − α)

d
dt


t

t0

(t − s)
−α

x(s) − x t0( ( ds.

(1)

&ere exists a frequently used function in the solution of
fractional order systems, named the Mittag–Leffler function.
&is function is a generalization of the exponential one. In
this context, the following definition is given.

Definition 2. &e Mittag–Leffler function with two pa-
rameters is defined as

Eα,β(z) � 
+∞

k�0

z
k

Γ(kα + β)
, (2)

where α> 0, β> 0, and z ∈ C. For β � 1, one has
Eα(z) � Eα,1(z). Furthermore, E1,1(z) � ez.

Lemma 1 (see [24]). Let a(t), b(t), g(t), and u(t) be non-
negative functions on I � [0, T), T≤ +∞, α ∈ (0, 1).
Moreover, if are locally summable on I. If b(t) and a(t) are
nondecreasing continuous functions on I bounded by a
constant >0 , let p≥ q> 0 and λ> 0 such that

u
p
(t)≤ a(t) + b(t) 

t

0
u

q
(s)ds + g(t) 

t

0
(t − s)

α−1
u

q
(s)ds, t ∈ [0, T), (3)

then we have the following explicitly bound for u

u(t)≤ a(t) + 
∞

k�1


k

i�0

k

i

⎛⎝ ⎞⎠ q λ((q−p)/p)
 

k
[b(t)]k− i[Γ(α)g(t)]i

pkΓ(iα + k − i)


t

0
(t − s)

iα− i− 1+k
a(s)ds

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

1/p

, t ∈ [0, T), (4)
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provided that

a(t) ≔ a(t) +
(p − q)λq/p αtb(t) + t

α
g(t) 

αp
. (5)

In addition, if a(t) is nondecreasing on [0, T)[0, T), then

u(t)≤

�������������������������������������������

a(t)Eα
qΓ(α)g(t)λ((q−p)/p)

t
α

p
 exp

qtλ((q−p)/p)
b(t)

pα
 

p




, t ∈ [0, T). (6)

3. Problem Statement

&e dynamic behavior of a continuous fractional order
neural network with mixed delay can be described by the
following differential equation:

C
D

α
t0 ,t

xi(t) � −cixi(t) +  aijfj xj(t)  +  bijgj xj(t − τ) 

+  mij 
t

t−σ
hi xi(u)( du + Ii(t), xi(t) � ψi(t), t ∈ [−c, 0), c ∈ max τ, σ{ },

(7)

or equivalently

C
D

α
t0 ,t

x(t) � −A0x(t) + A1F(x(t)) + BG(x(t − τ)) + M 
t

t−σ
H(x(u))du + I(t), x(t) � ψ(t), t ∈ [−c, 0), c ∈ max τ, σ{ }, 

(8)

where 0< α< 1 j � 1, 2, . . . , n, n corresponds to the number
of units in a neural network, x(t) �

(x1(t), x2(t), . . . , xn(t))T corresponds to the state vector at
time t, F(x(t)) � (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T,
H(x(t)) � (h1(x1(t)), h2(x2(t)), . . . , hn(xn(t)))T denotes
the activation function of the neurons, A0 � diag(ci > 0)

A1 � (aij), B � (bij), and M � (mij) are constant matrices;ci

denotes the rate with which the ith unit will reset its potential
to the resting state in isolation when disconnected from the
network. A1 � (aij), B � (bij) and M � (mij) refer to the
connection of the jth neuron to the ith neuron at time t, t − τ

and t − σ, respectively, where τ and σ are two parameters
representing time-delay. I � (I1(t), I2(t), . . . , In(t))T is an
external bias vector.

Remark 1. For the initial conditions associated with system
(7), it is usually assumed that ψi(s) ∈ C([−c, 0], R). Denote
‖ψ‖ � sups∈[−c,0]‖ψ(s)‖.

Suppose that x(t) and y(t) are any two solutions of (8)
with different initial functions ψ ∈ C and ϕ ∈ C,
ψ(0) � ϕ(0) � 0. Let x(t) − y(t) � e(t) � (e1(t), e2(t), . . . ,

en(t))T, φ � ψ − ϕ, then one obtains the error system:

C
D

α
t0 ,t

e(t) � −A0e(t) + A1(F(x(t)) − F(y(t))) + B(G(x(t − τ))

− G(y(t − τ))) + M 
t

t−σ
(H(x(u)) − H(y(u)))du, e(t) � φ(t), t ∈ [−c, 0), c ∈ max τ, σ{ },

(9)

where φ ∈ C, φ(0) � 0 is the initial function of system (8); we
define the norm ‖φ‖ � sups∈[−c,0]

�����,φ(s)
����.

Definition 3 (see [15]). System given by (8), satisfying initial
condition e(t) � φ(t), −τ ≤ t≤ 0, is quasiuniformly stable,
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with respect to δ, ε, T{ }, δ < ε, if and only if ‖φ‖< δ implies
‖e(t)‖< ε,∀t ∈ [0, T].

Remark 2. &e considered model (8) refers to fractional
order artificial neural networks (ANN), with mixed delay.
ANN represent a growing used tool in modern technology.
And time-delays should be considered in studying such
systems because these delays are frequent in electronic
implementation of ANN.&e importance of this manuscript
consists on the fact that it is crucial to check if the designed
ANN represent stable dynamics or not. And this clarifies the
motivation behind the present study of quasiuniform sta-
bility for these ANN.

&e following assumptions are to be made:

(1) Denote ‖x‖ � 
n
i�1 |xi| and

‖A1‖ � max1≤j≤n 
n
i�1 |aij|, which are the Euclidean

vector norm and matrix norm, respectively; xi and
aij are the elements of the vector x and thematrix A1,
respectively. Let a0 � ‖A0‖, a1 � ‖A1‖, b � ‖B‖ and
m1 � ‖M‖.

(2) &e neuron activation functions F(x), G(x), and
H(x) are Lipschitz continuous, namely, there exist
positive constants kF, kG, and kH such that

‖F(u) − F(v)‖≤ kF‖u − v‖,

‖G(u) − G(v)‖ ≤ kG‖u − v‖,

‖H(u) − H(v)‖≤ kH‖u − v‖,

∀u, v ∈ Rn
.

(10)

&e integral equation corresponding to (9) is given by

e(t) � φ(0) +
1
Γ(α)


t

0
(t − s)

α− 1

−A0e(s) + A1(F(x(s)) − F(y(s))) + B(G(x(s − τ)) − G(y(s − τ)))

+M 
s

s−σ
(H(x(u)) − H(y(u)))du

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ds. (11)

Let T> c and I � [0, T] � ∪m
k�0[kc, (k + 1)c]∪

[(m + 1)c, T], with (m + 1)c<T≤ (m + 2)c

4. Main Result

Theorem 1. System (9) is quasiuniformly stable with respect
to δ, ε, T{ } (δ < ε), if the following condition is satisfied:

rT(c)Eα v3T
α

( e
v2Tα+1( )/(αΓ(α+1)) ≤

ε
δ
, (12)

where

rT(c) � 1 +
v0 + v1rm+1(c)Eα v3((m + 1)c)

α
( e

v2((m+1)c)α+1( )/(αΓ(α+1))

Γ(α + 1)
⎛⎝ ⎞⎠T

α⎡⎢⎢⎣ ⎤⎥⎥⎦,

rk+1(c) � 1 +
v0 + v1rk(c)Eα v3(kc)

α
( e

v2(kc)α+1( )/αΓ(α+1)( )

Γ(α + 1)
⎛⎝ ⎞⎠((k + 1)c)

α⎡⎢⎢⎣ ⎤⎥⎥⎦, 0≤ k≤m,

r0(c) � 1,

v0 � ‖M‖kHσ,

v1 � ‖B‖kG,

v2 � ‖M‖kH,

v3 � A0
����

���� + A1
����

����kF.

(13)
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Proof. We have, for t ∈ [0, T]t ∈ [0, T],

‖e(t)‖≤ ‖φ(0)‖ +
1
Γ(α)


t

0
(t − s)

α− 1
A0

����
����‖e(s)‖ + A1

����
����kF‖e(s)‖ +‖B‖kG‖e(s − τ)‖ +‖M‖kH 

s

s−σ
‖e(u)‖du ds

≤ ‖φ(0)‖ +
1
Γ(α)


t

0
(t − s)

α− 1
A0

����
���� + A1

����
����kF ‖e(s)‖ds +

1
Γ(α)


t

0
(t − s)

α− 1
‖B‖kG‖e(s − τ)‖ds

+
1
Γ(α)


t

0
(t − s)

α− 1
‖M‖kH 

t

−σ
‖e(u)‖duds

≤ ‖φ‖ +
1
Γ(α)


t

0
(t − s)

α− 1
A0

����
���� + A1

����
����kF ‖e(s)‖ds +

1
Γ(α)


t

0
(t − s)

α− 1
‖B‖kG‖e(s − τ)‖ds

+
1
Γ(α)

‖M‖kH 
t

−σ
‖e(u)‖du 

t

0
(t − s)

α− 1ds

≤ ‖φ‖
‖M‖kHσt

α
‖φ‖

Γ(α + 1)
+

‖B‖kG

Γ(α)


t

0
(t − s)

α− 1
‖e(s − τ)‖ds +

‖M‖kHt
α

Γ(α + 1)


t

0
‖e(s)‖ds +

A0
����

���� + A1
����

����kF

Γ(α)


t

0
(t − s)

α− 1
‖e(s)‖ds

≤ 1 +
v0

Γ(α + 1)
t
α

 ‖φ‖ +
v1

Γ(α)


t

0
(t − s)

α− 1
‖e(s − τ)‖ds +

v2

Γ(α + 1)
t
α


t

0
‖e(s)‖ds +

v3

Γ(α)


t

0
(t − s)

α− 1
‖e(s)‖ds.

(14)

For t ∈ [0, c], we have

‖e(t)‖≤ 1 +
v0

Γ(α + 1)
t
α

 ‖φ‖ +
v1

Γ(α + 1)
t
α
‖φ‖ +

v2

Γ(α + 1)
t
α


t

0
‖e(s)‖ds +

v3

Γ(α)


t

0
(t − s)

α− 1
‖e(s)‖ds

≤ 1 +
v0 + v1( 

Γ(α + 1)
c
α

  +
v2

Γ(α + 1)
c
α


t

0
‖e(s)‖ds +

v3

Γ(α)


t

0
(t − s)

α− 1
‖e(s)‖ds.

(15)

Using Lemma 1, for t ∈ [0, c], one gets

‖e(t)‖≤ 1 +
v0 + v1( 

Γ(α + 1)
c
α

 Eα v3t
α

( e
v2cα( )/αΓ(α+1)( )t

‖φ‖

≤ r1(c)Eα v3c
α

( e
v2cα+1( )/αΓ(α+1)( )‖φ‖.

(16)

For t ∈ [0, 2c], one gets

‖e(t)‖≤ 1 +
v0

Γ(α + 1)
t
α

 ‖φ‖ +
v1

Γ(α + 1)
t
α
r1(c)Eα v3c

α
( e

v2cα+1( )/(αΓ(α+1))( )‖φ‖ +
v2

Γ(α + 1)
t
α


t

0
‖e(s)‖ds

+
v3

Γ(α)


t

0
(t − s)

α− 1
‖e(s)‖ds

≤ 1 +
v0 + v1r1(c)Eα v3c

α
( e

v2cα+1( )/(αΓ(α+1))( )

Γ(α + 1)
⎛⎝ ⎞⎠(2c)

α⎡⎢⎢⎣ ⎤⎥⎥⎦‖φ‖ +
v2

Γ(α + 1)
(2c)

α


t

0
‖e(s)‖ds +

v3

Γ(α)


t

0
(t − s)

α− 1
‖e(s)‖ds.

(17)
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Using Lemma 1, for t ∈ [0, 2c], we get

‖e(t)‖≤ 1 +
v0 + v1r1(c)Eα v3c

α
( e

v2cα+1( )/(αΓ(α+1))( )

Γ(α + 1)
⎛⎝ ⎞⎠(2c)

α⎡⎢⎢⎣ ⎤⎥⎥⎦Eα v3t
α

( e
v2(2c)α( )/(αΓ(α+1))( )t

‖φ‖

≤ r2(c)Eα v3(2c)
α

( e
v2(2c)α+1( )/(αΓ(α+1))( )‖φ‖.

(18)

Using the same approach, one gets, for t ∈ [0, (k + 1)c]

‖e(t)‖≤ rk+1(c)Eα v3((k + 1)c)
α

( e
v2((k+1)c)α+1( )/(αΓ(α+1))( )‖φ‖.

(19)

Finally, for t ∈ [0, T], one gets

‖e(t)‖≤ rT(c)Eα v3T
α

( e
v2Tα+1( )/(αΓ(α+1))( )‖φ‖. (20)

Remark 3. Note that r0(c)≤ r1(c)≤ · · · ≤ rT(c).

Remark 4. If 0<T≤ c, then we can obtain the finite-time
stability for system (9) under condition (12), where

rT(c) � 1 +
v0 + v1

Γ(α + 1)
 T

α
 . (21)

5. Clarification Example

An illustrative example is described to further show the
theoretical result. &e goal through this section is to show
that the quasiuniform stability, obtained with our compu-
tations, is better than the one obtained in [15]. &at is to say,
the authors here aim to compute the value of T and to
compare it to the one found in [15], rather than to give the
figures of the solutions x1(t) and x2(t). As for figures, the
readers can have an idea about them by returning to [15].

Consider the two-state fractional order mixed delay
neural network model as in [15]:

C
D

α
t0 ,t x1(t)(  � −0.1x1(t) + 0.2f1 x1(t)(  − 0.1f2 x2(t)(  − 0.5g1 x1(t − τ)(  − 0.1g2 x2(t − τ)( 

+ 
t

t−σ
0.4h1 x1(u)(  − 0.1h2 x2(u)(  du,

C
D

α
t0 ,t x2(t)(  � −0.1x2(t) + 0.1f1 x1(t)(  − 0.2f2 x2(t)(  − 0.2g1 x1(t − τ)(  − 0.1g2 x2(t − τ)( 

+ 
t

t−σ
0.1h1 x1(u)(  + 0.2h2 x2(u)(  du,

(22)

with constant delays τ � 0.2 and σ � 0.05, and the activation
function considered by fi(xi(t)) � gi(xi(t)) � hi(xi(t)) �

tanh(x)(i � 1, 2),. So kF � kG � kH � 1 and

A0 �
0.1 0

0 0.1
⎛⎝ ⎞⎠,

A1 �
0.2 −0.1

0.1 −0.2
⎛⎝ ⎞⎠,

B �
−0.5 −0.1

−0.2 −0.1
⎛⎝ ⎞⎠,

M �
0.4 −0.1

0.1 0.2
⎛⎝ ⎞⎠,

(23)

and then we have a0 � 0.1, a1 � 0.3, b � 0.7, andm1 � 0.5.

&e goal is to solve inequality (12) with δ � 0.1, ε � 1, for
various values of α and compare with the results obtained in
[15]. After solving inequality (12), one can see that &eorem
1 guarantees the quasiuniform stability. If we take α � 0.7,
then α � 0.3α � 0.3. &eorem 1 provides the values T � 0.7
and T � 0.3, while the results obtained in [15] are T � 0.6699
and T � 0.0522, respectively. It is obvious that values of T

computed by our inequality given in (12) are larger than
those obtained in [15], and this example shows that our
theoretical results are more accurate than those presented in
[15].

6. Conclusion

In this paper, a new quasiuniform stability result for frac-
tional order neural networks with a mixed delay has been
proposed. &e developed scheme is based on the generalized
Gronwall inequality. An illustrative example shows that the
quasiuniform stability criterion derived in this paper
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provides better results than the ones found in a similar
existing literature article [15].

As for possible related future work, the authors intend to
extend the present results to fractional order neural net-
works with time-varying delays, instead of constant delays.

Data Availability

It is a purely mathematical research work, which is based on
theoretical analysis and developing theorem proofs.
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