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In this paper, a novel chaotic new three-dimensional system has been studied by Zhang et al. in 2012. In the system, there
are three control parameters and three different nonlinear terms which governed equations. Zhang et al. studied ele-
mentary (preliminary) dynamic properties of the chaotic new three-dimensional system by means of bifurcation diagram,
maximum Lyapunov exponent, phase portraits, dynamics behaviors by changing some parameters etc., using all possible
theoretical analysis and numerical simulation. In this paper, we have demonstrated its complete synchronization. &e
proposed results are verified by numerical simulations.

1. Introduction

Since the first chaotic attractor in a three-dimensional au-
tonomous system was found by Loranz in 1963 [1], many
researchers and groups have concentrated in these three-
dimensional systems recently. After the Loranz chaotic sys-
tem, several chaotic systems have been found in the past few
decades, for example, the Rösslor system [2], Lü and Chen
system [3], Chua et al.’s system [4], Chen andUeta system [5],
and many others. Some proposed systems have studied by
adding a nonlinear term in each equation (see [6], for more
details). Zhang et al. [7] set up a novel three-dimensional
autonomous system. In this system, they added to the second
equation of the Rucklidge system [8] one cross-product
nonlinear term only. &e additional term created complex
dynamics behaviors that can be shown in the numerical
simulation. Zhang et al.’s system shows similar behavior as the
Lorenz chaotic system by varying the control parameters. &e
study of the system covers most of the elementary dynamic

properties, including phase portraits, Lyapunov exponent
spectra, and bifurcation diagram, in each study cases.

In this paper, the synchronized chaos of Zhang et al.’s
system has been provided which can finish the dynamical
study of the system. Chaotic behaviors are very sensitive to
initial conditions. If the nearby trajectories start, then we
may have a huge difference in the future. We can syn-
chronize the evolution of two nearby trajectories using a
suitable control with the presence of a time lag. Literature
reviews about synchronization schemes exist in numerous
applications such as [9–12]. As pointed by [13], the con-
comitant unpredictability along with chaos poses certain
difficulties in decoding the chaotic systems. Successful chaos
synchronisation schemes can be found such as adaptive
control [14], back stepping design [15], active control
[16, 17], and nonlinear control [18, 19]. We herewith present
a chaotic three-dimensional system, brief previous results
from [7], and demonstrate how the active control can be
employed to synchronize Zhang et al.’s system.
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2. Preliminary Results

&e new chaotic attractor proposed in this article is moti-
vated by Zhang et al.’s system. It is given by the following
system of ordinary differential equations:

_x � − ax + by − yz,

_y � x + xz,

_z � − cz + y
2
,

(1)

where _x � dx/dτ, x, y, and z are state of three variables, and
a, b, and c are control parameters of system (1). In the to-
pological point of view, Zhang et al. show that system (1) is
not equivalent to the original Lorenz chaotic system or
others similar to the Lorenz system. It has been presented
using the effort of Ćelikovský and Chen [20–23] to the
evident that system (1) is not topologically equivalent to the
Lorenz chaotic system.

Preliminary results have been calculated. Equilibrium
points can be obtained by setting _x � _y � _z � 0. &us, we
have

S1 � (0, 0, 0),

S2,3 � (0, ±
��
bc

√
, b).

(2)

&e equilibrium point S1 represents two eigenvalues with
negative real part (stable) and one eigenvalue with non-
negative real part (unstable) which is so-called saddle points
of index one. However, the equilibrium point S2,3 represent
one eigenvalue with negative real part (stable) and two
becoming a pair of complex conjugate eigenvalues with
positive real parts which is so-called saddle points of index
two.

System (1) is clearly dissipative. We have three Lyapunov
exponents, and the divergence of the system is

f � ΔV � 􏽘
3

i�1
LEi �

z _x

zx
+

z _y

zy
+

z _z

zz
� − (a + c), (3)

where LEi denotes the three Lyapunov exponents of the
system. It is negative when a, c≥ 0. &e exponent rate is

dV

dt
� e

f
� e

− (a+c)
. (4)

From (4), it can be seen that a volume element V0 is
deceased by the flow into a volume element V0e

− ft in time t .
&is means that each volume containing the system tra-
jectory tends to zero as t⟶∞ at an exponential rate of − f.

&e Lyapunov exponent is defined as the rate of di-
vergence and convergence of nearby trajectories in the phase
space [24,25]. According to the Jacobian method, the Lya-
punov exponent can be calculated and presented. In system
(1), we have seen one positive, one negative, and zero

Lyapunov exponent for certain initial conditions, namely,
(x0 � 7.2, y0 � 7.8, z0 � 2.3). &erefore, system (1) can be
defined to be chaotic because we have at least one positive
Lyapunov exponent, namely, we have
(l1 � 2.46, l2 � 0, l3 � − 14.45). In addition, the Lyapunov
exponent dimension of system (1) is obtained by

Dl � j +
􏽐

j
i�1 li

jj+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
� 2 +

l1 + l2

l3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
� 2.17. (5)

Since the Lyapunov exponent dimension is fractal in
system (1) and the system is dissipated, then a strange
attractor is observed.

&e dynamical studies of system (1) and the observation
of the chaotic complex dynamics are well explained in [7],
including the phase portrait, calculation of the maximum
Lyapunov exponent, as well as the bifurcation diagram. All
these dynamic properties are computed by fixing two control
parameters and varying the third one. &us, three complete
cases have been studied.

3. Synchronization of the Chaotic System

In this section, we present synchronization of system (1).
Consider the master system as

x1
.

� − ax1 + by1 − y1z1,

y1
.

� x1 + x1z1,

z1
.

� − cz1 + y
2
1,

(6)

and the slave system as

x2
.

� − ax2 + by2 − y2z2 + u1,

y2
.

� x2 + x2z2 + u2,

z2
.

� − cz2 + y
2
2 + u3,

(7)

where a � 4, b � 28, and c � 2 and u1, u2, and u3 are control
terms to be determined. &e initial conditions are chosen to
be

x1(0), y1(0), z1(0), x2(0), y2(0), z2(0) � (0, − 12, 33,

− 3, − 14, 30).

(8)

Let us define the error functions as follows:

e1 � x2 − x1,

e2 � y2 − y1,

e3 � z2 − z1.

(9)

&e error system can be obtained by substituting
equation (9) into systems (6) and (7) as follows:
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e1
.

� − ae1 + be2 + y2z2 − y1z1( 􏼁 + u1,

e2
.

� e1 + x2z2 − x1z1( 􏼁 + u2,

e3
.

� − ce3 + y
2
2 − y

2
1􏼐 􏼑 + u3,

(10)

with some choice of initial conditions
e1(0), e2(0), and e3(0).

&e control functions ui have been chosen to be stable
system (10) which means that limt⟶∞ei(t) � 0. Suppose

u1 � y1z1 − y2z2,

u2 � x1z1 − x2z2,

u3 � y
2
1 − y

2
2,

(11)

System (10) can be written as

e1
.

e2
.

e3
.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

− a b 0

1 0 0

0 0 − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e1

e2

e3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (12)

From the coefficient matrix of error system (12), we can
calculate the eigenvalues which are

λ1,2 �
1
2
±

������

a
2

+ 4b

􏽱

− a􏼠 􏼡,

λ3 � − c.

(13)

&e system is stable as all the eigenvalues are negative,
and synchronization is achieved when b � 0 and a≥ 0. From
Figures 1–3, we show the synchronization for x(t), y(t), and
z(t), respectively. A solid blue line represents the response
system and red lines represent to the drive system.

4. Conclusion

To sumup, a new chaotic system by Zhang et al. [7] presented a
three-dimensional autonomous chaotic system with quadratic
terms. &e basic properties of the system have been already
investigated in more detail by using the method of fixing the
parameters and varying only one. We have observed the dy-
namic behavior for the system and calculated the preliminary
dynamical studies, including bifurcation diagram, maximum
Lyapunov exponent, and phase portraits. Since we have the
chaotic attractors which are very important in some applica-
tions and some related areas, we have provided synchroni-
zation of the chaotic system using the active control method.
On the other hand, we hope the synchronization of the chaotic
system finds some interesting problems to apply.

Data Availability

No data were used to support this study.
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Figure 1: Time series of x1 and x2. &e solid blue line represents x1, and the dashed red line represents x2.
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Figure 2: Time series of y1 and y2. &e solid blue line represents
y1, and the dashed red line represents y2.
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Figure 3: Time series of z1 and z2.&e solid blue line represents z1,
and the dashed red line representsz2.
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