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Water transportation plays an important role in the comprehensive transportation system and regional logistics. *e number of
vessel accidents is an important indicator for evaluating vessel traffic safety and the efficiency of the maritime management
strategy. *e aim of this work is to provide an efficient way to predict the number of vessel accidents in China. Firstly, to weaken
the randomness of the vessel accident number time series, the gray processing operation is adopted to generate a new sequence
with exponential and approximate exponential rules. In addition, an extended least-squares support vector machine (LSSVM)
model is applied in the forecasting of the new sequence, in which the parameters of the LSSVM are optimized by an improved
quantum-behaved particle swarm (IQPSO).*e proposedmethod is applied in the forecasting of the number of vessel accidents in
China, and the efficiency is shown by comparing the prediction results with GM (1, 1), PSO-LSSVM, and QPSO-LSSVM.

1. Introduction

Marine transportation, which accounts for more than 90% of
the global freight volume, plays a key role in international
trade. *e vessel navigation safety is the prerequisite for the
normal operation of the marine transportation system. In
recent years, with the steady increase of cargo throughput in
Chinese ports, the number of vessels sailing along the coast
of China is also gradually increasing. Taking the Taiwan
Strait as an example, the number of 300GT and above
merchant vessels passing through the Taiwan Strait every
day in the three years from 2015 to 2017 is as high as 483 [1].
*e increase of vessel density and flow will inevitably lead to
the increase of the maritime traffic accident probability,
among which vessel collision accident ranks first among all
kinds of accidents. Once a vessel collision accident occurs, it
will cause casualties and heavy economic losses. However,
the historical vessel collision accidents have the advantages
of strong contingency, small sample size, and weak regu-
larity, and the vessel collision conflicts have a replacement
effect on vessel collision accidents, which can depict the

situation of maritime traffic safety. *erefore, it is of
practical significance to carry out prediction research about
vessel collision conflicts.

With the development of science and technology, the
accident management and control of the vessel trans-
portation system is transferred gradually from the vertical
single data statistics, the logic analysis of deducing the ac-
cident mechanism, and formation model into the integrated
analysis of the transverse composite data and the future
crisis prevention, with the purpose of providing a basis to
implement prediction and early warning [2–4].

Marine traffic engineering is complex system engi-
neering, which has certain randomness and contingency due
to the influence of the navigation environment, the hy-
drometeorology, the crew capacity, and the vessel undefined
state. In view of this, vessel collision conflicts can be used as
an important index to measure the traffic safety of the sea.
*erefore, the analysis of the collision conflicts and the
prediction of the future situation can provide data support
for the further implementation of the maritime safety
strategy of China.
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*e widely applied vessel accident prediction methods
mainly include regression analysis method [5], fractal theory
[6], gray system model [7–9], and Markov model [10, 11].
Regression analysis is a statistical inference method to study
the relevant relation vessel between the phenomena (vari-
ables), and the advantage of the regression analysis method
is to synthesize various factors of the vessel traffic system, but
it requires a large amount of the system data. *e gray
system model takes the uncertain system characterized by
incomplete information as the research object, and through
the gray information processing technology, it seeks the law
in the system evolution process and then reduces the un-
certainty of the system internal information. Comparing
with the regression analysis method, the gray system model
can obtain high short-term prediction accuracy with less
data, but it is only suitable to model the series data with
exponential and approximate exponential rules and de-
scribes the monotonous changing process. *e gray Markov
prediction model has higher prediction accuracy for the
nonstationary series with certain stochastic volatility and
change trend, but the difficulty in application is to divide the
vessel accident condition accurately.

Inmachine learning, support vectormachines (SVMs) are
supervised learning models with associated learning algo-
rithms that analyze data used for the classification and re-
gression analysis. SVM is a very effective approach and has
been used widely for classification, regression, and pattern
recognition [12]. SVM is based on the statistical learning
theory (SLT) and the structural risk minimization (SRM)
concepts, suits for small-sample, nonlinear problems, and can
effectively avoid the dimension disaster [13]. In the case of
much less data, the SVM can better describe the nonlinear and
random characteristics of the vessel accidents. As a new type
of the SVM, least-squares SVM (LSSVM) greatly improves the
convergence speed by solving the function estimation
problem with the quadratic programming method, which is
more suitable for the research of vessel accident prediction
[14].*e performance of the LSSVMdepends on the choice of
parameters, which are determined by the cross-validation
method generally, but the limitations of the cross-validation
method itself will affect the learning and generalization ability
of the LSSVM. Genetic algorithm (GA) and particle swarm
optimization (PSO) can be used as an optimization theme for
indicating hyperparameters of the LSSVM [15]. Least-squares
support vector machine was employed to predict rheology of
the drilling fluid at wellbore conditions for different types of
drilling fluids including oil-based muds, water-based muds,
and gas aphrons. From the average absolute relative deviation,
correlation coefficient, and mean square error, the proposed
low-parameter model has an acceptable robustness, integrity,
and reliability [16]. *e new type of the support vector
machine method was used for proposing the predictive model
for specifying the efficiency of chemical flooding in oil res-
ervoirs [17]. Quantum-behaved particle swarm optimization
(QPSO) algorithm is a kind of intelligent optimization al-
gorithm developed on particle swarm optimization and can
be used to solve the nonlinear and complex optimization
problems with the features of less control parameters, easily to
set up, strong search capability, and good global search ability

[18, 19]. An extended least-squares support vector machine
(LSSVM) model was applied in the forecasting of the new
sequence, in which the parameters of the LSSVM were op-
timized by an improved quantum-behaved particle swarm
(IQPSO) [20].

*is study deals with the usability of the least-squares
SVM paradigm, as a simplification of the conventional SVM,
to predict the vessel accidents in China, where the hyper-
parameters of the LSSVM are optimized by an improved
quantum-behaved particle swarm. *e effectiveness of the
proposed model is verified using the real data of the vessel
accidents in China since 1990. *e prediction result can, to
some extent, provide a theoretical basis for the maritime
department to develop an effective maritime management
countermeasure.

2. Objectives and Contributions

Water transportation occupies a very important position in
economic construction and plays an important role in the
comprehensive transportation system and regional logistics.
*e number of vessel accidents is an important indicator to
evaluate vessel traffic safety and measure the level of maritime
management. *e objective of this study is to predict the
future state by analyzing the historical data of vessel accidents.

*e contribution of this study lies in that it provides an
efficient way to predict the number of vessel accidents in
China, and it is helpful for the administrative department to
develop a maritime management countermeasure to reduce
the accidents.

3. Methodology

3.1. Least-Squares SVM. Least-squares SVM takes the reg-
ularization theory and structural risk minimization as the
basis, greatly reduces the computational complexity by
changing the quadratic programming problem in the
standard SVM into solving the linear equations, and enjoys
similar advantages as the SVM. At present, LSSVM is a very
active artificial intelligence method and widely applied in the
modeling and control problems.

*e formulation of the LSSVM for nonlinear function
estimation is expressed as follows: given a training set
S � (xi, yi) 

N
i�1, where xi ∈ Rm is the input data in the input

space and yi ∈ R is the output value for a given value of the
specific input variable, the formulation of the LSSVMmodel
for function estimation becomes

y(x) � 

N

l�1
αl · Kernal x, xl(  + b. (1)

*e parameters α � [α1, α2, . . . , αN]T and b satisfy

b

α
  �

0 LT

L Φ + Δ
⎡⎣ ⎤⎦

1

Y
 , (2)

where Y � [y1, y2, . . . , yN]T, L � [1, 1, . . . , 1]T,
α � [α1, α2, . . . , αN]T, and Φ � (Φij)n×n with general
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element Φij � φ(xi)
Tφ(xj) � Kernal(xi, xj). Here, different

weights ci are assigned for the ith data error; thus, Δ satisfies

Δij �
ci ≜ c0 exp((i/N)ϱ), j � i,

0, j≠ i,
 (3)

where, c0 and ϱ are two positive constants. *e kernel
function Kernal(·) is chosen RBF kernel function since the
generalization ability of RBF is stronger.

In the literature, a number of comprehensive intro-
ductions to the LSSVM are available, and the theory of the
LSSVM has also been described clearly [14, 16, 17]. So, for
more details, refer to the aforementioned references.

3.2. Improved QPSO Algorithm. Quantum-behaved particle
swarm optimization (QPSO) was proposed by Sun et al.
inspired by the basic theory of quantum physics, which
mainly adopted the expression characteristics of the su-
perposition of quantum theory and probability features.

In the QPSO algorithm, the swarm updates the indi-
viduals’ position according to the following way:

mbest[t + 1] �
1
N



N

i�1
pbesti1[t], . . . ,

1
N



N

i�1
pbesti D[t]⎛⎝ ⎞⎠,

p[t + 1] � φ[t + 1] · pbest[t] +(1 − φ[t + 1]) · gbest[t],

(4)

x[t + 1] � p[t + 1] + δ(u[t + 1])·

ln (u[t + 1])
β[t+1]· mbest[t+1]− x[t]| | ,

(5)

where φ[t + 1], u[t + 1] is a random number in (0, 1) at the
step t + 1, N is the size of the swarm, D is the dimension of
the particles, and p[t + 1] is called a local attractor at the step
t + 1. *e function δ(u[t]) satisfies

δ(u[t)) �
−1, u[t]≤ 0.5,

1, u[t]> 0.5.
 (6)

Note that u[t] in equation (4) is a random number in
[0, 1] obeying uniform distribution, and E(u[t]) � 0.5,
which indicates that when u[t] � 0.5, the position of the
particle x[t] should be assigned at the local attractor p[t],
but from equation (4), there is δ(0.5) � −1, and thus, x[t]

is not assigned to p[t] when u[t] � 0.5. Based on this
consideration, a modification on fd4equation (5) is made,
i.e.,

x[t + 1] � p[t + 1] − β[t + 1] · mbest[t + 1]


− x[t]|ln(2u[t + 1]).
(7)

In this work, a dynamically adjusting inertia weight β[t +

1] is adopted. Let FIT denote the fitness function in a
minimization problem. Set χ[1] � λ[1] � 0. For
t � 2, 3, . . . , tmax, define

χ[t]≜
FIT gbest[t]( 

FIT gbest[t − 1]( 
,

λ[t]≜
FIT gbest[t − 1]( 

1/N 
N
i�1 FIT pbest[t − 1]( 

.

(8)

It is obvious that 0≤ χ[t], λ[t]≤ 1, where χ[t] reflects the
evolution speed of the quantum particle swarm and λ[t]

reflects all the particles’ aggregation degree.
A dynamically adjusting inertia weight β[t] is adapted,

which takes the form

β[t] � β0 − β1χ[t] + β2λ[t], (9)

where β0 is the initial weight, and in general, β0 � 1, and β1,
β2 are the weights of χ[t] and λ[t]. Since χ[t] and λ[t] are
both dependent on the iteration times, β[t] in equation (8) is
also dependent on iteration times, but in an indirect way. As
it was proved in [18] that, as long as β[t]< 1.78, the con-
vergence of QPSO can be guaranteed, it is assumed that
β0, β1, and β2 satisfy the constraints β1 < β0 and
β0 + β2 < 1.78.

3.3. IQPSO-LSSVM Regression Model. When RBF is chosen
as the kernel function,

Kernal x, x′(  � exp
− x − x′

����
����

2σ2
 . (10)

*e parameters to be optimized are the regularization
parameter c0, ϱ in equation (3), and kernel parameter σ in
equation (10).

*e selection of the parameters has important effects on
learning and generalization ability of the model. In this
work, IQPSO is applied to optimize the parameters of the
LSSVM. *e flowchart of parameter adjustment based on
IQPSO is depicted in Figure 1. *e optimization procedure
has been repeated several times as attempts to reach the most
probable global optimum of the fitness function.

4. Data Collection and Preprocessing

4.1.Data ofVessel Accidents. *e data used as the sample are
the accident number per month from 1999 to 2014 [21],
which are given in Table 1. *e time series is shown in
Figure 2.

4.2. Data Preprocessing

Step 1. Data gray preprocessing
For the time series x(0) � x(0)(k) 

T

k�1 of vessel accidents
(T � 192), let x(1) � x(1)(k) 

T

k�1 denote the sequence gen-
erated by one accumulated generating operation (AGO),
where x(1)(k) � 

k
i�1 x

(0)(i), k � 1, . . . , T.

Step 2. Data phase space reconstruction
To sufficiently extract the useful information of the time

series x(1)(k) 
T

k�1, the commonly used method is the phase
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space reconstruction (PSR) in the delay coordinate proposed
by Packard et al. [22]. According to Takens [23], a time series
can sufficiently reconstruct an original dynamic system.
From this procedure, the time series x(1)(k) 

T

k�1 can be
reconstructed in a multidimensional phase space as follows:

xi � x(1)
(i), · · · , x(1)

(i +(m − 1)τ) ,

yi � x(1)
(i + mτ), i � 1, 2, . . . , T − mτ,

(11)

where τ is the delay parameter and m is the embedding
dimension. It is very important to select a suitable pair of
embedding dimensionm and time delay τ when performing
PSR [24–26]. Until now, there is still no exactly good way to
determine τ and m. In [27], it is advised that τ should be

selected larger than needed to prevent ignoring system in-
formation. In the following discussion, embedding dimen-
sion m is set equal to 3 and 4 according to the studies of
Brock et al. [28], which indicated that an appropriate em-
bedding dimension m should be between 2 and 5; the time
delay is assumed to be month to month, i.e., τ � 1. *e data
from 1999 to 2012 are used as the training set, and the data in
2013 and 2014 are used as the test sample.

Step 3. Data prediction by IQPSO-LSSVM and representation
To improve the convergence rate of the model, a nor-

malized operation on xi and yi are taken, which are also
denoted by xi and yi. Use the data pair (xi, yi) 

T−mτ
i�1 ob-

tained in equation (11) to train IQPSO-LSSVM, and obtain

Generate an initial population of N particles randomly
Each particle contains an array of γ0 , ρ, and σ2

Training dataset Training dataset

Training the LSSVM model

Trainied LSSVM model

IQPSO fitness evaluation

NoYes
Terminal conditions met?

Stored the optimized LSSVM model 

Update p,x

Compute χ, λ ↦ β

Random numbers
φ, u

Update Pbest, gbest, mbest

β0, β1, β2

Figure 1: Flowchart of the parameters of the LSSVM model optimization by the IQPSO algorithm.
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an optimal parameter pair (c0, ϱ, σ2), which is stored to
optimize LSSVM as a prediction model, i.e.,

x(1)
(T + 1) � yT+1−mτ � LSSVM xT+1−mτ( . (12)

*e final step is to reverse the predicted result x(1)(T + 1)

of the new sequence by the inverse accumulated generating
operation (I-AGO) and obtain that

x(0)
(T + 1) � x(1)

(T + 1) − x(1)
(T). (13)

5. Results and Discussion

In this study, root mean squared error (RMSE) and themean
relative error (MRE) were applied as criteria for assessing an
estimation performance. *e expressions to evaluate MSE
and R2 are given as follows:

RMSE �

�����������������������

1
NPred



NPred

i�1
y
Actual
i − y

Pred
i 

2
,




MPE �
1

NPre d



Npred

i�1

y
Pred
i − y

Actural
i

y
Actural
i




.

(14)

5.1. 9e Prediction of the Gray Model. Gray model is easily
built with model parameters α � 0.0057 and β � 62.7364.
*e prediction result is presented in Figure 3. It can be
observed that the prediction result is not quite desirable. *e
predicted accident numbers for all months are not quite
different, and the number lies between 20 and 25, while the
maximum prediction error 15 occurs at February 2014. *e
total accident prediction number in the first and second half
year are, respectively, 143 and 138 in 2013 and 134 and 129 in
2014. *e maximum cumulative error 17 occurs at the
second half year of 2013 and the first half year of 2014.

5.2. 9e Prediction of PSO-LSSVM. To improve the pre-
diction rate, the LSSVMwith the radial basis kernel function
is adapted, where the weight c0, ρ, and the kernel parameter
σ2 are optimized by the PSO algorithm andQPSO algorithm,
respectively.

*e size of the swarm is set to 10, and the maximum
iteration is 50. To consider the existence of certain ran-
domness in the optimization process, the algorithm is run
10 times, and the average value is taken as the predicted
value.

*e prediction results of PSO-LSSVM for m� 3 and
m� 4 are presented in Figure 4. From Figure 4(a), it can be
observed that the maximum prediction error 14 occurs at
February 2014. *e total accident prediction number in the
first and second half year are, respectively, 117 and 118 in
2013 and 118 and 129 in 2014. *e maximum cumulative
error 24 occurs at the first half year of 2013. From
Figure 4(b), it can be observed that the maximum prediction
error 14 occurs at February 2014. *e total accident pre-
diction number in the first and second half year are, re-
spectively, 119 and 122 in 2013 and 122 and 128 in 2014.*e
maximum cumulative error 22 occurs at the first half year of
2013.

Table 1: Number per month of vessel accidents in China from 1999
to 2014.

Jan. Feb. Mar. Apr. May June
1999 38 38.5 49 65 59 51.5
2000 35 35 39 45 37 45
2001 34 30.5 74 62 37 44
2002 59 39 78.5 73 46.5 64
2003 43.5 45 74.5 51 48 49
2004 28 49 56.5 53 43.5 35
2005 46.5 33.5 44 64.5 42 44
2006 21 20 32 48 42 39
2007 31.5 23.5 40.5 33.5 35 30
2008 27 16 27.5 32 34.5 35
2009 8.5 27.5 25.5 31.5 30 40.5
2010 31.5 24 26 27.5 30.5 22
2011 31 14 22.5 24.5 28 18
2012 14.5 18 27 23 22.5 17.5
2013 22 13 22.5 27 24 32.5
2014 21 7.5 21 20 25 22
— July Aug. Sep. Oct. Nov. Dec.
1999 69.5 74 58 56 48.5 70
2000 52 63 68.5 53 48.5 62.5
2001 48 55 54.5 46.5 31 83.5
2002 65.5 76.5 67 37 59.5 69
2003 71 39.5 80 43.5 40 55
2004 47 54.5 40 42 42.5 71
2005 36.5 44 48 38 48.5 54.5
2006 37.5 39 34.5 38.5 37 47.5
2007 33 38.5 26.5 38 40 40
2008 26.5 32.5 25.5 23.5 36 26
2009 27 32 32 23.5 40.5 31
2010 23.5 27 17 23 25.5 54
2011 26 26.5 16 31.5 32 20
2012 28 34 13.5 56 16 24.5
2013 17.5 24 8 23.5 24 24
2014 23 25 25.5 23.5 40.5 25.5
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Figure 2: Time series of vessel accidents.
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5.3. 9e Prediction of QPSO-LSSVM. *e prediction of
QPSO-LSSVM for m� 3 and m� 4 is presented in Figure 5.
From Figure 5(a), it can be observed that the maximum
prediction error 16 occurs at September 2013. *e total
accident prediction number in the first and second half year
are, respectively, 124 and 111 in 2013 and 123 and 124 in
2014. *e maximum cumulative error 19 occurs at the
second half year of 2014. From Figure 5(b), it can be seen
that the maximum prediction error 15 occurs at February
2014. *e total accident prediction number in the first and
second half year are, respectively, 126 and 113 in 2013 and
130 and 125 in 2014. *e maximum cumulative error 18
occurs at the second half year of 2014.

5.4. 9e Prediction of Gray-IQPSO-LSSVM. *e prediction
of gray-IQPSO-ELSSVM for m� 3 is presented in
Figure 6(a), and the maximum prediction error 18 occurs at
September 2013.*e total accident prediction number in the
first and second half year are, respectively, 131 and 130 in
2013 and 122 and 135 in 2014. *e maximum cumulative
error 10 occurs at the first half year of 2013. And for m� 4,
the prediction of QPSO-LSSVM is presented in Figure 6(b),
and the maximum occurs at the second half year of 2014.

From Figure 6, it can be seen that the prediction of gray-
IQPSO-ELSSVM for m� 4 is better than m� 3 and GM (1,
1), PSO-LSSVM, and QPSO-LSSVM, which can be used in
the forecasting of the vessel accidents.

Table 2 shows the error comparison of different models,
from which it can be seen that gray-IQPSO-LSSVM is better
than other models.

To illustrate the impact of the time delay on gray-
IQPSO-LSSVM, the prediction results for different time
delays are shown in Figure 7, where the time delay is selected
quarter to quarter, semiannual to semiannual, and year to
year, i.e., τ � 3, 6, 12. It can be observed that the prediction
result for month to month is better than quarter to quarter,
semiannual to semiannual, and year to year. For τ � 3, the
maximum prediction error 18 occurs at September 2013.*e
total accident prediction number in the first and second half
year are, respectively, 137 and 132 in 2013 and 122 and 122 in
2014. For τ � 6, the maximum prediction error 30 occurs at
February 2013. *e total accident prediction number in the
first and second half year are, respectively, 154 and 120 in
2013 and 112 and 131 in 2014. For τ � 12, the maximum
prediction error 22 occurs at September 2014. *e total
accident prediction number in the first and second half year
are, respectively, 151 and 127 in 2013 and 116 and 122 in
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Figure 4: *e comparison between the real data in 2013-2014 and the prediction result of the PSO-LSSVM model.
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Figure 3: *e comparison between the real data in 2013-2014 and the prediction result of GM (1, 1).
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Figure 6: *e comparison between the real data in 2013-2014 and the prediction result of the gray-IQPSO-ELSSVM model.
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Figure 5: *e comparison between the real data in 2013-2014 and the prediction result of the QPSO-LSSVM model.

Table 2: *e error comparison of different models.

Errors
RMSE MRE

Models m� 4 m� 4
GM (1, 1) 6.916 0.302
Lasso regression 6.904 0.292
Bayesian regression 6.864 0.289
PSO-LSSVM 6.787 0.288
QPSO-LSSVM 6.784 0.287
Gray-IQPSP-LSSVM 6.746 0.282
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2014. From 15, it can be observed that the prediction result
for month to month is better than quarter to quarter,
semiannual to semiannual, and year to year.

6. Conclusions

*e number of vessel accidents is an important indicator to
evaluate vessel traffic safety and measure the level of
maritime management, and it has the vital significance for
the maritime department to develop a maritime manage-
ment countermeasure to reduce the accidents by analyzing
the historical data of vessel accidents and predicting the
future state. In this work, the problem of forecasting of the
vessel accidents in China was discussed. To consider the
advantages of the gray prediction model, LSSVM, and
QPSO and make up the theoretical defect of the gray
prediction model and the limitation of the LSSVM in the
parameter solving, an integrated prediction model was
proposed. Firstly, to weaken the randomness of the original
sequence, the gray processing operations in the gray system
theory are adopted to generate a new sequence with ex-
ponential and approximate exponential rules. And then, an
extended least-squares support vector machine (LSSVM)
model was applied in the forecasting of the new sequence,
in which the parameters of the LSSVM are optimized by an
improved quantum-behaved particle swarm (IQPSO). *e
prediction results show that the gray-IQPSO-LSSVM is an
efficient algorithm and can be used in the forecasting of the
vessel accidents.
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Figure 7: Comparison between the real data in 2013-2014 and the
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