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.e generated signals generally contain a large amount of background noise when the mechanical bearing fails, and the fault
signals present nonlinear and non-Gaussian feature, which have heavy tail and belong to α-stable distribution (1< α< 2); even the
background noises are also α-stable distribution process. .en it is difficult to obtain reliable conclusion by using the traditional
bispectral analysis method under α-stable distribution environment. Two improved bispectrum methods are proposed based on
fractional lower-order covariation in this paper, including fractional low-order direct bispectrum (FLODB) method, fractional
low-order indirect bispectrum (FLOIDB) method. In order to decrease the estimate variance and increase the bispectral flatness,
the fractional lower-order autoregression (FLOAR) model bispectrum and fractional lower-order autoregressive moving average
(FLOARMA) model bispectrum methods are presented, and their calculation steps are summarized. We compare the improved
bispectrum methods with the conventional methods employing second-order statistics in Gaussian and SαS distribution en-
vironments; the simulation results show that the improved bispectrum methods have performance advantages compared to the
traditional methods. Finally, we use the improved methods to estimate the bispectrum of the normal and outer race fault signal;
the result indicates that they are feasible and effective for fault diagnosis.

1. Introduction

Bispectral analysis based on high-order statistics is an ef-
fective tool to solve nonlinear phase coupling and non-
Gaussian fault diagnosis [1, 2]. .e traditional bispectrum
methods include nonparametric bispectrum [3, 4], para-
metric AR bispectrum [5, 6], parametric ARMA bispectrum
[7], and their improved bispectrum methods [8]. .e bis-
pectrum of the signal contains not only the amplitude in-
formation but also the phase information. Bispectrum can
effectively suppress the influence of Gaussian background
noise and extract the non-Gaussian features hidden in the
signal, and the graphics are intuitive. .e fault feature of
different nonlinear coupling modes in the bispectrum can be
applied to quickly identify the working state of the bearing.
.erefore, bispectrum can better extract the signal features
than the traditional power spectrum, which has been widely
used in mechanical fault diagnosis [9–11]. In recent years,

the methods of mechanical fault signal analysis have been
developed. A new family of model-based impulsive wavelets
and their sparse representation method are presented for
rolling bearing fault diagnosis in [12]. An SVD principle
analysis method based on the correlation coefficient is
proposed for the bearing fault diagnosis in [13]. Subse-
quently, Qin et al. proposed a K-SVD algorithm with
adaptive transient dictionary and transient feature extrac-
tion by the improved orthogonal matching pursuit [14]. Guo
et al. applied the resonance demodulation and vibration
separation to tooth root crack detection of planet and sun
gears [15].

Recently, some extension methods based on the tradi-
tional bispectrum have also been studied and applied to the
rotating machinery signal analysis, such as the deterministic
bispectrum [16], modulation signal bispectrum [17, 18],
principal component bispectrum [19, 20], and cyclic bis-
pectrum [21]. Cheng et al. proposed a mechanical fault
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location and diagnosis method based on two bispectra and
fuzzy clustering, which can effectively diagnose the fault
state and location [22]. A new fault diagnosis method based
on wavelet packet decomposition and modulation signal
bispectrum analysis was proposed in [23]..emethod firstly
reconstructs the wavelet packet energy signal in time-fre-
quency domain and then carries out modulation bispectrum
analysis on the reconstructed signal, which can realize early
fault diagnosis. Wang et al. proposed a bispectrum image
texture features manifold method based on the support
vector machines and genetic optimization algorithms for the
rolling bearing vibration signal analysis [24]. A new bis-
pectrum analysis method based on the optimal scale shape
slice was proposed in [25], and the method can extract the
fault signal from the sensitive modal component; hence, it
can better extract fault features. A new variant modulation
signal bispectrummethod was introduced in [26], which was
used to measure and analyze the fault current signals of the
different mechanical motors, and the results show that this
method is better than the traditional bispectrum method.
.e traditional and improved bispectrum methods have
been applied in the rotating machinery signal analysis fields,
but the methods still have some defects, and their perfor-
mances degrade in impulsive environment and even fail.
.erefore, it is of great significance to explore high efficiency
and performance of bispectrum analysis methods.

In actual working conditions, the mechanical bearings
work in poor environment, the generated signals generally
contain a large amount of background noise when the fault
occurs, and the fault signals have obvious nonlinear and
non-Gaussian properties, which belong to α-stable distri-
bution process, and even the same with the noise in the
signals [27–30]. Hence, it is difficult to find a solid con-
clusion by using the traditional bispectrum analysis
methods. .erefore, improved bispectrum methods which
can be applicable to α-stable distribution environment need
to be explored. Recently, α-stable distribution model was
used for statistical modeling of the ocean environmental
noise [31].

.e adaptive cumulative distribution detector and blind
estimation of frequency hopping parameters methods were
proposed based on α-stable distribution model in [32, 33].
Several improved frequency spectrum analysis methods have
been introduced for α-stable distribution environment in
[34], and the improved time frequency representation al-
gorithms are proposed in [35], which have been applied to
mechanical fault signal analysis.

In view of the performance degradation of the con-
ventional bispectrum methods in α-stable distribution en-
vironment, the improved fractional low-order direct
bispectrum and fractional low-order indirect bispectrum
methods have been proposed for α-stable distribution en-
vironment in this paper, and the improved fractional lower-
order autoregression model bispectrum and fractional
lower-order autoregressive moving average model bispec-
trum methods are presented for decreasing the estimate
variance and increasing the bispectral flatness. We also
summarize their calculation steps..e improved bispectrum
methods and the traditional bispectrummethods employing

second-order statistics are compared under Gaussian and
α-stable distribution environments; the simulation results
show that the improved bispectrum methods have perfor-
mance advantages compared to the traditional methods.
Finally, we apply the improved methods to estimate the
bispectrum of the normal and outer race fault signal; the
result indicates that the proposed methods are feasible and
effective for fault diagnosis.

In this paper, several improved bispectrum analysis
methods based on fractional lower-order statistics are
proposed for mechanical bearing fault diagnosis in Gaussian
or α-stable distribution noise environment. .e paper is
structured in the following manner. α-stable distribution
and the bearing fault signals are introduced in Section 2..e
improved fractional lower-order bispectrum methods are
demonstrated, and the simulation comparisons employing
the traditional bispectrum methods and the improved bis-
pectrum methods are performed to show the advantage of
the proposed methods in Section 3. .e conjoint application
simulations of the actual bearing fault signals employing the
proposed bispectrum and time-frequency distribution in
[35] are demonstrated in Section 4. Finally, the conclusions
and future research are given in Section 5.

2. Bearing Fault Signals

.e actual bearing fault signals data are obtained from the
Case Western Reserve University (CWRU) bearing data
center [36]. .e experimental equipment adopts 6205-2RS
JEM SKF type bearing, the outer race diameter is 20.472
inches, and the inner race and the ball diameter are 0.9843
inches and 0.3126 inches, respectively. .e bearing outer
race thickness is 0.5906 inches, motor load is 0 HP, and
motor speed is 1797 rpm. .e bearing faults of inner race,
ball, and outer race are set, and the fault diameters are all
0.021 inches. .e fault data are collected at 12,000 samples
per second, and the outer race position relative to load zone
is centered at 6:00. .e normal signals are given in
Figure 1(a), and the fault signals of inner race, ball, and outer
race are shown in Figures 1(b)–1(d), respectively. We can
know that the waveform of the fault signals has a certain
impulse.

In order to further verify the pulse characteristics of the
bearing fault signals, we use α-stable distribution statistical
model to estimate the parameters of the inner race fault, ball
fault, and outer race fault signals, and the results are given in
Table 1 [37, 38]. As it can be seen, the characteristic index of
the normal signals is equal to 2, which is Gaussian distri-
bution. However, the characteristic index of the bearing fault
signals is greater than 1 but smaller than 2, and it belongs to
non-Gaussian α-stable distribution (α< 2).

PDFs of the signals of inner race fault, ball fault, and
outer race fault are shown in Figures 2(a)–2(c), respectively.
From the PDFs of normal and fault signals, we can see that
PDFs of fault signals have heavy tails. Most of the parameters
β are approximately equal to zero in Table 1, and Figure 2
shows that PDFs of the fault signals are near symmetric.
Hence, SαS distribution is a more concise and accurate
statistical model for the bearing fault signals.
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3. Fractional Lower-Order Nonparametric
Bispectrum Methods

3.1. Fractional Lower-Order Direct Bispectrum Method.
x(n), n � 0, 1, . . . , N − 1{ } is N samples of the observation
data; its discrete fractional lower-order Fourier transform is
defined as

X(ω) � 
N− 1

n�0
x

〈P〉
(n)e

− jωn
, (1)

where P is a given real constant and P< α≤ 2. 〈P〉 denotes P

order moment of x(t), when x(t) is a real signal,
x〈P〉(t) � |x(t)|P · sign[x(t)],

sign[x( t )] �

1, x( t )> 0,

0, x( t ) � 0,

− 1, x( t )< 0,

⎧⎪⎨

⎪⎩
, and when x(t) is a com-

plex signal, x〈P〉(t) � |x(t)|P− 1 · x∗(t), where ∗ denotes
conjugate operation.

Dividing the data x(n){ } into L segments, each segment
is M points, and two adjacent segments overlap (M/2)

points; then L � (2(N − (M/2))/M) and
xi(n), i � 1, 2, . . . , L; n � 1, 2, . . . , M . According to equa-
tion (1), the discrete fractional low-order Fourier transform
of the ith segment can be written as

Xi(ω) � 

M

n�1
x

〈P〉
i (n)e

− jωn
. (2)
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Figure 1: Waveforms of the bearing fault signals. (a) Normal signals in DE and FE. (b) Inner race fault signals in BA, DE, and FE. (c) Ball
fault signals in BA, DE, and FE. (d) Outer race fault signals in BA, DE, and FE.
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Table 1: .e -stable distribution parameters of the bearing fault signals.

Parameters α β c μ

Normal DE 2.000 − 0.2863 0.0532 0.0121
FE 2.000 1.000 0.0583 0.0236

Inner race fault
BA 1.7682 0.0872 0.0590 0.0062
DE 1.4195 0.0155 0.2407 0.0175
FE 1.8350 0.0322 0.1495 0.0291

Ball fault
BA 1.9790 0.0592 0.0293 0.0055
DE 1.8697 0.1215 0.0772 0.0193
FE 1.998 − 0.0371 0.0674 0.0321

Outer race fault
BA 1.6077 − 0.1731 0.0530 0.0012
DE 1.1096 0.0433 0.1341 0.0367
FE 1.5435 − 0.0169 0.0968 0.0296
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Figure 2: PDFs of the normal and bearing fault signals. (a) PDFs of the normal and inner race fault signals in DE, FE, and BA. (b) PDFs of
the normal and ball fault signals in DE, FE, and BA. (c) PDFs of the normal and outer race fault signals in DE, FE, and BA.
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.e corresponding discrete fractional low-order Fourier
transform coefficient is defined as

Xi(φ) �
1

M


M

n�1
x

〈P〉
i (n)e

− (j2πnφ/M)
, φ � 0, 1, . . . ,

M

2
.

(3)

Let the sampling frequency of the signal x(n){ } be fs and
the total frequency sampling points be I; then
K � (((M/I) − 1)/2). Combining equation (3), fractional
low-order triple correlation of x(n){ } can be expressed as

Bi φ1,φ2(  �
I
2

f
2
s



K

k1�− K



K

k2�− K

Xi
′ φ1 + k1(  Xi

″ φ2 + k2(  X
″′
i − φ1 − φ2 − k1 − k2( ,

Xi
′ φ1 + k1(  �

1
M



M

n�1
x
〈P1〉
i (n)e

− j2πn φ1+k1( )/M( )

Xi
″ φ2 + k2(  �

1
M



M

n�1
x
〈P2〉
i (n)e

− j2πn φ2+k2( )/M( ),

X
″′
i − φ1 − φ2 − k1 − k2(  �

1
M



M

n�1
x
〈P3〉
i (n)e

− j2πn − φ1− φ2− k1− k2( )/M( ),

(4)

where P1 + P2 + P3 < α, and we let P1 � P2 � P3 < (α/3),
0≤φ2 ≤φ1, and φ2 + φ1 ≤ (fs/2). .e corresponding

fractional low-order direct bispectrum of the ith segment is
given by

FLODBi ω1,ω2(  �
I
2

f
2
s



K

k1�− K



K

k2�− K

Xi
′ ω1′ + k1(  Xi

″ ω2′ + k2(  X″
′
i − ω1′ − ω2′ − k1 − k2( , (5)

where ω1′ � (Iω1/2πfs) and ω2′ � (Iω2/2πfs). Averaging the
bispectrum of those L segments, fractional low-order direct
bispectrum of x(n){ } can be gotten.

FLODB ω1,ω2(  �
1
L



L

i�1
FLODBi ω1,ω2( . (6)

Fractional low-order direct bispectral estimation process
is to first calculate the discrete fractional low-order Fourier
transform coefficient and then compute its fractional low-
order triple correlation and finally average fractional low-
order triple correlation of all segments.

3.2. Fractional Lower-Order Indirect Bispectrum Method.
By using the fractional lower-order moment, we define
discrete fractional lower-order three-order cumulants
(FLOTOC) of x(n){ } as

C m1, m2(  �
Δ

E [x(m)]
〈P1〉 x m + m1(  

〈P2〉 x m + m2(  
〈P3〉 ,

(7)

where 0≤P1 < (α/2), 0≤P2 < (α/2), and 0≤P3 < (α/2). If
x(n){ } are real, then the estimation of FLOTOC is given by

C m1, m2(  �
1

M


M2

m�M1

|x(m)|
P1 x m + m1( 



P2 x m + m2( 



P3 sign x(m)x m + m1( x m + m2(  , (8)
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and if x(n){ } are complex, then

C m1, m2(  �
1

M


M2

m�M1

|x(m)|
P1− 1

x m + m1( 



P2− 1

x m + m2( 



P3− 1

x
∗
(m)x
∗

m + m1( x
∗

m + m2( , (9)

where M1 � max(0, − m1, − m2) and
M2 � min(M − 1, M − 1 − m1, M − 1 − m2).

From equations (7)–(9), .e ith segment of FLOTOC of
the signal x(n){ } can be given by

Ci m1, m2(  �
1

M


M2

m�M1

xi(m) 
〈P1〉 xi m + m1(  

〈P2〉 xi m + m2(  
〈P3〉, (10)

where i � 1, 2, . . . , L, averaging fractional low-order third-
order cumulant of the L segments; we can get

C m1, m2(  �
1
L



L

i�1

Ci m1, m2( . (11)

Taking the windowed two-dimensional discrete Fourier
transform of equation (11), fractional low-order indirect
bispectrum estimation of the signal x(n){ } can be given by

FLOIDB ω1,ω2(  � 
K

m1�− K



K

m2�− K

C m1, m2( w m1, m2( e
− j m1ω1+m2ω2( ), (12)

where w (m1, m2) is a two-dimensional window function
and K<M − 1. .e bispectrum estimation process of
fractional low-order indirect method is to first calculate the
discrete fractional low-order third-order cumulant of each
segment, followed by averaging the fractional low-order

third-order cumulant of all segments, and finally compute
the two-dimensional Fourier transform.

3.3. Application Review. In this simulation, the test signal
y(n) is defined as

y(n) � A cos 2πf1n + φ1(  + cos 2πf2n + φ2(  + cos 2πf3n + φ3(   + v(n),

� Ax(n) + v(n),
(13)

where x(n) is three cosinoidal signals and v(n) is additive
Gaussian noise or SαS distribution noise. f1 � 0.1,
f2 � 0.15, f3 � 0.2, φ1 � (π/3), φ2 � (π/4), φ3 � (π/5),
n � 0, 1, 2, . . . , N − 1, and N � 512. When v(n) is additive
Gaussian noise, signal to noise ratio (SNR) can be used. But
v(n) is SαS distribution noise, SNR is inapplicable, and
generalized signal to noise ratio (GSNR) is written as

GSNR � 10 log10
E |x(n)|

2
 

c
α

⎧⎨

⎩

⎫⎬

⎭ � 10 log10
1

Nc
α 

N− 1

n�0
|x(n)|

2
,

(14)

where c is the dispersion coefficient of SαS distribution
noise. According to the given GSNR, the amplitude of the
signal x(n) is written as

A �
10(GSNR/10)

(1/N)
N− 1
n�0 |x(n)|2

c
α

 

(1/2)

. (15)

Letting SNR � − 5 dB and GSNR � 20 dB, the traditional
bispectrum direct and indirect methods and fractional
lower-order bispectrum direct and indirect methods are
applied to estimate the bispectrum of the signal x(n) under
Gaussian distribution noise and SαS distribution noise; the
simulation results are shown in Figures 3–6.

3.4. Remarks. .e direct bispectrum estimations of the signal
x(n) under Gaussian noise environment (SNR � − 5 dB) are
shown in Figure 3. Figures 3(a) and 3(b) are the traditional
direct bispectral estimation and its three-dimensional graph
estimation, respectively. Fractional lower-order direct
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bispectral estimation and its three-dimensional graph are
given in Figures 3(c) and 3(d), respectively. .e result shows
that both methods can estimate the bispectrum of the signal
x(n) well. Figure 4 shows the direct bispectral estimations of
the signal x(n) under SαS distribution noise environment
(GSNR � 20 dB; α � 1.3). We can know that the traditional
direct bispectral estimation fails in Figures 4(a) and 4(b), but
the proposed fractional lower-order direct bispectral esti-
mation method in Figures 4(c) and 4(d) shows good per-
formance. Figures 5 and 6 are the traditional indirect
bispectrum and fractional lower-order indirect bispectrum of
the signal x(n) under Gaussian noise environment
(SNR � − 5 dB) and SαS distribution noise environment
(GSNR � 20 dB; α � 1.3), respectively. .e results show that
both methods have better performance under Gaussian noise

environment, but the conventional indirect bispectrum
method degenerates under SαS noise environment, and
fractional lower-order indirect bispectrum method can better
estimate out the bispectrum of the signal x(n). Hence, the
fractional lower-order direct and indirect bispectrum
methods are robust.

.e fractional lower-order direct and indirect bis-
pectrum methods have larger variance; we can increase
the number of segments and segment length by over-
lapping adjacent segments to reduce variance and add
two-dimensional window function to improve the fre-
quency resolution of bispectral estimation. .e proposed
fractional low-order bispectral (FLOB) estimation
methods still have biperiodicity and symmetry, so they can
be used to quickly calculate the bispectrum of the signal.
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Figure 3: .e direct bispectrum estimations of the signal x(n) under Gaussian noise environment. (a) .e direct method bispectrum
estimation of the signal x(n). (b) .e direct method bispectrum three-dimensional graph estimation of the signal x(n). (c) .e FLO direct
method bispectrum estimation of the signal x(n). (d) .e FLO direct method bispectrum three-dimensional graph estimation of the signal
x(n)).
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Fractional lower-order bispectral biperiodicity proper-
ties are as follows:

FLOB ω1,ω2(  � FLOB ω1 + 2π,ω2 + 2π( . (16)

Fractional lower-order bispectral symmetry properties
are as follows:

FLOB ω1,ω2(  � FLOB ω2,ω1(  � FLOB − ω1 − ω2,ω1(  � FLOB − ω1 − ω2,ω2( 

� FLOB ω1, − ω1 − ω2(  � FLOB ω2, − ω1 − ω2( 

� FLOB∗ − ω1, − ω2(  � FLOB∗ − ω2, − ω1( 

� FLOB∗ − ω1,ω1 + ω2(  � FLOB∗ − ω2,ω1 + ω2( 

� FLOB∗ ω1 + ω2, − ω1(  � FLOB∗ ω1 + ω2, − ω2( .

(17)
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Figure 4:.e direct bispectrum estimations of the signal x(n) under SαS noise environment. (a).e direct method bispectrum estimation of
the signal x(n). (b) .e direct method bispectrum three-dimensional graph estimation of the signal x(n). (c) .e FLO direct method
bispectrum estimation of the signal x(n). (d) .e FLO direct method bispectrum three-dimensional graph estimation of the signal x(n).
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4. Fractional Lower-Order Parametric
Bispectrum Methods

4.1. Fractional Lower-Order AR Model Bispectrum Method

4.1.1. Principle. .e conventional real p order AR model
process can be expressed as

X(n) � 

p

i�1
ai X(n − i) + W(n). (18)

.e traditional AR model bispectrum of the signal X(n)

in (18) is given by

B ω1,ω2(  � β
⌢

H ω1( H ω2( H
∗ ω1 + ω2( , (19)

where β
⌢

is the estimate of the third moment of the driving
noise, H(ω) is the system transfer function, and

H e
jω

  �
1

1 − 
p
i�1 aie

− jωi
. (20)

A fractional lower-order AR model SαS process x(n)

may be written as

x(n) � 

p

m�1
amx(n − m) + u(n), (21)

where p is order of the AR model and am(i � 1, 2, . . . , p) are
its parameters, which are real numbers. u(n) is an inde-
pendent identically distributed (i.i.d) SαS random process, α
is its characteristic index, and cu is its dispersion coefficient.
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Figure 5: .e indirect bispectrum estimations of the signal x(n) under Gaussian noise environment. (a). .e indirect method bispectrum
estimation of the signal x(n). (b) .e indirect method bispectrum three-dimensional graph estimation of the signal x(n). (c) .e FLO
indirect method bispectrum estimation of the signal x(n). (d) .e FLO indirect method bispectrum three-dimensional graph estimation of
the signal x(n)).
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x(n) can be expressed by a finite impulse response (FIR)
system [27].

x(n) � 

q

m�0
h(m)u(n − m), (22)

where h(m){ } is system impulse response coefficient and
u(n − m){ } is i.i.d SαS random process. Taking z transfor-
mation for equations (21) and (22) and obtaining the system
transfer function,

H(z) � 

q

m�0
h(m)z

− m
�

1
1 − 

p
m�1 amz

− m. (23)

Taking α-order moment with equation (23), we have

H(z) � [H(z)]
〈α〉

� 

q

m�0
h(m)z

− m⎡⎣ ⎤⎦
〈α〉

�
1

1 − 
p
m�1 amz− m 

〈α〉
,

(24)

z � ejω, and |z| � 1 on the unit circle; then

H e
jω

  �
1

1 − 
p
m�1 ame− jωm 

〈α〉
. (25)

According to the definition of the AR model bispec-
trum in (19) and α-order moment in (24) and (25), we
define fractional lower-order AR model bispectrum
(FLOARB) as

FLOARB ω1,ω2(  � cuH ω1( H ω2( H
∗ ω1 + ω2( , (26)

and FLOARB on the unit circle is written as

FLOARB e
jω1 , e

jω2  � cuH e
jω1 H e

jω2 H
∗

e
jω1 + e

jω2 ,

(27)

where cu is the dispersion coefficient of the driving SαS

random process u(n) and ∗ is conjugate operation.
According to the definition of the fractional lower-order

three-order cumulants in (8), we define
A � [a1, a2, . . . , ap]T, C � [C(1, 1)t, nCq(2, 2)h,... x, 7CC(

p, p)]T, and
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Figure 6: .e indirect bispectrum estimations of the signal x(n) under SαS noise environment. (a) .e indirect method bispectrum
estimation of the signal x(n). (b) .e indirect method bispectrum three-dimensional graph estimation of the signal x(n). (c) .e FLO
indirect method bispectrum estimation of the signal x(n). (d) .e FLO indirect method bispectrum three-dimensional graph estimation of
the signal x(n)).
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Φ�
Δ

C(0, 0) C(− 1, − 1) . . . C(1 − p, 1 − p)

C(2, 2) C(0, 0) . . . C(2 − p, 2 − p)

⋮ ⋮ ⋱ ⋮
C(p − 1, p − 1) C(p − 2, p − 2) . . . C(0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(28)

where Φ is named as fractional low-order three-order
cumulants matrix (FLOTOCM), which is Toeplitz. From

solving the AR bispectrum coefficients equations and
fractional low-order moment matrix equations in [30], we
let

ΦA � C. (29)

.en,

C(0, 0) C(− 1, − 1) . . . C(1 − p, 1 − p)

C(2, 2) C(0, 0) . . . C(2 − p, 2 − p)

⋮ ⋮ ⋱ ⋮
C(p − 1, p − 1) C(p − 2, p − 2) . . . C(0, 0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a1

a2

⋮

ap

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

C(1, 1)

C(2, 2)

⋮
C(p, p)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)
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Figure 7: .e AR model and FLOAR bispectrum estimations of the signal x(n) under Gaussian noise environment. (a) .e AR model
bispectrum estimation of the signal x(n). (b) .e AR model bispectrum three-dimensional graph estimation of the signal x(n). (c) .e
FLOARmodel bispectrum estimation of the signal x(n). (d).e FLOARmodel bispectrum three-dimensional graph estimation of the signal
x(n).
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Equation (30) is a fractional low-order bispectrum Yule-
Walker equation. .e AR model parameters
ai(i � 1, 2, . . . , p) can be gotten by solving equation (30).
When ai(i � 1, 2, . . . , p) are substituted into equation (27),
we can get fractional low-order AR model bispectrum
estimation.

In this paper, we apply the final prediction error (FPE)
criteria to determine the order p of fractional low-order AR
model. When p increases gradually from 1, FPE will be the
minimum at a certain p, which just is the most appropriate
order. .e calculation formula can be written as

FPE(p) � σ2a
N + p

N − p
, (31)

where σ2a is the variance of residuals.
We summarize the steps of the FLOAR model bispec-

trum method as follows:

Step 1: computing fractional lower-order three-order
cumulants of the signal x(n) with equations (7)–(9)
and constructing fractional low-order three-order
cumulants matrix in (28).
Step 2: solving fractional low-order bispectrum Yule-
Walker equation in equation (30) and getting the co-
efficients ai(i � 1, 2, . . . , p).
Step 3: computing fractional low-order AR model
bispectrum of x(n) by substituting ai(i � 1, 2, . . . , p)

into equation (19).

4.1.2. Application Review. In this simulation, the experi-
mental signal is y(n) in equation (13). .e performances of
the traditional AR model bispectrum method and the im-
proved FLOAR model bispectrum method are compared
under Gaussian distribution noise (SNR � − 5 dB) and SαS

distribution noise (α � 1.2; GSNR � 20 dB), and the simu-
lation results are shown in Figures 7–10.

In order to further verify the advantages of FLOAR
model bispectrum method, we conduct comparative ex-
periment on two methods under different α when
GSNR� 20 dB, and their parameter estimations are shown in
Figure 11. When α � 1.3 and GSNR changes from 14 dB to
24 dB, we compare the changes of the errors power with the
AR and FLO-AR model bispectrum methods under α-stable
distribution noise environment, and the simulation is given
in Figure 10.

4.1.3. Remarks. Figure 7 is the AR model and FLOAR
bispectrum estimations of the signal x(n) under Gaussian
noise environment (SNR � − 5 dB). .e traditional AR
model bispectral estimation and its three-dimensional graph
estimation are shown in Figures 7(a) and 7(b), respectively.
Fractional lower-order AR model bispectral estimation and
its three-dimensional graph are given in Figures 7(c) and
7(d), respectively. .e result shows that both methods can
estimate the bispectrum of the signal x(n) well under
Gaussian noise environment.

.e AR and FLOAR model bispectrum estimations of
the signal x(n) under SαS distribution noise (α � 1.2;
GSNR � 20 dB) are given in Figure 8. .e simulation result
shows that the conventional AR bispectrum method fails
under SαS noise environment in Figures 8(a) and 8(b), but
the improved FLOAR bispectrum method shows good
toughness in Figures 8(c) and 8(d). As a result, the AR
bispectrum method is only suitable to analyze the signals in
Gaussian environment, but the FLOAR bispectrum method
can work in Gaussian and SαS noise environment, which is
robust.

4.2. Fractional Lower-Order ARMA Model
Bispectrum Method

4.2.1. Principle. A fractional lower-order autoregressive
moving average (FLOARMA) model i.i.d SαS process x(n)

can be given by

x(n) � − 

p

m�1
aix(n − m) + 

q

m�0
biu(n − m), (32)

where p and q are orders of the AR and MA model, re-
spectively. am(i � 1, 2, . . . , p) and bm(m � 0, 1, 2, . . . , q) are
their parameters, which are real numbers. u(n) is an in-
dependent identically distributed (i.i.d) SαS random pro-
cess, α is its characteristic index, and its dispersion
coefficient is cu.

Simplifying equation (32), we have



p

m�0
aix(n − m) � 

q

m�0
biu(n − m), (33)

where a0 � 1 and b0 � 1. Taking z transform on both sides of
equation (33), we obtain



p

m�0
aiz

− m
X(z) � 

q

m�0
biz

− m
U(z), (34)

1 + 

p

m�1
aiz

− m⎛⎝ ⎞⎠X(z) � 1 + 

q

m�1
biz

− m⎛⎝ ⎞⎠U(z), (35)

H(z) �
X(z)

U(z)
�
1 + 

q
m�1 biz

− m

1 + 
p
m�1 aiz

− m �
B(z)

A(z)
, (36)

h(m)↔H(z),

x(n) � 

q

m�0
h(m)u(n − m),

(37)

where h(m){ } is system impulse response coefficient,H(z) is
system transfer function, and u(n − m){ } is i.i.d SαS random
process. .e AR model parameters changes with
am(i � 1, 2, . . . , p); A(z) and B(z) are the FIR and IIR
filters, respectively.

Taking α-order moment with equation (36),
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H(z) � [H(z)]
〈α〉

� 

q

m�0
h(m)z

− m⎡⎣ ⎤⎦
〈α〉

�
1 + 

p
m�1 bmz− m 

1 + 
p
m�1 amz− m 

⎡⎢⎣ ⎤⎥⎦

〈α〉

,

(38)

z � ejω, and |z| � 1 on the unit circle; then

H e
jω

  �
1 + 

p
m�1 bme− jωm 

1 + 
p
m�1 ame− jωm 

⎡⎢⎣ ⎤⎥⎦

〈α〉

. (39)

According to the definition of the ARMA model bis-
pectrum and α-order moment of H(z) in (38) and (39), we
define fractional lower-order ARMA model bispectrum
(FLOARMAB) as

FLOARMAB ω1,ω2(  � cu
H ω1(  H ω2(  H

∗ ω1 + ω2( ,

(40)

and FLOARB on the unit circle is written as

FLOARMAB e
jω1 , e

jω2  � cu
H e

jω1  H e
jω2  H

∗
e

jω1 + e
jω2 ,

(41)

where cu is the dispersion coefficient of the driving SαS

random process u(n) and ∗ is conjugate operation.
To obtain the coefficients of the fractional lower-order

ARMA model am(i � 0, 1, 2, . . . , p) and
bm(m � 0, 1, 2, . . . , q), we should multiply x(n − i) on both
sides of equation (32) taking fractional lower-order co-
variance to get

Dxx(i) � − 

p

k�1
akDxx(i − k) + 

q

k�0
bkDux(i − k), (42)

where

Dxx(i) �
Δ

E [x(n)]
〈P1〉[x(n − i)]

〈P2〉 , (43)

Dxx(i − k) �
Δ

E [x(n)]
〈P1〉[x(n − i + k)]

〈P2〉 , (44)

Dux(i − k) �
Δ

E [u(n)]
〈P1〉[x(n − i + k)]

〈P2〉 . (45)

It can be shown [24] that, for the fractional lower-order
covariance of the signal and noise in (45),

AR model bispectrum estimation
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Figure 8:.e ARmodel and FLOAR bispectrum estimations of the signal x(n) under SαS noise environment. (a).e ARmodel bispectrum
estimation of the signal x(n). (b) .e AR model bispectrum three-dimensional graph estimation of the signal x(n). (c) .e FLOAR model
bispectrum estimation of the signal x(n). (d) .e FLOAR model bispectrum three-dimensional graph estimation of the signal x(n).
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Dux( i ) �
0, i> 0,

cu[h(− i )]
〈α− 1〉

, i< 0.
 (46)

.en, if i> q, we have

Dxx(i) � 

p

k�1
akDxx(i − k), i> q, (47)

Dxx(q) Dxx(q − 1) . . . Dxx(q − p + 1)

Dxx(q + 1) Dxx(q) . . . Dxx(q − p + 2)

⋮ ⋮ ⋱ ⋮
Dxx(q + p − 1) Dxx(q + p − 2) . . . Dxx(q)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a1

a2

⋮
ap

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Dxx(q + 1)

Dxx(q + 2)

⋮
Dxx(q + p)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (48)
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Figure 9: .e ARMA model and FLOARMA bispectrum estimations of the signal x(n) under Gaussian noise environment. (a) .e
ARMA(2, 6) model bispectrum estimation of the signal x(n). (b).e ARMA(2, 6) model bispectrum three-dimensional graph estimation of
the signal x(n). (c) .e FLOARMA(2, 6) model bispectrum estimation of the signal x(n). (d).e FLOARMA(2, 6) model bispectrum three-
dimensional graph estimation of the signal x(n).
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Equations (47) and (48) are a generalized Yule-Walker
equation, and we can obtain the fractional lower-order AR
model (FLOARM) coefficients ak(i � 0, 1, 2, . . . , p) by
solving them.

If 0≤m≤ q, equation (42) changes as

Dxx(i) � 

p

k�0
akDxx(i − k) + 

q

k�0
bkDux(i − k)

� 

p

k�1
akDxx(i − k) + 

q

k�0
bk[h(i − k)]

〈α− 1〉
, 0≤ i≤ q.

(49)

Letting p � 0, we have

Dxx( m ) � cu 

p− i

k�0
bk+ib

〈α− 1〉
k , 0≤ i≤ q, cu 

p− i

k�0
bkb

〈α− 1〉
k− i , − q≤ i≤ 0.

⎧⎨

⎩

(50)

We can obtain the coefficients bk(k � 1, 2, . . . , q) of the
fractional lower-order MA model by solving the nonlinear
equation (35).

A finite q′-order FLOMAmodel can be equivalent by an
approximate infinite p′-order FLOAR modelp′ ≫ q′; we
have

a(i) + 

q′

k�1
bk a(i − k) � e(i), (51)

where e(m) is error. Letting e(m) � 0, we obtain



q′

k�1
bka(i − k) � − a(i). (52)

We shouldmultiply a〈P〉(n − i) on both sides of equation
(52). We take fractional lower-order covariance to get
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Figure 10:.e ARMAmodel and FLOARMA bispectrum estimations of the signal x(n) under SαS noise environment. (a).e ARMA(2, 6)
model bispectrum estimation of the signal x(n). (b) .e ARMA(2, 6) model bispectrum three-dimensional graph estimation of the signal
x(n). (c) .e FLOARMA(2, 6) model bispectrum estimation of the signal x(n). (d) .e FLOARMA(2, 6) model bispectrum three-di-
mensional graph estimation of the signal x(n).
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q′

k�1
bk

R(i − k) � − R(i), (53)

R(0) R(− 1) . . . R 1 − q′( 

R(1) R(0) . . . R 2 − q′( 

⋮ ⋮ ⋱ ⋮
R q′ − 1(  R q′ − 2(  . . . R(0)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b1

b2

⋮
bp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� −

R(1)

R(2)

⋮
R q′( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(54)

where R(i) � E a(i)a〈P〉(n − i)  and
R(i − k) � E a(i − k)a〈P〉(n − i + k) . We can also obtain
the coefficients bi(i � 1, 2, . . . , q) of the FLOMA model by
solving the Yule-Walker equation (54).

We summarize the steps of the FLOARMA model bis-
pectrum method as follows:

Step 1: solving fractional low-order bispectrum Yule-
Walker equation in (48) and getting the coefficients
ak(k � 0, 1, 2, . . . , p) of the FLOAR model.
Step 2: obtaining the coefficients bk(k � 1, 2, . . . , q) of
the FLOMA mode by solving the nonlinear equation
(50) or the Yule-Walker equation in (54).
Step 3: determining the order p and q employing FPE
criterion.
Step 4: computing fractional low-order ARMA model
bispectrum of x(n) by substituting
ak(k � 0, 1, 2, . . . , p) and bk(k � 1, 2, . . . , q) into
equation (40) or equation (41).

4.2.2. Application Review. In this simulation, y(n) in
equation (14) is used as the experimental signal. .e ARMA
model and FLOARMA model bispectrum methods are
compared to demonstrate their performance under
Gaussian distribution noise (SNR � − 5 dB) and SαS distri-
bution noise (α � 1.2; GSNR � 20 dB), and the simulations
are shown in Figures 9–12.

4.2.3. Remarks. .e ARMA model and FLOARMA model
bispectrum estimations of the signal x(n) are shown in
Figure 9 under Gaussian noise environment (SNR � − 5 dB).
Figures 9(a) and 9(b) are the existing ARMA model bis-
pectral estimation and its three-dimensional graph esti-
mation, respectively. FLOARMA model bispectral
estimation and its three-dimensional graph are given in
Figures 9(c) and 9(d), respectively. .e results show that
both methods can estimate out the bispectrum of the signal
x(n) well under Gaussian noise.

Figure 10 shows the ARMA and FLOARMA model
bispectrum estimations of the signal x(n) under SαS dis-
tribution noise (α � 1.2; GSNR � 20 dB). .e simulation
results show that the existing ARMA bispectrum method in
Figures 10(a) and 10(b) fails under SαS noise environment,
but the improved FLOARMA model bispectrum method in
Figures 10(c) and 10(d) has good toughness. Hence, the
ARMA bispectrum method only works for Gaussian noise

environment, but the FLOARMA bispectrummethod can be
applied in Gaussian and SαS noise environment, which is
robust.

5. Application Simulations

.e impulse of the outer race fault signals in the vibration
position of DE, FE, and BA is generated because of the local
defects of rolling element bearings, and the waveforms are
given in Figure 3(d) and Table 1. We can know that the fault
signals are nonstationary and non-Gaussian α-stable dis-
tribution process. In this section, the experiment signal
adopts from the normal signal and the bearing outer race
fault signal in the vibration position of DE, and 0.2-second
data is selected as the test signal, which is collected at 12,000
samples per second; then N � 2400. We apply the improved
FLODB, FLOIDB, FLOAR, and FLOARMA bispectrum
methods to analyze the normal and bearing outer race fault
signals, and the simulations are shown in Figures 11 and 12.
In this section, we have only extracted the first quadrant of
the bispectral representation (f1 > 0, f2 > 0) to analyze the
signals.

Figures 11(a), 11(c), 11(e), and 11(g) are the bispectral
contour maps of the bearing normal signal employing the
FLODB, FLOIDB, FLOAR, and FLOARMA bispectrum
methods, respectively. .eir bispectral three-dimensional
diagrams are shown in Figures 11(b), 11(d), 11(f ), and 11(h),
respectively. It is observed that the improved methods can
effectively suppress the noise and estimate out the frequency
components of the normal signal, and the spectral peaks
exist near the central frequency of 1060Hz; hence, the
transient harmonic vibration components of the normal
signal are about 1060Hz.

Figures 12(a), 12(c), 12(e), and 12(g) are the bispectral
contour maps of the bearing out race signal employing the
FLODB, FLOIDB, FLOAR, and FLOARMA bispectrum
methods, respectively, and their bispectral three-dimensional
diagrams are shown in Figures 12(b), 12(d), 12(f), and 12(h),
respectively. It is observed that the spectral peaks of
Figures 12(a), 12(c), and 12(e) exist near the central fre-
quencies of 600Hz and 2800Hz, and those in Figure 12(g)
exist near the central frequencies of 600Hz, 2800Hz, and
3500Hz. Hence, the outer race signal has fault harmonic
vibration components of 600Hz, 2800Hz, and 3500Hz, in-
dicating that the bearing outer race is damaged. Figure 12(i)
clearly shows the gap between the impacts regularly changing.
.e interval between impulses A, B, C, D, E, and F is ap-
proximately 30ms; then the characteristic frequency of the
bearing outer race fault is about 33.333Hz. Figure 12(j) shows
wave shape and spectrum of the envelope signal of the outer
race fault signal using resonance-demodulation approach; we
can clearly see the pulse separation. We can see that FLODB
and FLOIDB methods have larger variance; the FLOARMA
bispectrum method has lower variance and higher frequency
resolution, and its performance is optimal.

To further verify the advantages of the proposed frac-
tional low-order bispectrummethods, SαS distribution noise
(α � 1.1; GSNR � 20 dB) is added in the α-stable distribu-
tion outer race fault signal as the actual working
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environment background noise. .e conventional bispec-
trum methods including the direct bispectrum, indirect
bispectrum method, AR model, ARMA bispectrum

methods, and the improved fractional lower-order bispec-
trum methods including FLODB, FLOIDB, FLOARB, and
FLOARMAB methods are used to analyze the outer race
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Figure 13: .e conventional bispectrum estimations of the outer race fault signal contaminated by SαS distribution noise. (a) .e
conventional direct bispectrum estimation. (b) .e conventional direct bispectrum three-dimensional graph. (c) .e conventional indirect
bispectrum estimation. (d) .e conventional indirect bispectrum three-dimensional graph. (e) .e conventional AR model bispectrum
estimation. (f ) .e conventional AR model bispectrum three-dimensional graph. (g) .e conventional ARMA model bispectrum esti-
mation. (h) .e conventional ARMA model bispectrum three-dimensional graph.
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bearing fault signal under SαS distribution background noise
environment. .e simulations are given in Figures 13 and
14. .e simulation results show that the existing bispectrum
methods in Figures 13(a)–14(h) fail, but the proposed
fractional low-order bispectrum methods in Figures 14(a)–
14(h) have good performance, and it is observed that the
transient harmonic vibration components are near the
central frequencies of 600Hz and 2800Hz.

6. Conclusions

.e bearing fault signals are a non-Gaussian and nonsta-
tionary process, and α-stable distribution is a more ap-
propriate statistical model for them. .e improved FLODB,
FLOIDB, FLOAR, and FLOARMA model bispectrum
methods have been proposed for the fault signals employing
fractional low-order statistics..e improvedmethods can be
applicable to Gaussian and α-stable distribution noise en-
vironment, and their performances are superior to the

existing direct bispectrum method, indirect bispectrum
method, and AR and ARMA model bispectrum analysis
methods. Fractional low-order nonparametric bispectrum
estimation methods, FLODB and FLOIDB, require a large
number of data samples and have a large estimation vari-
ance, but the fractional low-order parametric bispectrum
estimation, FLOAR and FLOARMA model bispectrum, has
small variance and produces fewer parameters that describe
the characteristics of the target; hence, it can be directly used
for target features. We can apply the improved methods to
analyze the α-stable distribution bearing fault signal, even
α-stable distribution noise environment, and the fault
characteristic frequency, the dominant frequency, and the
other fault frequency features of the fault signals can be
clearly obtained. Combining the fractional low-order time-
frequency methods, more fault characteristics can be ob-
tained, and the joint diagnosis will be realized for the bearing
fault signals. In the future, we can also apply the bispectrum
diagonal slice to reflect the coupling information between
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Figure 14: .e improved fractional lower-order bispectrum estimations of the outer race fault signal contaminated by SαS distribution
noise. (a) .e improved FLODB estimation. (b).e improved FLODB three-dimensional graph. (c) .e improved FLOIDB estimation. (d)
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fault signals so as to realize the recognition of the fault
characteristics. .e complete mechanical bearing fault state
spectrum can be established based on fractional low-order
bispectrum estimation for the fault signals, which can
provide a new way for the fault diagnosis and online
monitoring.
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Supplementary Materials

(1).e txt file ball fault signals i the signal when the ball fails.
.e ball diameter is 0.3126 inches, and the fault data are
collected at 12,000 samples per second. (2) .e txt file inner
race fault signal is the signal when inner race fails. .e inner
race diameter is 0.9843 inches, and the fault data are col-
lected at 12,000 samples per second. (3) .e txt file normal
signals are a trouble-free signal, and the fault data are
collected at 12,000 samples per second. (4) .e txt file outer
race fault signals is the signal when the outer race fails. .e
bearing outer race thickness is 0.5906 inches, and the fault
data are collected at 12,000 samples per second. (Supple-
mentary Materials)
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