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We study constant and variable fluid properties together to investigate their effect on MHD Powell–Eyring nanofluid flow
with thermal radiation and heat generation over a variable thickness sheet. *e similarity variables assist in having ordinary
differential equations acquired from partial differential equations (PDEs). A novel numerical procedure, the simplified finite
difference method (SFDM), is developed to calculate the physical solution. *e SFDM described here is simple, efficient, and
accurate. To highlight its accuracy, results of the SFDM are compared with the literature. *e results obtained from the
SFDM are compared with the published results from the literature. *is gives a good agreed solution with each other. *e
velocity, temperature, and concentration distributions, when drawn at the same time for constant and variable physical
features, are observed to be affected against incremental values of the flow variables. Furthermore, the impact of con-
tributing flow variables on the skin friction coefficient (drag on the wall) and local Nusselt (heat transfer rate on the wall) and
Sherwood numbers (mass transfer on the wall) is illustrated by data distributed in tables. *e nondimensional skin friction
coefficient experiences higher values for constant flow regimes especially in comparison with changing flow features.

1. Introduction

Nowadays, the use of thermal analysis in industry for non-
Newtonian fluids is undergoing far reaching consequences
covering the processes in biology to the mechanical devices,
namely, electronics machinery. *erefore, it is worth in-
vestigating to optimize the flow of heat transfer for the
system. One way in which the underlying system’s thermal
conductivity is enhanced is to use the nanofluids. *e
concept of variable thickness surface is helpful in reducing
the weight of structural elements.

Magnetohydrodynamics (MHD) deals with the in-
teraction between electrically conducting fluid and

magnetic field. Studying MHD flow has great value to-
wards learning metallurgical and metal-working
processes.

A nanofluid is a mixture of nanometer sized particle and
base fluid. Nanofluids provide numerous uses in
manufacturing, electronics, physical science, and biotech-
nology. *e nanofluids demonstrate improved thermal
conductivity due to their unique physical properties.
*erefore, considering nanofluids is one of the ways in
enhancing thermal conductivity.

Daniel et al. [1] showed that the nanofluid flow over a
variable sheet thickness is sensitive to a thermal radiation
with an increase in temperature. Fang et al. [2] provided the
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flow results adjacent to variable thicked surface. Alsaedi et al.
[4] provided analysis for the MHD bioconvective nanofluid
with gyrotactic microorganisms. A similar study by Atif et al.
[3] discussed micropolar nanofluid.*e magnetic effect on a
third-grade fluid with chemically reactive species has been
put forward in [5]. In their study, Khan et al. [6] discussed
stagnation point flow with variable properties and obtained
solution numerically. Hayat et al. [7] studied stagnation
point flow for carbon-water nanofluid. *e studies lead by
Yasmeen et al. [8] and Hayat et al. [10] have shown flow over
a sheet. In the study of Yasmeen et al. [8], the authors as-
sumed ferrorfluid in their study, but Hayat et al. [10]
considered melting heat transfer effects. In their work, Hayat
et al. [9, 11] considered variable properties, but in the latter
work, they discussed unsteady three dimensional convection
flows. Das et al. [12] underlined analysis on second-grade
MHD fluid flows. Bhatacharyya et al. [13] set up exact so-
lution with varying wall temperature for Casson fluid. Raju
et al. [14] used FEM to find the solution of unsteady MHD
convection Couette flow. Farooq et al. [15] reported fluid
flow adjacent to a variable thicked Riga plate. Kumar et al.
[16] discussed Brownian motion, slip effects, and thermo-
phoresis effects near a variable thicked surface. Anantha
et al. [17] described bioconvective fluid flow in Carreau fluid
adjacent to variable thicked surface. Kumar et al. [18]
addressed MHD Cattaneo–Christov flow past a cone as well
as wedge in their research. Daniel et al. [19] recorded MHD
nanofluid flow with slip and convective conditions. Sala-
huddin et al. [20] used numerical method to present
magnetic Williamson flow of the Cattaneo–Christov heat
flux model with varying thickness. Reddy et al. [21] took
MHD Williamson nanofluid flow with varying physical
properties near a variable thickness sheet. Malik et al. [22]
discussed variable viscosity and MHD flow for Casson fluid
by using the Keller–Box method. *e work on variable
thickness and radiation for Casson fluid is presented in [23].
Hydromagnetic distribution in nanofluid flow with variable
viscosity and radially stretching sheet has been discussed in
[24]. In [25], they reported a solution of MHD flow of
nanofluid with variable thickness. Turkyilmazoglu [26]
mentioned effects of radiation with varied viscosity on a
time-dependentMHDporous flow. Prasad et al. [27] noticed
MHD fluid flow solution over a stretching surface with
thermophysical varying features. Vajravelu et al. [28] dis-
cussed variable fluid flow characteristics over a vertical
surface. Das [29], Mukhopadhyay [30], and Rahman and
Eltayeb [31] reported the effect of variable properties in fluid
flows. Hayat et al. [32] discussed melting heat transfer for
Powell–Eyring fluid. Jalil and Asghar [33] also used
Powell–Eyring fluid for their analysis and found a solution
by the Lie group method. Fluid flow with numerical and
series solutions over an exponentially stretchable surface
with the Powell–Eyring model has been discussed in [34]. In
[35], the flow of Powell–Eyring non-Newtonian fluid has
been discussed.Mustafa et al. [36] discussedMHD boundary

layer nanofluid for second-grade fluid. Motsumi et al. [37]
discussed thermal radiation and viscous dissipation on
boundary layer flow of nanofluids over a permeable moving
flat plate. In their work, Andersson and Aarseth [39]
revisited Sakiadis flow with variable fluid properties. For
nanofluid and other relevant areas of research, it would be
worth reading these references [40–44].

Constant fluid properties of Newtonian and non-New-
tonian fluids have been found in most of the above studies.
Variable fluid property analysis is uncommon with variable
sheet thickness. *e current work is an extension of the work
presented in Irfan et al. [45] where theNewtonian nanofluid is
considered. To the best of the authors’ knowledge, no research
has been done on the Powell–Eyring nanofluid with constant
and variable fluid properties together. To fill this gap, under
the influence of different kinematics and dynamics, we ex-
amine constant and variable fluid properties to find critical
difference between these when the non-Newtonian
Powell–Eyring fluid is taken into account. Furthermore, we
introduce a new numerical procedure, SFDM, to find the
solution of the ordinary differential equations (ODEs).

*e novelty of the current work lies in addressing the
nanofluid of Powell–Eyring along with constant and
variable fluid properties. A novel computational tech-
nique, the SFDM, has been tested for the Powell–Eyring
nanofluids in addition to theoretical modelling of fluid
flow. *e SFDM is simple, accurate, and easy to imple-
ment in MATLAB.

*e layout of the paper is as follows. Section 2 is
devoted to obtaining mathematical equations of the
physical system. Section 3 deals with both constant and
variable fluid features. Section 4 offers overview of a
numerical process. Section 5 describes the results and the
discussion. *e findings of the paper are summed up in
Section 6.

2. Theoretical Model

Consider a magnetohydrodynamic (MHD) two-dimensional
steady laminar flow of Powell–Eyring nanofluid over a
nonlinear uneven stretching sheet emerging from the narrow
slit with variable fluid characteristics. Assume that varying
magnetic field is directed perpendicular to the flow motion
and is defined by B1(x1) � B0(x1 + b)n− 1/2. In addition,
variable electric field is chosen as E∗1(x1) � E0(x1 + b)n− 1/2.
Also,K(x1) � K0(x1 + b)1− n is the variable permeability.*e
surface has a nonlinear stretching velocity Uw � a0(x1 + b)n.
Furthermore, the thickness of the sheet is varied by the re-
lation y1 � A(x1 + b)1− n/2, in which A is a very small con-
stant. Fluid flow configuration is illustrated in Figure 1. *e
assumption of small magnetic Reynolds number leads to
disregarding the induced magnetic field.

After incorporating aforementioned fluid flow as-
sumptions in the following equations of motion, we get [45]

2 Mathematical Problems in Engineering



zu1

zx1
+

zv1

zy1
� 0, (1)

u1
zu1

zx1
+ v1

zu1

zy1
�

1
ρ1

z

zy1
μ1 T1( 

zu1

zy1
  +

1
ρ1β1d

z
2
u1

zy
2
1

−
1

2ρ1β1d
3

zu1

zy1
 

2
z
2
u1

zy
2
1

+
σ
ρ1

E
∗
1 x1( B1 x1(  − B

2
1 x1( u1  + gβ T1 − T∞(  −

μ1u1

ρ1K x1( 

(2)

u1
zT1

zx1
+ v1

zT1

zy1
�

1
ρ1Cp

z

zy1
k1 T1( 

zT1

zy1
  −

1
ρ1Cp

zqr

zy1
+

σ
ρ1Cp

u1B1 x1(  − E
∗
1 x1( ( 

2
+

Q1 x1( 

ρCp

T1 − T∞( 

+ τ DB

zT1

zy1

zC1

zy1
+

DT

T∞

zT1

zy1
 

2
⎛⎝ ⎞⎠,

(3)

u1
zC1

zx1
+ v1

zC1

zy1
� DB

z
2
C1

zy
2
1

+
DT

T∞

z
2
T1

zy
2
1

, (4)

where (u1, v1), μ1, ρ1, and Cp are the velocity components,
the dynamic viscosity, the density, and the specific heat
capacity, respectively. Moreover, E∗1(x1), B1(x1), T1, and C1
are the electric field, the magnetic field, the temperature of
the fluid, and nanoparticle volume fraction, respectively.
Also, Tw is the wall temperature, and the ambient tem-
perature is denoted by T∞. *e parameters DB and DT are
characterized as the Brownian diffusion and thermophoretic

diffusion coefficients, respectively. In τ � (ρ1c)p/(ρ1c)f,
(ρ1c)p is the effective heat capacity of the nanoparticle and
(ρ1c)f is the heat capacity of the fluid. qr represents radiation
due to heat flow, and Q1(x1) is heat generation/absorption
parameter.

*e boundary conditions needed to solve (1)–(4) are
given by

u1 � Uw x1(  � ao x1 + b( 
n
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,
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DT∂C1 ∂T1

∂y1∂y1
+ T∞

= 0

u1 → 0, T1 → T∞, C1 → C∞, y1 → ∞
Concentration boundary layer

Momentum boundary layer

�ermal boundary layer

EMHD

Slit

Variable sheet
thickness

y1

x1

Figure 1: Geometry of the problem.

Mathematical Problems in Engineering 3



With the following transformations [1, 15]:

ξ �

������������������

n + 1
2

 
a0 x1 + b( 

n− 1

]0



y1,

ψ �

�����������������
2

n + 1
]0a0 x1 + b( 

n+1


F(ξ),

α � A
(n + 1)a0

2]0
 

1/2

,

η � ξ − α � y1

������������������

n + 1
2

 
a0 x1 + b( 

n−1

]0



− α,

(6)

Θ �
T1 − T∞
Tw − T∞

,

Φ �
C1 − C∞
Cw − C∞

,

u1 � a0 x1 + b( 
n F′(ξ),

v1 � −

�����������������
n + 1
2

]0a0 x1 + b( 
n−1



F(ξ)

− ξ
n − 1
n + 1

 F′(ξ)

�����������������
n + 1
2

]0a0 x1 + b( 
n−1



,

(7)

equation (1) is satisfied through ψ. In the above, ]0 � μ0/ρ1 is
the ambient kinematic viscosity. By using above transfor-
mations, equations (2)–(4) resulted into
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where α is the wall thickness parameter, b is a positive
constant, a0 is a rate of stretching sheet, Ec is the Eckert
number, ϵ is the thermal conductivity parameter, M is a
magnetic parameter, k1 is the thermal conductivity of the
fluid, s is a heat source parameter, σ is the electrical con-
ductivity, σ∗ is the Stefan–Boltzmann constant, Pr0 is the
ambient Prandtl number, Le is the Lewis number, Nb is the
Brownian parameter, Nt is the thermophoresis parameter, λ
is a free stream parameter, Rd is a thermal radiation pa-
rameter, Kp is a permeability parameter, k∗ is the mean
absorption coefficient, Gr is the Grashof number, and B0 is
applied magnetic field.

3. Analysis on Fluid Properties

First consider constant thermophysical properties of liquids
followed by the variable physical properties.

3.1. Case A: Constant Fluid Features. In such scenario,
equations (10)–(12) reduce into the following:
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Illustration of the skin friction coefficient in Table 1
reveals an outstanding alignment of the SFDM (discussed
below) with Daniel et al. [1] and Fang et al. [2].

3.2. Case B: Variable Fluid Features. *e variation in vis-
cosity for water due to change in temperature is illustrated in
Table 2 (see White [38]). *e viscosity decreases by a factor
of 6. However, less change is noted in density.*is motivates
us to study the variable fluid properties. *erefore, viscosity
and thermal conductivity vary accordingly with temperature
[39].
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where c is a fluid property. Hereafter, the subscript “r”
denotes reference value. When To ≈ Tr, we obtain
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where θr � −1/c(Tw − To) is the fluid viscosity parameter.
Substituting equation (19) into (10), we get
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Similarly, the variable thermal conductivity is articulated
by varying temperature as [21]
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*e skin friction coefficient Cf is determined in the
following manner:

Table 1: Presenting −f″(0) both for varying n and specific α �

0.25 (Case A).

n Fang et al. [2] Daniel et al. [1] Present result (SFDM)
10 1.1433 1.143316 1.143301
9 1.1404 1.140388 1.140431
7 1.1323 1.132281 1.132301
5 1.1186 1.118587 1.118602
3 1.0905 1.090490 1.090400
0.5 0.9338 0.933828 0.933796
−1/3 0.5000 0.500000 0.502557
−0.5 0.0833 0.083289 0.086736

Table 2: Water as a function of temperature (White [38]).

T1(C) ρ1(kg/m3) μ1 × 10− 3Ns/m2

0 1000 1.788
10 1000 1.307
20 998 1.003
30 996 0.799
40 992 0.657
50 988 0.548
60 983 0.467
70 978 0.405
80 972 0.355
90 965 0.316
100 958 0.283
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Using equation (24) in (23), the skin friction coefficient
in dimensionless form is defined in the following section.

3.3. De Skin Friction Coefficients (Cases A and B). *e skin
friction coefficients for Cases A and B are written as
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Likewise, we define the local Nusselt and the Sherwood
numbers in the following manner.
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3.5. De Local Sherwood Number
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where Rex is the local Reynolds number.

4. Simplified Finite Difference Method (SFDM)

*e simplified finite difference method (SFDM) has been
introduced in [45]. *is scheme is motivated from the work
by Na [46]. *e algorithmic steps involved in the SFDM are
as follows:

(1) Reduction of higher-order ODE into a system of
first- and second-order ODEs.

(2) Linearization of nonlinear ODE through the use of
Taylor series.

(3) Use of finite differences to discretize the linear
second-order ODE.

(4) Finally, the obtained algebraic system is solved ef-
ficiently by LU decomposition.

(5) Repeating the above procedure will produce solu-
tions in θ and ϕ.

*e summary of the involved steps in the SFDM is also
shown in Figure 2. *e results are computed for N � 1000
grid points in the η direction. However, the number of grid
points was varied in some calculations to achieve better
accuracy. *e iterative procedure has been done with tol-
erance of machine epsilon in MATLAB. Assuming f′ � F in
equation (15), we may write
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and we replace dF/dη by forward difference approximation:
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*e coefficients of second-order ODE are
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After manipulating equations (28)–(33), the linear al-
gebraic system in F is written as [45]

XjFj−1 + YjFj + ZjFj+1 � Wj, j � 1, 2, 3, . . . , N, (34)

where the coefficients are defined by

Xj � 2 − hQn,
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2
Rn − 4,

Zj � 2 + hQn ,

Wj � 2h
2
Sn.

(35)

Give third-order ODE in f
~

Defining f ′ = F to reduce the order of ODE~

Linearization of second-order ODE

~~Repeating process for
θ and ϕ

Apply finite differences scheme

Reduction into a system A1F = s

Applying TDMA on the system

Obtaining intermediate solution F

~ ~Computing f from the relation f ′ = F

Figure 2: Flow diagram of SFDM [45].
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In matrix-vector format, it is

A1F � S, (36)

where

A1 �

Y1 Z1

X2 Y2 Z2

· · ·

XN−2 YN−2 ZN−2

XN−1 YN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

is a tridiagonal matrix. *e column vectors F and s are

F �

F1

F2

.

.

FN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

s �

s1

s2

.

.

sN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(38)

4.1. Domas Algorithm. *e *omas algorithm [47] is
implemented in MATLAB to compute the solution F. LU
factorization is chosen for the matrix factorization of A1, i.e.,

A1 � L1U1, (39)

where

L1 �

Λ1
X2 Λ2

· · ·

XN−2 ΛN−2
XN−1 ΛN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

U1 �

1 ζ1
1 ζ2

· · ·

1 ζN−2
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(40)

It is clear that L1 and U1 are the lower and unit upper
triangular matrices, respectively. Variables
(Λj, ζj), j � 1, 2, . . . , N − 1, are related by

Λ1 � −1 −
λ
h

,

ζ1 �
λ
Λ1h

,

Λj � Yj − Xjζj−1, j � 2, 3, . . . , N − 1,

Λjζj � zj, j � 2, 3, . . . , N − 2.

(41)

After defining these relations, equation (36) becomes

L1U1F � S,

U1F � z,

L1z � S.

(42)

We have

Λ1

X2 Λ2

· · ·

XN−2 ΛN−2

XN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z1

z2

z3

.

.

.

zN−2

zN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

S1

S2

S3

.

.

.

SN−2

SN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

*e unknown element z is computed from
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Table 3: Numerical values of −CfRe1/2x for several values of involved parameters n, λ, M, N, and α when Nb � s � 0.1, Pro � 1, Le � 1, and
Nt � Ec � Rd � 0.2.

Case A Case B
M N λ α N Gr E Kp θr −CfRe1/2x −CfRe1/2x

0.0 0.5 0.2 0.3 0.5 0 0 0.2 −10 2.1927 2.1231
0.4 2.5751 2.4938
0.6 2.7458 2.6588
0.3 0.4 0.2 0.3 0.5 0 0 0.2 −10 2.3729 2.2989

0.6 2.5925 2.5097
0.8 2.7939 2.7033

0.3 0.5 0.0 0.3 0.5 0 0 0.2 −10 2.4957 2.4183
0.3 2.4798 2.4008
0.6 2.4630 2.3821

0.3 0.5 0.2 0.0 0.5 0 0 0.2 −10 2.3954 2.3154
0.2 2.4550 2.3760
0.4 2.5158 2.4379

0.3 0.5 0.2 0.3 0.0 0 0 0.2 −10 2.0547 1.9586
0.3 2.3219 2.2378
0.5 2.4852 2.4068

0.3 0.5 0.2 0.3 0.5 0.2 0 0.2 −10 2.2394 2.1527
0.4 2.0119 1.9198
0.6 1.7955 1.6989

0.3 0.5 0.2 0.3 0.5 0 0.2 0.2 −10 2.3220 2.2484
0.4 2.1687 2.0984
0.7 1.9511 1.8844

0.3 0.5 0.2 0.3 0.5 0 0 0.5 −10 2.7458 2.6403
1 3.1300 2.9840
1.5 3.4692 3.2834

0.3 0.5 0.2 0.3 0.5 0 0 0.2 −5 2.3380
−3 2.2586
−1 1.9935

Table 4: Numerical values of −NuxRe−1/2
x for several values of involved parameters n, M, α, Nb, Nt, Pro, and Le when Gr � 0,

Kp � Ec � λ � 0.2, N � 0.5, and θr � −10.

Case A Case B
M n Pro Le Nt Nb α Rd E s ϵ −NuxRe−1/2

x −NuxRe−1/2
x

0.0 0.5 1 1 0.2 0.1 0.3 0.2 0 0.1 0.2 0.4801 0.4028
0.3 0.4158 0.3430
0.7 0.3365 0.2673
0.3 0.2 1 1 0.2 0.1 0.3 0.2 0 0.1 0.2 0.4055 0.3326

0.5 0.4157 0.3430
1 0.4427 0.3685

0.3 0.5 0.7 1 0.2 0.1 0.3 0.2 0 0.1 0.2 0.2742 0.2094
1 0.4157 0.3430
1.3 0.5268 0.4427

0.3 0.5 1 0.7 0.1 0.3 0.2 0 0.1 0.2 0.4187 0.3453
1.0 0.4157 0.3430
1.3 0.4136 0.3413

0.3 0.5 1 1.0 0 0.1 0.3 0.2 0 0.1 0.2 0.4362 0.3610
0.2 0.4157 0.3430
0.4 0.3952 0.3250

0.3 0.5 1 0.2 0.2 0.3 0.2 0 0.1 0.2 0.4157 0.3430
0.5 0.4157 0.3430
0.7 0.4157 0.3430

0.3 0.5 1 1.0 0.2 0.1 0.0 0.2 0 0.1 0.2 0.3469 0.2827
0.4 0.4385 0.3627
0.8 0.5301 0.4413

0.3 0.5 1 1.0 0.2 0.2 0.3 0.0 0 0.1 0.2 0.4092 0.3433
0.5 0.4142 0.3379
0.8 0.3890 0.2994
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Table 4: Continued.

Case A Case B
M n Pro Le Nt Nb α Rd E s ϵ −NuxRe−1/2

x −NuxRe−1/2
x

0.3 0.5 1 1.0 0.2 0.1 0.0 0.2 0.2 0.1 0.2 0.4930 0.4121
0.4 0.4 0.4789 0.3942
0.8 0.7 0.4285 0.3420

0.3 0.5 1 1.0 0.2 0.3 0.2 0 0 0.2 0.5699 0.4892
0.1 0.4157 0.3430
0.15 0.2940 0.2127

0.3 0.5 1 1.0 0.2 0.1 0.3 0.2 0 0.1 0 0.4069
0.4 0.5 0.2751
0.8 1 0.2003

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f~ ′  (
η)

Pr = Le = 1, M = 0.3, N = n = 0.5, Gr = λ = Rd = Nt = Ec = 0.2,
Nb = Kp = 0.1, s = E = 0, ε = 0.8, θr = –0.5

Case A (α = 0)
Case A (α = 5)
Case A (α = 10)

Case B (α = 0)
Case B (α = 5)
Case B (α = 10)

(a)

0 2 4 6 8 10
η

Case A (E = 0)
Case A (E = 0.3)
Case A (E = 0.6)

Case B (E = 0)
Case B (E = 0.3)
Case B (E = 0.6)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr = Le = 1, M = α = 0.3, N = n = 0.5,
Gr = λ = Rd = Nt = Ec = 0.2, Nb = Kp = 0.1, s = 0,

ε = 0.8, θr = –0.5

f~ ′  (
η)

(b)

Figure 3: Continued.
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z1 �
S1

Λ1
,

zj �
Sj − Xjzj−1

Λj

, j � 2, 3, . . . , N − 1,

1 ζ1

1 ζ2

· · ·

1 ζN−2

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F1

F2

.

.

.

FN−2

FN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

z1

z2

.

.

.

zN−2

zN−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(44)
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Figure 3: Velocity consideration supplied against (a) α, (b) E, (c) M, and (d) n.
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Figure 4: Continued.
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We get

Fj−1 � zj−1,

Fj � zj − ζjFj+1, j � N − 2, N − 3, . . . , 3, 2, 1.
(45)

*e above equation (45) is a solution of equation (28).
We discretize the relation f′ � F as follows:

fj+1 − fj

h
� Fj,

(46)

which gives a required solution of equation (15). Re-
peating the above process, one can easily get θ and ϕ
appearing in equations (16) and (17). However, all the
details for these variables have been omitted for brevity.
*e reader is referred to [45] for further details on
the SFDM. Since the SFDM results for both constant
and variable fluid properties have been discussed in detail
in [45], in the current work, only Table 2 is produced
from the SFDM to compare accuracy with the
literature. However, we obtain the skin friction coefficient
and the local Nusselt numbers for Case A and Case B

(Tables 3 and 4) by using MATLAB built-in solver bvp4c
cf. [48].

5. Results and Discussion

*e comparison of skin friction coefficient for Case A and
Case B is given in Table 3. *e skin friction coefficient
increases for higher values of magnetic parameter M,
power index parameter n, variable thickness parameter α,
power index parameter n, and porosity parameter Kp
while it decreases with the increase of parameter λ,
Grashof number Gr, and electric field parameter E. *e
same phenomenon is observed for the skin friction co-
efficient in both Cases A and B. *e skin friction coeffi-
cient decreases for larger values of viscosity parameter θr

in Case B. Table 4 shows the variation of local Nusselt
number for Cases A and B in relation to different perti-
nent parameters. Note that local Nusselt number went up
for larger values of power index parameter n and variable
thickness parameter α while it went down for escalating
values of magnetic parameter M, Prandtl number Pro,
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Figure 4: Velocity consideration supplied against (a) θr, (b) N, (c) Gr, and (d) Kp.
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Figure 5: Continued.
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thermophoretic parameter Nt, radiation parameter Rd,
electric field parameter E, and heat source parameter s.
*e local Nusselt number for Case B decreases for larger
values of small thermal conductivity parameter ϵ. In these
tables, we can see the difference in values for the skin
friction coefficient and the local Nusselt numbers. *e
skin friction coefficient and the local Nusselt numbers for
the results of constant fluid properties have higher values
when compared with the results obtained for variable fluid
properties.

Figure 3(a) describes the role of wall thickness parameter
α in the fluid’s velocity. Note that the velocity profile di-
minishes significantly for both Cases A and B with an in-
crease in the values of wall thickness parameter α. It is
observed that higher values of variable thickness parameter α
correspond to deformation due to stretching wall, and hence
the velocity profile decreases. Figure 3(b) is plotted to
perceive the effect of electric field parameter E on velocity
distribution. It is shown that the increase in electric field
parameter E enhances the velocity of nanofluid because the
electrical force introduces accelerating body force which acts

in the direction of the electrical force. *e Lorentz force
accelerates the boundary layer flow. *is force also increases
the thickness of the momentum boundary layer. Hence, it
results in a reduction in skin friction coefficient. Figure 3(c)
presents the effect of magnetic parameter M on velocity
profile. From Figure 3(c), we conclude that a rise inmagnetic
parameter M causes reduction in the velocity of fluid. An
increase in magnetic parameter M generates a resistive force
called Lorentz force in the fluid layers. *is resistive force
causes the reduction in velocity profile. Figure 3(d) is
constructed to know the effect of power index n on velocity
distribution. It is analyzed that for higher values of power
index n, the velocity profile remains unchanged. Figure 4(a)
reflects the influence θr has on the velocity. *e larger values
of viscosity parameter θr intensify the skin friction, which
causes the reduction in the velocity profile. Figure 4(b)
demonstrates the effect of fluid parameter N on the ve-
locity distribution. It can be seen that the velocity profile is
enhanced for higher values of N. Figure 4(c) is constructed
to know the effects of Grashof number Gr on velocity
distribution. *e velocity goes down with larger values of
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Figure 5: Velocity and temperature considerations supplied against (a) λ, (b) α, (c) E, and (d) ϵ.
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Figure 6: Continued.

16 Mathematical Problems in Engineering



Grashof number Gr. Figure 4(d) highlights the effect of
porosity parameter Kp on velocity profiles. It is seen that
velocity profile decreases with the increase in Kp. Figure 5(a)
presents the effect of λ on velocity profile. It is analyzed that
there is no significant change in velocity profile for different
values of λ in both Cases A and B. *e thermal boundary
layer thickness decreases for Case B when compared with the
associated results obtained for Case A. Figure 5(b) dem-
onstrates the effect of variable thickness parameter α on
temperature profile. It is observed that an enhancement in
variable thickness parameter α reduces the temperature
profile. *e behavior of electric field parameter E on tem-
perature profile is portrayed in Figure 5(c). It is noted that
enhancement in electric field parameter E decreases the
thermal boundary layer thickness. Figure 5(d) is presented to
describe the influence of small thermal conductivity pa-
rameter ϵ on temperature profile. It is examined that in-
crement in small thermal conductivity ϵ causes
enhancement in temperature profile. Figure 6(a) is presented
to examine the effect of Prandtl number Pr0 on temperature
profile. It is noticed that increasing parameter Pr0 reduces
thermal conductivity of fluid which decreases temperature
profile. Figure 6(b) illustrates the effect of radiation pa-
rameter Rd on temperature profile. It is seen that small

increment in radiation parameter Rd intensifies the tem-
perature profile because an increment in radiation param-
eter Rd provides more heat to fluid that causes enhancement
in the thermal boundary layer thickness. Figure 6(c) illus-
trates the effect of heat source parameter s on temperature
profile. It is observed that by increasing heat source pa-
rameter s, the temperature of the fluid increases, and hence
the thermal boundary layer increases. Figure 6(d) is plotted
to perceive the effect of power index parameter n on tem-
perature profile. It is noted that increasing power index
parameter n increases the temperature profile. Figures 7(a)
and 7(b) show the effect of Brownian motion parameter Nb
on the temperature and concentration profiles, respectively.
It is noticed that for higher values of Nb, there is no sig-
nificant increase or decrease in temperature profile, but by
increasing Nb, the concentration boundary layer thickness
increases. Figures 7(c) and 7(d) describe the effect of Nt on
temperature and concentration profile, respectively. It is
found that an increment in thermophoretic parameter Nt
enhances both temperature and concentration profiles.
Figure 8 depicts the influence of Le on concentration profile.
We have seen that for larger values of Lewis number Le, the
concentration boundary layer thickness is decreased. *e
reason is that increasing Lewis number Le reduces the
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Figure 6: Temperature considerations supplied against (a) Pr0, (b) Rd, (c) s, and (d) n.
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Figure 7: Continued.
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Figure 7: Temperature and concentration considerations for different Nb and Nt.
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Figure 8: Concentration profile for different Le.
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concentration rate diffusivity, and hence the concentration
profile decreases.

6. Conclusions

*e present study gives the results of two-dimensional
EMHD flow of Powell–Eyring nanofluid over a nonlinear
stretching sheet in a porous medium with variable thickness
and variable liquid properties. *e numerical solutions are
obtained with the help of SFDM for constant fluid prop-
erties. However, bvp4c is implemented for variable fluid
properties. *e key findings of the present study are as
follows:

(i) Momentum boundary layer thickness is higher for
electric field E, parameter N, and Grashof number
Gr, whereas it is going down for magnetic pa-
rameter M, porosity parameter Kp, variable
thickness parameter α, and fluid viscosity param-
eter θr (for variable properties only).

(ii) Momentum boundary layer remains almost con-
stant when we increase the power index parameter
n and fluid property parameter λ.

(iii) *ermal boundary layer thickness increases with
the increase of radiation parameter Rd, small
thermal conductivity parameter ϵ, heat source
parameter s, power index n, and thermophoretic
parameter Nt.

(iv) *ermal boundary layer thickness decreases for
variable thickness parameter α, electric field pa-
rameter E, and Prandtl number Pr0, whereas there
is a constant effect in thermal boundary layer when
increasing Brownian motion parameter Nb.

(v) Concentration boundary layer thickness decreases
with the increase of Nt, whereas it increases with
the increase of Nb and Le.

(vi) Difference of Cases A and B is seen with the help
of graphs. Graphs show that boundary layer
thickness of Case B is different when compared
to Case A. Furthermore, the skin friction coef-
ficient is higher for constant fluid properties
when seen in comparison with variable prop-
erties. *e same is observed for the local Nusselt
number.

(vii) Lastly, the accuracy of the SFDM has been observed
when comparison is drawn with the literature.

Abbreviation

b: Positive constant
a0: Uniform velocity
(u1, v1): *e velocity components (ms− 1)
μ1: *e coefficient of viscosity (Pas)
ρ1: *e density of fluid (kgm− 3)
Eo: Uniform electric field factor
E: Electrical field parameter
E∗1 : Applied electric field
Kp: Permeability parameter

α: Wall thickness parameter
Ec: Eckert number
ϵ: *e thermal conductivity parameter of the fluid
M: Magnetic parameter
T1: Fluid temperature (K)
k1: *e thermal conductivity (Wm− 1K− 1)
Cp: *e specific heat capacity (Jkg− 1K− 1)
qr: *e radiative heat flux (Wm− 2)
τ: Ratio of heat capacities of nanofluid and base fluid
DB: Brownian coefficients (m2s− 1)
DT: *ermophoresis diffusion coefficients (m2s− 1)
s: Heat source parameter
T∞: *e ambient fluid temperature (K)
σ: *e electrical conductivity (Sm− 1)
Tw: Constant temperature at the wall (K)
B0: Applied magnetic field (Nm− 1A− 11/2)
σ∗: Stefan–Boltzmann constant (Wm− 2K− 4)
k∗: Mean absorption coefficient (m− 1)
C∞: *e ambient fluid concentration
Pr0: *e ambient Prandtl number
θr: Fluid viscosity parameter
Tr: Reference temperature (K)
Le: Lewis number
μr: Reference viscosity (Pas)
Nt: *ermophoresis parameter
Nb: Brownian motion parameter
λ: Free stream velocity parameter
Rd: *ermal radiation parameter
N: Fluid parameter
λ: Free stream parameter
Gr: Grashof number
Cf: *e skin friction coefficient
Nux: *e local Nusselt parameter.
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