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For a class of nonlinear impulsive fractional differential equations, we first transform them into equivalent integral equations, and
then the implicit Euler method is adapted for solving the problem.)e convergence analysis of the method shows that the method
is convergent of the first order. )e numerical results verify the correctness of the theoretical results.

1. Introduction

In recent years, fractional differential equations have become
a research hotspot due to their wide application in many
fields. We refer the readers to the research papers [1–5] and
the monographs by Podlubny [6], Diethelm [7], Kilbas et al.
[8], Zhou [9], and the references cited therein. When the
fractional differential equations are affected by instantaneous
mutation, the impulsive fractional differential equations are
obtained. )e research of impulsive fractional differential
equations can be found in literatures [10–20] and monograph

[21]. However, there are few literatures on numerical methods
for impulsive fractional differential equations.

In this paper, implicit Euler method is constructed for
solving a class of nonlinear impulsive fractional differential
equations. It is proved that the method is convergent of the
first order. )e numerical results also verify the correctness
of the theoretical results.

2. Construction of Numerical Scheme

Consider the following impulsive fractional differential
equations:

C
0 D

α
t u(t) � f(t, u(t)), t ∈ J′ ≔ J\ t1, t2, . . . , tm􏼈 􏼉, J ≔ [0, T],

△u tk( 􏼁 � Ik u tk( 􏼁( 􏼁, △u′ tk( 􏼁 � Ik u tk( 􏼁( 􏼁, k � 1, 2, . . . , m,

u(0) � β, u′(0) � c,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

where α ∈ (1, 2), β, c ∈ R are constants, and C
0 Dα

t u(t) is the
α-order Caputo derivative of solution u(t) defined by (see
[6–8])

C
0 D

α
t u(t) �

1
Γ(n − α)

􏽚
t

0

u
(n)

(s)

(t − s)
α+1−n

ds, 0≤ n − 1< α< n,

(2)
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0 � t0 < t1 < · · · < tm < tm+1 � T, △u(tk) � u(t+
k ) − u(t−

k ),
△u′(tk) � u′(t+

k ) − u′(t−
k ), u(t−

k ) � limε⟶0− u(tk + ε), and
u(t+

k ) � limε⟶0+ u(tk + ε) represent the left and right limits
of u(t) at t � tk, and f: J × R⟶ R and Ik, Ik, : R⟶ R

are continuous functions and satisfy the following
conditions:

|f(t, u) − f(t, v)|≤ L1|u − v|, t ∈ J, u, v ∈ R,

Ik(u) − Ik(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L2|u − v|, u, v ∈ R, k � 1, 2, . . . , m,

Ik(u) − Ik(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ L3|u − v|, u, v ∈ R, k � 1, 2, . . . , m,

(3)

where L1, L2, L3 are nonnegative constants with moderate
size.

)roughout this paper, let C(J,R) be the Banach space
of all continuous functions from J into R with the norm

‖u‖c ≔ sup |u(t)|: t ∈ J{ } for u ∈ C(J,R). We also define
PC(J,R) ≔ u: J⟶ R, u ∈ C((tk, tk+1],R), k � 0, 1, . . . , m,􏼈

and u(t+
k ) exists, k � 1, 2, . . . m}. )e space PC(J,R) is a

Banach space equipped with the norm ‖u‖pc ≔
sup |u(t)|: t ∈ J{ }.

In addition, due to the need of convergence analysis, for
function u(t) ∈ PC(J,R), there are constants L4 and L5 such
that

u′(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤L4,
zf

zt
(t, u)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤L5, t ∈ tk, tk+1( 􏼃, k � 0, 1, . . . , m.

(4)

In order to obtain the numerical scheme for solving
problem (1), according to Lemma 3.1 in reference [12], we
can express equation (1) as the following equivalent integral
equation:

u(t) � u(0) + u′(0)t + 􏽘
0<tk<t

Ik u tk( 􏼁( 􏼁 + 􏽘
0<tk<t

Ik u tk( 􏼁( 􏼁 t − tk( 􏼁 + 􏽚
t

0

(t − s)
α− 1

Γ(α)
f(s, u(s))ds, t ∈ J. (5)

Let hk � (tk+1 − tk)/N, N be a given positive integer, the
grid points tk,i � tk + ihk � t0,0 + (􏽐

k−1
j�0Nhj) + ihk, k �

0, 1, . . . , m, i � 1, 2, . . . , N, h � max h0, h1, . . . , hm􏼈 􏼉, and

u(tk,i) express the true solution of equation (1) at tk,i. )en,
an approximation to the integral equation can be attained by
right rectangle formula:

u tk,i􏼐 􏼑 � u(0) + u′(0)tk,i + 􏽘
k

l�1
Il u tl−1,N􏼐 􏼑􏼐 􏼑 + 􏽘

k

l�1

�Il u tl−1,N􏼐 􏼑􏼐 􏼑 tk,i − tl−1,N􏼐 􏼑

+ 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α)

􏽚
tl−1,r

tl−1,r−1

tk,i − s􏼐 􏼑
α− 1

f(s, u(s))ds

+ 􏽘
i

r�1

1
Γ(α)

􏽚
tk,r

tk,r−1

tk,i − s􏼐 􏼑
α− 1

f(s, u(s))ds

≈ u(0) + u′(0)tk,i + 􏽘
k

l�1
Il u tl−1,N􏼐 􏼑􏼐 􏼑 + 􏽘

k

l�1
Il u tl−1,N􏼐 􏼑􏼐 􏼑 tk,i − tl−1,N􏼐 􏼑

+ 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α)

f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑 􏽚
tl−1,r

tl−1,r−1

tk,i − s􏼐 􏼑
α− 1

ds

+ 􏽘
i

r�1

1
Γ(α)

f tk,r, u tk,r􏼐 􏼑􏼐 􏼑 􏽚
tk,r

tk,r−1

tk,i − s􏼐 􏼑
α− 1

ds

� u(0) + u′(0)tk,i + 􏽘
k

l�1
Il u tl−1,N􏼐 􏼑􏼐 􏼑 + 􏽘

k

l�1
Il u tl−1,N􏼐 􏼑􏼐 􏼑 tk,i − tl−1,N􏼐 􏼑

+ 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α + 1)

f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑 tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

+ 􏽘

i

r�1

1
Γ(α + 1)

f tk,r, u tk,r􏼐 􏼑􏼐 􏼑 tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩.

(6)
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By using the numerical solution uk,i instead of the true
solution u(tk,i) in equation (6), we obtain the implicit Euler

method for solving impulsive fractional differential equation
(1):

uk,i � u0,0 + u0,0′tk,i + 􏽘

k

l�1
Il ul−1,N􏼐 􏼑 + 􏽘

k

l�1
Il ul−1,N􏼐 􏼑 tk,i − tl−1,N􏼐 􏼑

+ 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α + 1)

f tl−1,r, ul−1,r􏼐 􏼑 tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

+ 􏽘

i

r�1

1
Γ(α + 1)

f tk,r, uk,r􏼐 􏼑 tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩, k � 0, 1, . . . , m, i � 1, 2, . . . , N.

(7)

Remark 1. It is well known that there are various forms of
definition of fractional calculus in the literature, such as
Riemann–Liouville fractional calculus, Gru

..
nwald–Letnikov

fractional calculus, and Caputo fractional calculus (see
[6–8]). )e α-order Riemann–Liouville derivative of func-
tion u(t) is defined by

R
0D

α
t u(t) �

1
Γ(n − α)

d
n

dt
n 􏽚

t

0

u(s)

(t − s)
α+1−n

ds, 0≤ n − 1< α< n.

(8)

We have the following relationship between the Rie-
mann–Liouville derivative and Caputo derivative:

R
0D

α
t u(t) �

C
0 D

α
t u(t) + 􏽘

n−1

j�0

t
j− α

y
(j)

(0)

Γ(j − α + 1)
, 0≤ n − 1< α< n.

(9)

)erefore, the fractional differential equations studied in
the present paper only consider Caputo derivative.

3. Convergence Analysis

Let zk,i � uk,i − u(tk,i), where uk,i and u(tk,i) denote the
numerical solution and true solution of problem (1) at grid
point tk,i, respectively. )en, for the error zk,i, we have

zk,i � 􏽘

k

l�1
Il ul−1,N􏼐 􏼑 − Il u tl−1,N􏼐 􏼑􏼐 􏼑􏼐 􏼑 + 􏽘

k

l�1
Il ul−1,N􏼐 􏼑 − Il u tl−1,N􏼐 􏼑􏼐 􏼑􏼐 􏼑 tk,i − tl−1,N􏼐 􏼑

+ 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α + 1)

f tl−1,r, ul−1,r􏼐 􏼑 − f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 × tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

+ 􏽘

i

r�1

1
Γ(α + 1)

f tk,r, uk,r􏼐 􏼑 − f tk,r, u tk,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩 − Rk,i,

(10)

where

Rk,i � 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α)

􏽚
tl−1,r

tl−1,r−1

tk,i − s􏼐 􏼑
α−1

f(s, u(s))ds

+ 􏽘
i

r�1

1
Γ(α)

􏽚
tk,r

tk,r−1

tk,i − s􏼐 􏼑
α−1

f(s, u(s))ds

− 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α)

f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑 􏽚
tl−1,r

tl−1,r−1

tk,i − s􏼐 􏼑
α−1

ds

− 􏽘
i

r�1

1
Γ(α)

f tk,r, u tk,r􏼐 􏼑􏼐 􏼑 􏽚
tk,r

tk,r−1

tk,i − s􏼐 􏼑
α−1

ds.

(11)

In order to obtain the convergence result of numerical
method (7), we first prove the following lemma.

Lemma 1. Assume the functions f: J × R⟶ R and
Ik, Ik: R⟶ R, k � 1, 2, . . . , m are continuous and satisfy
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conditions (3) and (4); then, the truncation error of the
discrete scheme (7) satisfies

Rk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤Ch, k � 0, 1, . . . , m, i � 1, 2, . . . , N. (12)

)roughout the paper, C will denote a positive constant
not necessarily the same at different places, which may
depend on Lj, j � 1, 2, . . . , 5, but is independent of h and N.

Proof. From (11), we have

Rk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 􏽘

k

l�1
􏽘

N

r�1

1
Γ(α)

􏽚
tl−1,r

tl−1,r−1

f(s, u(s)) − f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 tk,i − s􏼐 􏼑
α− 1

ds + 􏽘

i

r�1

1
Γ(α)

􏽚
tk,r

tk,r−1

f(s, u(s)) − f tk,r, u tk,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 tk,i − s􏼐 􏼑
α− 1

ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽘

k

l�1
􏽘

N

r�1

1
Γ(α)

􏽚
tl−1,r

tl−1,r−1

f(s, u(s)) − f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 tk,i − s􏼐 􏼑
α− 1

ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

i

r�1

1
Γ(α)

􏽚
tk,r

tk,r−1

f(s, u(s)) − f tk,r, u tk,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 tk,i − s􏼐 􏼑
α− 1

ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(13)

Applying the integral mean value theorem, we know that
there exists ξl,r ∈ (tl,r−1, tl,r) such that

Rk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘

k

l�1
􏽘

N

r�1

1
Γ(α + 1)

f ξl−1,r, u ξl−1,r􏼐 􏼑􏼐 􏼑 − f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 × tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

+ 􏽘

i

r�1

1
Γ(α + 1)

f ξk,r, u ξk,r􏼐 􏼑􏼐 􏼑 − f tk,r, u tk,r􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩

≤ 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α + 1)

f ξl−1,r, u ξl−1,r􏼐 􏼑􏼐 􏼑 − f ξl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑 + f ξl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑 − f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛 tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

+ 􏽘
i

r�1

1
Γ(α + 1)

f ξk,r, u ξk,r􏼐 􏼑􏼐 􏼑 − f ξk,r, u tk,r􏼐 􏼑􏼐 􏼑 + f ξk,r, u tk,r􏼐 􏼑􏼐 􏼑 − f tk,r, u tk,r􏼐 􏼑􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼚 􏼛 tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩.

(14)

Using conditions (2) and (3) and differential mean value
theorem, we know that there exists ηl,r, ζ l,r ∈ (tl,r−1, tl,r) such
that

Rk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘

k

l�1
􏽘

N

r�1

1
Γ(α + 1)

L1 u ξl−1,r􏼐 􏼑 − u tl−1,r􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + hl−1
zf

zt
ηl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼨 􏼩 × tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

+ 􏽘
i

r�1

1
Γ(α + 1)

L1 u ξk,r􏼐 􏼑 − u tk,r􏼐 􏼑􏼐 􏼑 + hk

zf

zt
ηk,r, u tk,r􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼨 􏼩 × tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩

≤C 􏽘
k

l�1
􏽘

N

r�1
hl−1 u′ ζ l−1,r􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
zf

zt
ηl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼠 􏼡 tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

+ C 􏽘
i

r�1
hk u′ ζk,r􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 +
zf

zt
ηk,r, u tk,r􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼠 􏼡 tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩

≤C 􏽘
k

l�1
􏽘

N

r�1
hl−1 tk,i − tl− 1,r− 1􏼐 􏼑

α
− tk,i − tl− 1,r􏼐 􏼑

α
􏽨 􏽩 + C 􏽘

i

r�1
hk tk,i − tk,r− 1􏼐 􏼑

α
− tk,i − tk,r􏼐 􏼑

α
􏽨 􏽩

≤Ch t
α
k,i − tk,i − tk− 1,N􏼐 􏼑

α
􏼐 􏼑 + tk,i − tk,0􏼐 􏼑

α
􏽨 􏽩≤Ch.

(15)
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)is means the proof of Lemma 1 is completed. □

Theorem 1. Let uk,i and u(tk,i) denote the numerical solu-
tion and true solution of problem (1) at grid point tk,i, re-
spectively. 2en, the convergence inequality

uk,i − u tk,i􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Ch, k � 0, 1, . . . , m, i � 1, 2, . . . , N,

(16)

holds when h is small enough and the conditions of Lemma 1
are satisfied. 2is means the numerical method (7) is con-
vergent of the first order.

Proof. From (10), we can obtain that

1 −
1
Γ(α + 1)

L1h
α
k􏼠 􏼡 zk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ 􏽘
k

l�1
Il ul−1,N􏼐 􏼑 − Il u tl−1,N􏼐 􏼑􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

k

l�1
Il ul−1,N􏼐 􏼑 − Il u tl−1,N􏼐 􏼑􏼐 􏼑􏼐 􏼑 tk,i − tl−1,N􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
k

l�1
􏽘

N

r�1

1
Γ(α + 1)

f tl−1,r, ul−1,r􏼐 􏼑 − f tl−1,r, u tl−1,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 × tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽘
i−1

r�1

1
Γ(α + 1)

f tk,r, uk,r􏼐 􏼑 − f tk,r, u tk,r􏼐 􏼑􏼐 􏼑􏼐 􏼑 × tk,i − tk,r− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ Rk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘

k

l�1
zl−1,N

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 L2 + L3 tk,i − tl−1,N􏼐 􏼑􏼐 􏼑 + 􏽘

k

l�1
􏽘

N

r�1

1
Γ(α + 1)

L1 zl−1,r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 tk,i − tl− 1,r− 1􏼐 􏼑

α
− tk,i − tl− 1,r􏼐 􏼑

α
􏽨 􏽩

+ 􏽘

i−1

r�1

1
Γ(α + 1)

L1 zk,r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 tk,i − tk,r− 1􏼐 􏼑

α
− tk,i − tk,r􏼐 􏼑

α
􏽨 􏽩 + Rk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(17)

When h is small enough, i.e.,

Γ(α + 1) − L1h
α
k > 0, (18)

we have

zk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤pk,i + wk 􏽘

k

l�1
􏽘

N

r�1
vl−1,r zl−1,r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + wk 􏽘

i−1

r�1
ak,r zk,r

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (19)

where

pk,i �
Γ(α + 1) Rk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

Γ(α + 1) − L1h
α
k

,

wk �
1

Γ(α + 1) − L1h
α
k

, k � 0, 1, . . . , m,

ak,r � L1 tk,i − tk,m− 1􏼐 􏼑
α

− tk,i − tk,r􏼐 􏼑
α

􏽨 􏽩, r � 1, 2, . . . , N − 1,

vl−1,r � L1 tk,i − tl− 1,r− 1􏼐 􏼑
α

− tk,i − tl− 1,r􏼐 􏼑
α

􏽨 􏽩, l � 1, 2, . . . , k,

vl−1,N � Γ(α + 1) L2 + L3 tk,i − tl−1,N􏼐 􏼑􏼐 􏼑 + L1 tk,i − tl− 1,N− 1􏼐 􏼑
α

− tk,i − tl− 1,N􏼐 􏼑
α

􏽨 􏽩.

(20)

By using the discrete analogue of Gronwall’s inequality
(see )eorem 2 in [22]), it follows that
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zk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤pk,i + wk 􏽙

k

l�1
􏽙

N

r�1
1 + wl−1vl−1,r􏼐 􏼑 􏽙

i−1

r�1
1 + wkak,r􏼐 􏼑

× 􏽘
k

q�1
􏽘

N

j�1
pq−1,jvq−1,j 􏽙

q

l�1
􏽙

j

r�1
1 + wl− 1vl− 1,r􏼐 􏼑

− 1⎛⎝ ⎞⎠ + 􏽘
i−1

g�1
ak,gpk,g 􏽙

k

l�1
􏽙

N

r�1
1 + wl− 1vl− 1,r􏼐 􏼑

− 1
􏽙

g

r�1
1 + wkak,r􏼐 􏼑

− 1⎡⎢⎢⎣ ⎤⎥⎥⎦.

(21)

According to Lemma 1, when h is small enough, we have
0<wk ≤C, k � 0, 1, . . . , m, and

0<pk,i ≤Ch. (22)

Hence, we obtain

􏽘

k

q�1
􏽘

N

j�1
pq−1,jvq−1,j 􏽙

q

l�1
􏽙

j

r�1
1 + wl− 1vl− 1,r􏼐 􏼑

− 1⎛⎝ ⎞⎠ + 􏽘
i−1

g�1
ak,gpk,g 􏽙

k

l�1
􏽙

N

r�1
1 + wvl− 1,r􏼐 􏼑

− 1
􏽙

g

r�1
1 + wkak,r􏼐 􏼑

− 1

≤ 􏽘
k

q�1
􏽘

N

j�1
pq−1,jvq−1,j + 􏽘

i−1

g�1
ak,gpk,g

≤Ch L1 t
α
k,i − tk,i − tk− 1,N􏼐 􏼑

α
􏼐 􏼑 + 􏽘

k

q�1
Γ(α + 1) L2 + L3 tk,i − tq−1,N􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠ + ChL1 tk,i − tk,0􏼐 􏼑

α
− tk,i − tk,i− 1􏼐 􏼑

α
􏽨 􏽩

≤Ch L1 t
α
k,i − tk,i − tk,i− 1􏼐 􏼑

α
􏼐 􏼑 + 􏽘

k

q�1
Γ(α + 1) L2 + L3 tk,i − tq−1,N􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠

≤Ch,

(23)

􏽙

k

l�1
􏽙

N

r�1
1 + wl−1vl−1,r􏼐 􏼑 􏽙

i−1

r�1
1 + wkak,r􏼐 􏼑≤ exp 􏽘

k

l�1
􏽘

N

r�1
wl−1vl−1,r + 􏽘

i−1

r�1
wkak,r

⎛⎝ ⎞⎠

≤ exp C L1 t
α
k,i − tk,i − tk− 1,N􏼐 􏼑

α
􏼐 􏼑 + 􏽘

k

l�1
Γ(α + 1) L2 + L3 tk,i − tl−1,N􏼐 􏼑􏼐 􏼑⎡⎣ ⎤⎦ + CL1 tk,i − tk,0􏼐 􏼑

α
− tk,i − tk,i− 1􏼐 􏼑

α
􏽨 􏽩⎛⎝ ⎞⎠

≤ exp C L1 t
α
k,i − tk,i − tk,i− 1􏼐 􏼑

α
􏼐 􏼑 + 􏽘

k

l�1
Γ(α + 1) L2 + L3 tk,i − tl−1,N􏼐 􏼑􏼐 􏼑⎡⎣ ⎤⎦⎛⎝ ⎞⎠≤C,

(24)

where we have used inequality (22) and (1 + x)≤ ex for
x≥ − 1. )erefore, substituting (22)–(24) into (21) leads to

zk,i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � uk,i − u tk,i􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Ch, k � 0,1, . . . ,m, i � 1,2, . . . ,N,

(25)

whichmeans themethod is convergent of the first order. □

4. Numerical Experiments

In the section, we utilize the following example to verify the
theoretical results obtained in the previous section. Here, we
will give error estimates and convergence rates for the
numerical scheme.

Example 1. Consider the following impulsive fractional
differential equation:

C
0 D

α
t u(t) � −3u(t) + 0.2 sin(u(t)) + 5t

α
+ 2, t � [0, 3]\ 0.5, 2{ }, 1< α< 2,

Δu(1) � −
1
2

u 0.5−
( ), Δu(2) � −

2
3

u 2−
( ),

Δu′(1) �
1
4

u 0.5−
( ), Δu′(2) �

1
4

u 2−
( ),

u(0) � 1, u′(0) � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)
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Because it is difficult to obtain the true solution of the
equation, we take the numerical solution uk,i as the true
solution u(tk,i) at t � tk,i with N � 6400. )e numerical
scheme (7) is solved by using the Newton iteration method
with u0

k,i � 0 (k � 0, 1, . . . , m, i � 1, 2, . . . , N) as an initial
value. We iteratively compute u

j

k,i until

max
0≤k≤m, 1≤i≤N

u
j

k,i − u
j−1
k,i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< 10
− 8

. (27)

)e L∞ norm of the global error is denoted as

em,N � max
0≤k≤m, 1≤i≤N

uk,i − u tk,i􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (28)

)en, the convergence order of the numerical method is

rm,N � log2
em,N

em,2N

􏼠 􏼡. (29)

When α takes different values, the error and convergence
order of numerical method (7) are shown in Table 1.

Table 1 shows that the numerical method (7) is con-
vergent of the first order, which supports the convergence
estimate of )eorem 1.

In Figure 1, we can see that the numerical solution is
discontinuous due to the existence of the impulses.

5. Conclusion

In this paper, we focus on the numerical solution of im-
pulsive fractional differential equations. For a class of
nonlinear impulsive fractional differential equations, the
implicit Euler method is adapted for solving the problem.
After careful convergence analysis, we prove that themethod
is convergent of the first order. For future work, we will
study the higher-order methods for solving impulsive
fractional differential equations and analyze their
convergence.
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