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(is paper has investigated an integrated control of active front steering (AFS) and direct yaw-moment control (DYC) for vehicle
systems. First of all, the desired yaw rate and sideslip angle are estimated by using a two-degree-of-freedom (2-DOF) model of the
vehicle system. On this basis, the actual sideslip angle is estimated by means of an observer. (en, the sliding mode control (SMC)
is developed for AFS and DYC, respectively, to guarantee that the actual yaw rate and the sideslip angle track their reference
signals. Additionally, the disturbance observer (DOB) technique is introduced to further improve the control performance.
Finally, the simulation results validate the superiority of the AFS and DYC integrated control by using CarSim software during the
following conditions: double lane change and side wind disturbance.

1. Introduction

With the development of electronic technology, the use of
control technology to improve the active safety of automobiles
has become a hot topic in the automotive field. Active safety
can minimize or avoid traffic accidents through vehicle design,
while passive safety means that vehicles are designed to
minimize the damage to passengers after an accident occurs. In
the 90s of the last century, the concept of vehicle stability was
proposed [1–3]. (en, the active safety control received con-
siderable attention in the vehicle stability control, such as [4–7].
Among them, AFS catches researchers’ eyes since it can directly
adjust the steering angle of the drive. Nevertheless, when the
moment of the vehicle in control limit is under the sections of
high-speed turning, heavy braking, or acceleration, steeringwill
have no effect or limited effect, the car loses the ability to turn,
and the initiative will have little effect on the steering. On the
contrary, the effect of DYC is very obvious at this time, and it is
easy to realize. It does not require a great change in the original
structure of the vehicle. (is is because the goal of DYC is to
adjust the vehicle yaw motion. (us, the integrated control of
AFS and DYC can not only further improve the lateral stability
of the vehicle but also reduce the influence of braking on
longitudinal dynamics and improve the driving comfort.

In [7], the LQR method was used in the integrated
control of AFS and DYC and compared with DYC control.
In [8], an integrated control of AFS and DYC with forward
and feedback controllers was presented, and the parameters
of the feedback controller were obtained by the optimum
control theory. (en, the control strategy of AFS based on
sliding mode theory and the control strategy of EPS
(combined control on both direct yaw moment and variable
slip ratio) were presented in [9]. An integrated AFS andDYC
control system was developed in [10] based on the fuzzy
logic control, which was used for the yaw rate controller to
keep the yaw rate in its ideal value. In [11], the model
predictive control was used to adopt the hierarchical inte-
grated control structure.

In addition, on the one hand, the sliding mode control
(SMC) is popular for rejecting the uncertainties [12–18]. On
the other hand, the accurate mathematical model is indeed
necessary for SMC [19, 20]. Hence, it is obvious that the
SMC method is a very useful tool for active safety control,
such as [21–23].

(is paper focuses on the investigation of the integrated
SMC control for the AFS andDYC system, which is designed
to make sure the actual yaw rate and sideslip angle track the
desired signals. First of all, the proposed control can drive
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the error of the yaw rate and the sideslip angle to zero within
a finite time. (en, a disturbance observer (DOB) [24] is
constructed for the proposed control to reduce the control
gain so as to reduce the chattering. (e effectiveness of the
proposed control is illustrated by the simulation on
MATLAB and CarSim.

As compared with the existing results, the contributions
of this paper are twofold. On the one hand, an integrated
control of AFS and DYC for vehicle systems has been
studied. On the other hand, the Lyapunov stability analysis
and simulation results have been given to demonstrate the
effectiveness of the proposed strategy.

(e rest of the paper is organized as follows. Section 2
introduces the dynamic model of the vehicle and problem
statement.(e process of control design is given in Section 3.
(e simulation results are shown in Section 4. Section 5
concludes this paper.

2. Dynamical Model and Problem Statement

2.1. 2-DOFModel. (e 2-DOFmodel is called as the “bicycle
model” [25, 26], which is shown in Figure 1.

(en, the model is described as

mVx( _β + r) � − 2 Cf + Cr􏼐 􏼑β +
− 2 aCf − bCr􏼐 􏼑

Vx

r + 2Cfδf,

(1)

Iz _r � − 2 aCf − bCr􏼐 􏼑β +
− 2 a

2
Cf + b

2
Cr􏼐 􏼑

Vx

r

+ 2aCfδf,

(2)

where Cf and Cr, respectively, are the front and rear tire
cornering stiffness, F is the tire force, x means the lon-
gitudinal position, y means the lateral position, β is the
sideslip angle, a and b mean the distances from the center
of gravity to the front and rear axles, V is the velocity, f

means “front,” r means “rear,” r is the yaw rate, Iz is the
moment of inertia, δf is the front-wheel steering angle,
and m is the mass.

2.2. ProblemFormulation. It is important to make sure what
the ideal reference signal is. Usually, the yaw rate and the
sideslip angle are the two important parameters to measure
vehicle stability. According to the 2-DOF model, the desired
yaw rate and sideslip angle can be calculated as [27]

rd �

rt, rt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌<

0.85μg

Vx

,

0.85μg

Vx

sign rt( 􏼁, rt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥

0.85μg

Vx

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(3)

βd �
βt, βt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌< βmax,

βmaxsign βt( 􏼁, βt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ βmax,

􏼨 (4)

with

rt �
Vx

(a + b) 1 + KV
2
x􏼐 􏼑

δf d,

βt �
b − amV

2
x/2Cf(a + b)

(a + b) 1 + KV
2
x􏼐 􏼑

δf d,

(5)

where μ is the tire-road friction coefficient, K is a positive
constant, δf d is the angle input from the steering wheel to
the front wheel, βmax � arctan(0.02μg), and g is the grav-
itational constant.

(e diagram of the integrated control of active front
steering and direct yaw moment (AFS +DYC) is depicted
in Figure 2, and the vehicle inputs include the vehicle
speed Vx and the steering wheel angle δf d commanded by
the driver. According to the 2-DOF vehicle model, the
ideal sideslip angle βd and yaw rate rd can be calculated,
respectively. (e CarSim vehicle model is regarded as a
real vehicle model, which can output the actual yaw rate r.
As a matter of fact, it is difficult to measure the actual
sideslip angle directly by some special sensors, and the
sensors needed are expensive. On the contrary, the ac-
curacy and stability need to be further improved, thus
designing the state observer to estimate the exact value is a
good solution.

Remark 1. (e DYC algorithm cannot be imposed on the
2-DOF model. (is is because the implementation of
DYC algorithm is based on the yaw moment Mz gen-
erated by the torque difference between left and right
wheels, while the 2-DOF model regards the left and right
wheels as one wheel such that there is no Mz in the 2-DOF
model.

3. Control Design

3.1. Sideslip Angle Observer. (e lateral acceleration ay is
expressed as

ay � Vx( _β + tr) �
− 2 Cf + Cr􏼐 􏼑

m
β +

− 2 aCf − bCr􏼐 􏼑

mVx

r +
2Cf

m
δf.

(6)

Introduce the variables x1 � r, x2 � β, X � [r, β]T,
Y � [y1, y2]

T � [r, ay]T, and u � [δf]. (e vehicle model
described by equations (1) and (2) can be rewritten as

Fyr

Fxf

Fyf
Fxr

Y

b a

r

x

δf

Vx

Vy

V
β

Figure 1: 2-DOF vehicle model.
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_X � AX + Bu,

Y � CX + Du ,

⎧⎪⎨

⎪⎩

A �

− 2 a
2
Cf + b

2
Cr􏼐 􏼑

IzVx

− 2 aCf − bCr􏼐 􏼑

Iz

− 2 aCf − bCr􏼐 􏼑

mV
2
x

− 1
− 2 Cf + Cr􏼐 􏼑

mVx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B �

2aCf

Iz

2Cf

mVx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

1 0

Vx A21 + 1( 􏼁 VxA22

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, D �

0

VxB2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(7)

(en, the observer is constructed as

_􏽢x1 � A11y1 + A12􏽢x2 + B1u + c1 y1 − 􏽢x1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
1/2sign y1 − 􏽢x1( 􏼁,

_􏽢x2 � A21y1 + A22􏽢x2 + B2u + c2sign y1 − 􏽢x1( 􏼁 +
1

Vx

ay − 􏽢ay􏼐 􏼑,

􏽢ay � Vx A21 + 1( 􏼁y1 + VxA22􏽢x2 + VxB2δf,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where c1 and c2 are positive constants.
(en, the following lemma is obtained, whose proof is

similar to that in [23]. (us, it is omitted here.

Lemma 1. .e output 􏽢x2 of (8) will track x2 within a finite
time.

Remark 2. It should be pointed out that the values of the
front and rear tire cornering stiffness Cf and Cr are as-
sumed to be constants in the vehicle dynamic model. In
fact, their values are dependent on the road condition and
normal force on tires, and thus, there are some pertur-
bations for the two parameters. In addition, the model
error also exists in the vehicle dynamics. (ese factors
affect the accuracy of the estimation. To fix this problem,
the lateral acceleration error ay − 􏽢ay is introduced in the
observer (8) to compensate the model error and parameter
perturbations.

3.2. Baseline Controller

3.2.1. AFS Controller. (e AFS is to control the steering
angle of the front wheel in the linear range of the tire.
(erefore, the design of the controller is based on 2-DOF.
(e purpose of the controller is to eliminate the error be-
tween the actual vehicle and the ideal vehicle by controlling
the front steering angle and tomake sure the yaw rate follows
the ideal model well.

(e active front steering 2-DOF vehicle model is de-
scribed as

_r

_β
􏼢 􏼣 �

A11 A12

A21 A22
􏼢 􏼣

r

β
􏼢 􏼣 +

B1

B2
􏼢 􏼣δf. (9)

(e difference between the actual yaw rate and the ideal
value is

e � r − rd. (10)

Taking the derivative of (10) yields

_e � _r − rd
.
. (11)

We choose the sliding surface as s1 � e. Taking the time
derivative of s1 along system (9) gives

_s1 � A11r + A12
􏽢β + B1δf + D1(t), (12)

where D1 � − _rd + A12(β − 􏽢β). One can find a constant cD1
such that

|D1(t)|≤ cD1
. (13)

Theorem 1. If the AFS controller is constructed as

δf �
1

B1
− A11r − A12

􏽢β − k1sign s1( 􏼁 − k2s1􏼐 􏼑, (14)

where k1 > cD1
and k2 > 0, r will finite-time converge to rd.

Proof. Putting (14) into (12) yields

s1
.

� − k1sign s1( 􏼁 − k2s1 + D1(t). (15)

Let V(s1) � (1/2)s21. (e time derivative of V(s1) along
system (15) is

Vehicle 
system

2-DOF
model

CarSim S-function

DYC 
controller

Torque 
distribution 

controller

Sideslip 
angle 

observer

AFS 
controller

δfd
δf

Δδf

VX

βd β^

+
+

–

–

+

–

Tij
M

γd γ

γ

Figure 2: Structure of the AFS +DYC control system.
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_V � s1s1
.

� − k1sign s1( 􏼁s1 − k2s
2
1 + D1(t)s1

≤ − k1 s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − k2s
2
1 + D1(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ − k1 − cD1
􏼐 􏼑 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − k2s

2
1

≤ − k1 − cD1
􏼐 􏼑 s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(16)

Note that k1 > cD1
. It can be proved that _V≤ − CV1/2,

C �
�
2

√
(k1 − cD1

). From [28–30], the sliding variable s1 will
finite-time converge to zero. Hence, the corrective steer
angle Δδf generated by the controller is determined as

Δδf � δf − δf d. (17)
□

3.2.2. DYC Controller. DYC control is to utilize the present
antilock brake system to obtain the demanded longitudinal
force and steady yaw moment. When the yaw moment is
taken into account, the equation of state (9) becomes

_r � A11r + A12β + B1δf +
1
Iz

M, (18)

_β � A21r + A22β + B2δf, (19)

in which (19) can be rewritten as follows:

δf �
1

B2

_β − A21r − A22β􏼐 􏼑. (20)

Substituting (20) into (18) produces

_r � A11 −
B1

B2
A21􏼠 􏼡r + A12 −

B1

B2
A22􏼠 􏼡β +

B1

B2

_β +
1
Iz

M.

(21)

(en, we select a sliding surface, which is composed of
the deviation of the yaw rate and the deviation of the sideslip
angle, i.e.,

s2 � r − rd + ξ β − βd( 􏼁, (22)

with ξ > 0.
Combining the time derivative of (22) with (21) gives

_s2 � A11 −
B1

B2
A21􏼠 􏼡r + A12 −

B1

B2
A22􏼠 􏼡􏽢β +

1
Iz

M + D2(t),

(23)

with D2(t) � (A12 − (B1/B2)A22)(β − 􏽢β) + (B1/B2)
_β + ξ

( _β − βd

.

) − _rd. Note that β is often very small, and from the
definition of βd and rd, βd

.

and rd

.
are bounded. Hence, a

constant cD2
can be found such that

D2(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ cD2
. (24)

Theorem 2. If the DYC controller is constructed as

M � Iz − A11 −
B1

B2
A21􏼠 􏼡c􏼠

− A12 −
B1

B2
A22􏼠 􏼡􏽢β − K1sign s2( 􏼁 − K2s2􏼡,

(25)

whereK1 > cD2
andK2 > 0, s2 will finite-time converge to zero.

Proof. Putting (25) into (23) yields

s2
.

� − K1sign s2( 􏼁 − K2s2 + D2(t). (26)

Choose the Lyapunov function as V(s2) � (1/2)s22.
Differentiating V(s2) along system (26) gives

_V � s2,

s2
.

� − K1sign s2( 􏼁s2 − K2s
2
2 + D2(t)s2

≤ − K1 s2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − K2s
2
2 + D2(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 s2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ − K1 − cD2
􏼐 􏼑 s2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − K2s

2
2

≤ − K1 − cD2
􏼐 􏼑 s2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(27)

Note that K1 > cD2
. It can be proved that _V≤ − CcV1/2,

Cc �
�
2

√
(K1 − cD2

), and s2 finite-time converges to
zero. □

3.3. Composite Controller Design. In the following, by using
DOB technique and baseline controllers, we will give the
composite controllers to enhance the control performance.

3.3.1. AFS Controller Based on a DOB. We can rewrite
system (12) as

s1
.

� F s1( 􏼁 + G1 s1( 􏼁δf + G2 s1( 􏼁D1(t), (28)

where F(s1) � A11r + A12
􏽢β, G1(s1) � B1, G2(s1) � 1, and

D1(t) is regarded as the unknown disturbance and satisfies
| _D1(t)|≤ c _D1

with c
D1

. > 0 being a constant, which at least
holds locally.

Design the nonlinear DOB (NDOB) as

_P � − L1G2P − L1 G2L1s1 + F s1( 􏼁 + G1δf􏽨 􏽩,

􏽤D1 � P + L1s1,

⎧⎨

⎩ (29)

where P and L1 are the state and constant.
Let e1(t) � D1(t) − 􏽢D1(t). Differentiating e1(t) along

systems (28) and (29) gives

_e1 � _D1 − _􏽢D1

� _D1 − − L1G2P − L
2
1G2s1 + L1G2D1􏽨 􏽩

� _D1 − L1G2e1.

(30)

Let V(e1) � (1/2)e21. (en, one has

_V e1( 􏼁 � e1e1
.

� e1
_D1 − L1G2e1􏼐 􏼑≤ e1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌c _D1

− L1G2e
2
1.

(31)
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Define a region as Q1 � e1 : |e1|≤ (c _D1
/L1G2)􏽮 􏽯. For any

e1(t) ∈ R/Q1, one has |e1|> (c _D1
/L1G2). (is, together with

(31), yields _V(e1)≤ − |e1|(L1G2|e1| − c _D1
)< 0. Note that

G2 � 1, which means that e1(t) will reach and stay in the
domain

Q1 � e1 : e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
c _D1

L1
􏼨 􏼩. (32)

Theorem 3. Provided that the composite AFS controller is
constructed as

δf �
1

B1
− A11r − A12

􏽢β − 􏽢D1 − k1sign s1( 􏼁 − k2s1􏼐 􏼑, (33)

where k1 > 0, k2 > 0, and L1 > c _D1
, s1 will finite-time converge

to zero.

Proof. Putting (33) into (12) yields

s1
.

� − K1sign s1( 􏼁 − K2s1 + D1(t) − 􏽢D1

� − K1 · sign s1( 􏼁 − K2s1 + e1(t).
(34)

From NDOB (29), it is clear that the error e1(t) is
bounded. (is means that a constant ce1

can be found such
that |e1(t)| � |D1(t) − 􏽢D1|≤ ce1

.
Hence, the corrective steer angle Δδf generated by the

controller is determined as follows:

Δδf � δf − δf d. (35)
□

3.3.2. DYC Controller Based on a DOB. System (23) can be
rewritten as

_s2 � f s2( 􏼁 + g1 s2( 􏼁M + g2 s2( 􏼁D2(t), (36)

where f(s2) � (A11 − (B1/B2)A21)r + (A12 − (B1/B2)A22)
􏽢β,

g1(s2) � 1/Iz, g2(s2) � 1, and D2(t) is considered as the
unknown perturbation, and | _D2(t)|≤ c _D2. (en, a NDOB is
constructed as

_p � − L2g2p − L2 g2L2s2 + f s2( 􏼁 + g1M􏼂 􏼃,

􏽣D2 � p + L2s2.
􏼨 (37)

L2 is a positive constant.
Let e2(t) � D2(t) − 􏽢D2(t). Taking the derivative of e2(t)

along systems (36) and (37) gives

_e2 � _D2 − _􏽢D2

� _D2 − − L2g2p − L
2
2g2s2 + L2g2D2􏽨 􏽩

� _D2 − L2g2e2.

(38)

We choose a Lyapunov function as V(e2) � (1/2)e22,
whose time derivative along (38) is

_V e2( 􏼁 � e2e2
.

� e2
_D2 − L2g2e2􏼐 􏼑≤ e2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌c _D2

− L2g2e
2
1.

(39)

Define a region as Q2 � e2: |e2|≤ c _D2
/L2g2􏽮 􏽯. For any

e2(t) ∈ R/Q2, we have |e2|> c _D2
/L2g2. (is, together with

(39), yields _V(e2)≤ − |e2|(L2g2|e2| − c _D2
)< 0. It is noted

that g2 � 1. (is means that e2(t) will stay in the domain

Q2 � e2: e2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
c _D2

L2
􏼨 􏼩. (40)

Theorem 4. Provided that the composite DYC controller is
constructed as

M � Iz − A11 −
B1

B2
A21􏼠 􏼡r − A12 −

B1

B2
A22􏼠 􏼡􏽢β􏼠

− K1sign s2( 􏼁 − K2s2 − 􏽣D2􏼑,

(41)

where k1 > 0, k2 > 0, and L1 > c _D1
, s2 will finite-time converge

to zero.

Proof. Putting (41) into (23) yields

s2
.

� − k1sign s2( 􏼁 − k2s2 + D2(t) − 􏽢D2

� − k1 · sign s2( 􏼁 − k2s2 + e2(t).
(42)

From NDOB (37), it is clear that the error e2(t) is
bounded. (is means that a constant ce2

> 0 can be found
such that |e2(t)| � |D2(t) − 􏽢D2|≤ ce2

. (e remainder of the
proof is similar to that in (eorem 2. □

3.4. Torque Distribution Controller. On the basis of the ideal
yaw moment obtained by the DYC controller, the main
function of the whole control strategy is to assign the ex-
pected yawmoment calculated by the DYC controller to four
wheels.(e torque distributor designed in this paper is based
on the vertical load distribution, taking into account the
motor output and road surface conditions of the distribution
constraints. First of all, the relationship between the lon-
gitudinal force of the tire and the torque of the motor is

Fxij �
Tij

R
, (43)

which leads to

Tfl �
Fzfl

Fz

Mz

− df/2 cos δf d + a sin δf d

R,

Tfr �
Fzfr

Fz

Mz

df/2 cos δf d + a sin δf d

R,

Trl � −
Fzrl

Fz

Mz

2dr

R,

Tfl �
Fzrr

Fz

Mz

2dr

R.

(44)

Finally, the torques obtained by formula (44) are con-
strained as follows:

Mathematical Problems in Engineering 5



Tij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤min μRFzij, Tmax􏼐 􏼑, (45)

where Fzij is the driving or braking torque, Tij is the vertical
load, Tmax is the maximum motor output torque, μ is the
adhesion coefficient of the road, and R represents the ef-
fective radius of the tire.

4. Simulation Results

(e validity of the AFS and DYC control is shown by using
the cosimulation of MATLAB/Simulink and CarSim. (e
responses are compared with those without any control, with
yaw-moment control only, and with the AFS and DYC
integrated control. (e parameters are given in Table 1.

In the simulation, the initial speed of the vehicle is
80 km/h, and μ is 0.3 in the double lane-changing maneuver,
and ξ � 0.5.

Table 1: Parameters of the vehicle model.

Symbol Value
m 1429 (Kg)
b 1.569 (m)
dr 1.565 (m)
Iz 1765 (Kg·m2)
Cr 87002 (N/rad)
a 1.05 (m)
df 1.565 (m)
R 0.35 (m)
Cf 79240 (N/rad)
n 20
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4.1. Double Lane-Change Maneuver. (e simulation results
are depicted in Figures 3–5. It can be seen from Figures 4 and
5 that, without any control, the yaw rate and the sideslip
angle are larger values deviating from their ideal value, even
cannot guarantee the stability of the vehicle. On the con-
trary, under the other three controllers, the vehicle trajectory
can track the expected trajectory, the actual yaw rate can
follow the ideal value, and the actual sideslip angle can be
controlled in a stable region. Compared with other con-
trollers, the integrated control of AFS and DYC based on the
DOB technique can improve the vehicle response, which can
also be verified by Figure 3.

4.2. Response to Side Wind Disturbance. (e simulation is
given under a side wind force, as shown in Figure 6. It can be
seen from Figures 7 and 8 that the case without any control

fails to keep vehicle’s stability, while the case with the yaw-
moment control only cannot control well compared with the
integrated control. (e properties can be clearly seen in
Figure 9, which reflects the double lane-change maneuvering
under the proposed controllers. At last, it can also be observed
from Figure 9 that the integrated control of AFS and DYC
based on the DOB technique has better control performance
compared with the pure AFS and DYC integrated control.

5. Conclusion

In our study, it has been shown that the AFS and DYC
integrated control has better control performance than the
DYC control. At the same time, we also confirm that the
integrated control of AFS and DYC based on the DOB
technique can suppress the large disturbance and have better
robustness in comparison with the pure AFS and DYC
integrated control [31].
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