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In this paper, we incorporate an efficiency criterion using data envelopment analysis into the single-source and multi-source
capacitated facility location problems. We develop two bi-objective integer programs to find optimal and efficient location
patterns, simultaneously. (e proposed models for these capacitated facility location problems have fewer variables and con-
straints compared to existing models presented in the literature. We use the LP-metric procedure to solve the proposed models on
two numerical examples. Results show that new models give better solutions, based on cost and efficiency criteria.

1. Introduction

Facility location problem (FLP) is concerned with finding
optimal locations of facilities and how to allocate them to
satisfy customers’ demands such that the total fixed
opening costs of facilities and the total transportation costs
are minimized. It has applications in supply chain network
design, telecommunication, public sector services, and
distribution network design [1–4]. In location analysis,
patterns with more output and service produced for a given
amount of resources are more efficient and less wasteful.
Attributes such as availability of infrastructures, resource
usage, and receptiveness and perceptions of local pop-
ulation can influence performance of location pattern.
(us, considering a multi-objective program which in-
cludes different criteria makes sense. (ere are different
methods to evaluate efficiency and performance, where, in
this paper, we use data envelopment analysis (DEA)-based
models. (ese models are quantitative and nonparametric
mathematical programming-based approaches to evaluate
efficiency. (ey can be used in combination with FLP
models to produce integrated models that can be solved in
one step in order to find best locations for facilities and
efficient allocation pattern.

(e DEA technique has extensive applications in dif-
ferent fields such as performance analysis [5], ranking
companies or decision-making units [5, 6], efficient banking
[7], industrial management [6, 7], and forecasting profit-
ability in markets [8, 9]. Moreover, applications of DEA
models with the indeterminacy, impreciseness, vagueness,
inconsistent, and incompleteness information are also
widely studied [10, 11].

In recent works, FLP models are combined with DEA
models to achieve best locations and maximum efficiency at
the same time. Cook and Green [12] used DEA to select sites
for facilities with a single resource restriction on operating
budget. (ey proposed a mathematical programming model
to find locations of sites for a set of retail outlets such that
maximize the ratio of benefits to costs. Klimberg and Ratick
[13] have utilized concept of DEA in order to formulate and
find optimal and efficient facility location/allocation pat-
terns. (ey used this concept for both uncapacitated and
capacitated facility location problems. (ey proposed two
bi-objective models for combined DEA and location-allo-
cation models in which the total costs and average DEA
efficiency objectives are optimized simultaneously. Karba-
sian and Dashti [14] used simultaneous DEA for four dis-
crete, deterministic, uncapacitated, and static dispersion
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facility location problems. (ey proposed different multi-
objective models to find optimal and efficient facility loca-
tion patterns and maximize total demands of satisfied
customers using the DEA method for p-dispersion problem,
p-defense problem, and MaxMinSum and MaxSumSum
dispersion and covering location problems in the presence of
existing facilities. (ey also used a fuzzy goal programming
method to solve their multi-objective models. (omas et al.
[15] used DEA in locating obnoxious facilities and presented
two approaches in their study. In the first one, obtained
optimum locations of facilities are considered as input of the
DEA model. In the second one, a hierarchical process of
DEA is used by a single-objective linear programming (LP)
model that maximizes the efficiency of p obnoxious facilities
to be opened. In their study, the performance is considered
in terms of proximity and DEA efficiency scores. Azadeh
et al. [16] proposed an integrated hierarchical approach to
select the most efficient and best-possible location for solar
plants using the DEA approach. (e optimum locations of
solar power plants are ranked by DEA with respect to some
output and input parameters. Also, principal component
analysis and taxonomy methods are used to validate results
of the model. Mitropoulos et al. [17] used combination of
DEA approach to location planning of services and effective
allocation of scarce resources such as equipment, funds, or
workforce in the health sector. (ey proposed a framework
to evaluate technical efficiency of existing healthcare centers
and location analysis in order to maximize accessibility,
utilization, and mean efficiency and select the appropriate
number and locations of providers. Location analysis de-
termines which centers will be upgraded and expanded and
which ones will be closed. Moheb-Alizadeh et al. [18] studied
incorporation of DEA and location-allocation models in a
fuzzy environment. (ey used the multicriterion form of
DEA and simultaneously considered both facility location
and demand assignment problems in which the number of
facilities to be located was not predetermined. (e demand
of each product for each customer, the amount of resources
that each facility uses, and the output of each facility in each
candidate location are assumed as a fuzzy number. Adabi
and Omrani [19] studied considering efficiency in design of
supply chain and proposed a bi-objective mixed integer
linear programming (MILP) where one objective maximized
system efficiency of the network and the other one mini-
mized the total setup and transportation costs of the pattern.
Mohaghar et al. [20] developed an integration of fuzzy
VIKOR and assurance region-DEA for selection and ranking
suppliers in a supply chain network. Georgantzinos and
Giannikos [21] also considered the incorporation of effi-
ciency in the context of the set covering, set partitioning
problem, and set packing problem. Finally, recently Houng
and Jeong [22] combined DEA and multi-objective opti-
mization techniques for the efficient facility location-allo-
cation decisions and patterns to help practitioners and
decision-makers.

Among FLPs, two widely used and studied problems are
single-source capacitated facility location problem (SSCFLP)
and multi-source capacitated facility location problem
(MSCFLP) [2, 3]. In this paper, we combine SSCFLP and

MSCFLP models with the CCRmodel of DEA.(e resulting
models are integer and mixed integer multi-objective LPs,
respectively. In MSCFLP case, our model has less variables
and constraints and gives better solutions compared to [13].
In both models, efficiency is defined as weighted sum of the
outputs. To solve the proposed multi-objective models, we
use the LP-metric method.

(e remainder of this paper is organized as follows. Section
2 introduces single-source andmulti-source capacitated facility
location problems. Section 3 presents DEA models which are
used in this paper. (e proposed combined models of DEA
with SSCFLP and MSCFLP are given in Section 4. Section 5
presents the solution procedure for the proposed models.
Finally, numerical examples are given in Section 6.

2. Capacitated Facility Location Problems

In what follows, we give MSCFLP and SSCFLP models. (e
MSCFLP can be formulated as the following MILP:

min
h


l

chlxhl + 
h

fhyh, (1)

s.t. 
h

xhl ≥ al, ∀l, (2)


l

xhl ≤ bhyh, ∀h, (3)

yh ∈ 0, 1{ }, ∀h, (4)

xhl ≥ 0, ∀l, ∀h, (5)

where h � 1, . . . , H is the index of facility locations,
l � 1, . . . , L is the index of demand points, chl is the cost of
shipping one unit of demand from facility h to demand point
l, al is the number of units of demand at l, bh is the capacity
of facility h, fh is the fixed cost of opening facility h, and xhl

is the fraction of demand at point l satisfied from facility h:

yh �
1, if facility h is opened,

0, o.w.
 (6)

Objective function (1) calculates the total fixed
opening and transportation costs. (e transportation
costs are calculated as the product of the per unit
transportation costs and the amount shipped from fa-
cility h to demand l. Constraints (2) ensure that every
demand point is satisfied, and constraints (3) ensure that
only open facilities can supply demand points consid-
ering their capacity. Finally, constraints (4) and (5) are
binary and nonnegative constraints on variables,
respectively.

In SSCFLP, customers are forced to be served only from
a single facility which is applicable for real-world situations
where multiple deliveries may increase the cost of main-
taining and updating the inventory [23]. It can be formu-
lated as the following ILP:
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min 
h


l

alchlxhl + 
h

fhyh, (7)

s.t. 
h

xhl � 1, ∀l, (8)


l

alxhl ≤ bhyh, ∀h, (9)

yh, xhl ∈ 0, 1{ }, ∀l,∀h, (10)

where

yh �
1, if facility h is opened,

0, o.w,


xhl �
1, if facility h serves demand l,

0, o.w.


(11)

Objective function (7) calculates the total fixed opening
and transportation costs. (e transportation costs are cal-
culated as the product of the per unit transportation costs
and the amount shipped from facility h to demand l.
Constraints (8) ensure that every demand point is satisfied,
and constraints (9) ensure that only open facilities can
supply demand points considering their capacity. Finally,
constraints (10) are binary constraints on variables.

3. Data Envelopment Analysis

DEA is a nonparametric method based on mathematical
programming for measuring relative efficiency of multiple
homogeneous decision-making units (DMUs) with the same
inputs and outputs. DEA is an effective tool for performance
benchmarking when multiple performance measures exist and
a priori information on the tradeoffs among these measures is
completely available [6]. Farrell proposed a nonparametric
approach for evaluating the efficiency of DMUs applying two
inputs and one outputs, and later, Charnes et al. developed this
approach for several inputs and outputs [24, 25]. Evaluation of
DMUs is done by the ratio of the weighted sum of outputs to
the weighted sum of inputs which is relative efficiency of them.
In this manner, DEA finds the weights such that the efficiency
of each DMU is maximized rather than the other DMUs. (e
multiplier form of the CCR (CCRm) DEA model evaluating
the efficiency of o-th DMU is as follows:

max
rOrour

iIiovi

, (12)

s.t.
rOrjur

iIijvi

≤ 1, ∀j, (13)

ur, vi ≥ 0, ∀i, ∀r, (14)

where n is number of DMUs, m is number of inputs, s is
number of outputs, Iij is the i-th input value for j-th DMU,
Orj is the r-th output value for j-th DMU, ur is the weight
values of the r-th output, and vi is the weight values of the i-
th input. (e objective function, which is the efficiency score
of under evaluation DMU, cannot exceed unity, and DMUs
are classified into two types based on their scores.(e DMUs
with an efficiency score 1 are called efficient, and others are
called inefficient [5]. Charnes et al. transformed the CCRm
to an LP as follows [25]:

max
r

Orour, (15)

s.t. 
r

Orjur − 
i

Iijvi ≤ 0,    ∀j, (16)


i

Iiovi � 1, (17)

ur, vi ≥ ε,    ∀i,   ∀r, (18)

where ε is non-Archimedean infinitesimal value to prevent
numerous zeros in input and output weights. (e CCRm is
always feasible [5], for example, if ε � 0, then because Iij are
positive, v � ((1/I1,o), 0, . . . , 0), u � (0, . . . , 0) is a feasible
solution. However, model (15–18) is not feasible for every
value of ε. To find a suitable value of ε, an additional model
should be solved which its feasible region is exactly the
feasible region of CCRm, while its objective function is
max ε.

Klimberg and Ratick modified the standard model of
CCRm and proposed a model to calculate DEA efficiency
scores of all the DMUs in one LP as follows [13]:

max
j


r

Orjurj, (19)

s.t. 
r

Orkurj − 
i

Iikvij ≤ 0 ∀j, k,  j≠ k,

(20)


i

Iijvij � 1, ∀j, (21)

urj, vij ≥ ε,    ∀i,   ∀r,  ∀j, (22)

where urj is the weight values of the r-th output in the
j-th DMU and vij is the weight values of the i-th input in the
j-th DMU. Similar to model (15)–(18), models (19)–(22)

are also feasible, for example, v �

1/I1,1 1/I1,2 · · · 1/I1,n

0 0 · · · 0
⋮ ⋮ ⋮ ⋮
0 0 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

u �

0 · · · 0
⋮ ⋱ ⋮
0 · · · 0

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦.
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4. Combined MSCFLP-DEA and SSCFLP-
DEA Models

In this section, DEAmethodology has been used as a tool for
incorporating concept of efficiency into MSCFLP and
SSCFLP models as another objective to provide optimum
location pattern with respect to the total transportation and
fixed costs and also the performance of facilities at different
potential sites.(e SSCFLP is an important variant of CFLPs
in practical situations that a combined model for which is
proposed in this section. In order to incorporate DEA in
CFLP models, the DEA efficiency scores of all DMUs should
be calculated in one LP. We develop combined CFLP-DEA
models using models (19)–(22) which maximize the sum of
efficiencies.

4.1. MSCFLP-DEA Model. Incorporating the above DEA
model in the MSCFLP results in the following bi-objective
formulation which we call it MSCFLP-DEA:

min
h


l

chlxhl + 
h

fhyh, (23)

max
h


l


r

Orhlurhl, (24)

s.t. 
h

xhl ≥ al, ∀l, (25)


l

xhl ≤ bhyh, ∀h, (26)

xhl ≤Mhlzhl, ∀h,  ∀l, (27)

zhl ≤ xhl,    ∀h,  ∀l, (28)


i

Iihlvihl � zhl,  ∀h,  ∀l, (29)

Orhlurhl ≤ zhl, ∀h,  ∀l,  ∀r, (30)


r

Orpqurhl − 
i

Iipqvihl ≤ 0, ∀h, l, p, q,  p≠ h,  q≠ l,

(31)

urhl ≥ εzhl, ∀r,   ∀h,  ∀l, (32)

vihl ≥ εzhl,    ∀i,   ∀h,  ∀l, (33)

yh,  zhl ∈ 0, 1{ }, ∀l,  ∀h, (34)

xhl ≥ 0, ∀l,  ∀h, (35)

where Mhl � min al, bh , ε is a very small positive number,
Iihl is the i-th input value for the link of facility h and demand
point l, Orhl is the r-th output value for the link of facility h

and demand point l, vihl is the weight value of i-th input in

the link of facility h and demand point l, and urhl is the
weight value of i-th output in the link of facility h and
demand point l. First objective function (23) and constraints
(25) and (26) are related to the MSCFLP model in (1)–(5).
Moreover, we need extra binary variables zhl to show al-
location status between facilities and demand points which is
defined as follows:

zhl �
1, if xhl > 0,

0, o.w.
 (36)

Constraints (27) and (28) are the reformulated form of
above-fixed charge constraint which is added to the model.
Objective function (25) and constraints (29)–(33) correspond
to the DEA model in (19)–(22). Constraints (34) and (35)
show the types of variables. Since both models (1)–(5) and
(19)–(22) are feasible, and MSCFLP-DEA is a direct com-
bination of them, then it is also feasible. A feasible solution is
as follows: if xhl � 0, then let v: ,h,l � (0, . . . ,0), u: ,h,l � (0, . . . ,

0), yh � 0, an dzhl � 0, and if xhl>0, then zhl � 1 and let v: ,h,l �

(1/I1,h,l,0, . . . ,0), u: ,h,l � (0, . . . ,0), andyh � 1.

4.2. SSCFLP-DEA Model. Incorporating the DEA model in
the SSCFLP results in the following bi-objective formulation
which we call SSCFLP-DEA:

min
h


l

alchlxhl + 
h

fhyh, (37)

max
h


l


r

Orhlurhl, (38)

s.t. 
h

xhl � 1, ∀l, (39)


l

alxhl ≤ bhyh, ∀h, (40)


i

Iihlvihl � xhl,    ∀h,  ∀l, (41)

Orhlurhl ≤ xhl,    ∀h,  ∀l,  ∀r, (42)


r

Orpqurhl − 
i

Iipqvihl ≤ 0, ∀h, l, p, q,  p≠ h,  q≠ l,

(43)

urhl ≥ εxhl,    ∀r,   ∀h,  ∀l, (44)

vihl ≥ εxhl,    ∀i,   ∀h,  ∀l, (45)

yh,  xhl ∈ 0, 1{ }, ∀l,  ∀h. (46)

First objective function (37) and constraints (39) and
(40) are related to the SSCFLP similar to the model in
(7)–(10). Objective function (38) and constraints (41)–(45)
are correspond to the DEAmodel in (19)–(22). Additionally,
if facility h does not serve the demand point l, xhl � 0,
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constraints (41) and (42) force input and output weights to
be zero. So, the efficiency of a facility-demand link is equal to
0 if it is not used. Constraints (46) show the types of var-
iables. Similar to the previous model, here also one can easily
show the feasibility of SSCFLP-DEA.

5. Solution Procedure

Since MSCFLP-DEA and SSCFLP-DEA models are bi-ob-
jective with inconsistent objective functions, we use the LP-
metric method [26] which is one of the famous and useful
methods for solving multi-objective problems with con-
flicting objectives. (is method considers each objective
function separately and reformulate a single objective to
minimize the sum of the normalized differences between the
objectives and their optimal values. (e two objective
functions are denoted by Z1 and Z2. Based on the LP-metric
method, MSCFLP-DEA and SSCFLP-DEA should be solved
for each one of Z1 and Z2 separately. Objective function of
the LP-metrics can be formulated as follows:

min Z3 � ω
Z1 − Z

∗
1

Z
∗
1

+ (1 − ω)
Z2 − Z

∗
2

Z
∗
2

, (47)

where 0≤ω≤ 1 is the weight which indicates relative im-
portance of the two objective functions and Z∗1 andZ∗2 are
optimum values of Z1 and Z2, respectively. Using LP-metric
objective function Z3, we have single-objective models
which can be solved by efficient solvers such as CPLEX and
Gurobi [27, 28].

6. Numerical Examples

In this section, we demonstrate the MSCFLP-DEA and
SSCFLP-DEA models on two examples. In both examples,
eachMSCFLP-DEA and SSCFLP-DEAmodels are optimally
solved three times for objective functions Z1, Z2, and Z3.
Objective function Z1 minimizes the total fixed and
transportation costs. (e function Z2 maximizes the sum of
efficiencies of DMUs. (e third objective function Z3 is the
LP-metric objective function which uses best values of Z1
andZ2 to make a tradeoff between costs and efficiency scores
of the facility-demand links. We solve the models using IBM
ILOGCPLEX 12.5 on a CORE2Duo CPU of 2 GHZ and 2GB
of RAM.

6.1. Example 1. (is example is taken from [13] and includes
seven facilities (F1 − F7), fifteen demand points (D1 − D15),
four inputs (I1 − I4), and three outputs (O1 − O3). Results
are given in Tables 1 and 2 for the MSCFLP-DEA and the
SSCFLP-DEA, respectively.

6.2. Example 2. (is example is taken from [18] and includes
five facilities (F1 − F5), eight demand points (D1 − D8), three
inputs (I1 − I3), and two outputs (O1 − O2). Results are
given in Tables 3 and 4 for the MSCFLP-DEA and the
SSCFLP-DEA, respectively.

Figure 1 illustrates the tradeoff between the total costs
and the sum of efficiency scores of DMUs for w � 1,

0.9, 0.8, 0.7, 0.6, 0.5, and 0, respectively. (is curve is an
efficient frontier, and the decision-maker can select a
suitable value for w. As it is shown, sum of efficiencies of
facility-demand links increases by increasing the total
costs. It is worthy that the slope of increasing efficiency is
higher at the first and then it decreases. In example 1, the
average of efficiency scores %84 increases with only %12
increase in the costs. So, it means that we can find efficient
patterns with a little more costs which is valuable. Fig-
ure 2 and 3 show the effect of weight of LP-metric ob-
jective function on the total costs and efficiency scores,
respectively. Figure 4 shows the relative variation of ef-
ficiency scores by relative variation of total costs. As we
see in Figure 4, %1.44 increase in the costs of locations
pattern leads to %81.93 increase in the efficiency of
pattern. (e maximum efficiency is achieved by about
%8.87 increase in the costs.

Results of solving the SSCFLP-DEA model in example 1
are shown in Table 2. Figure 5 represents the tradeoff be-
tween the total costs and the sum of efficiency scores for
w � 1, 0.8, 0.6, 0.5, 0.4, 0.2, and 0, respectively. As it is
shown, sum of efficiencies of facility-demand links increases
by increasing the total cost.(e slope of increasing efficiency
decreases by costs. (e average of efficiency scores % 71.31
increases by changing some assignments and without any
additional costs. Figure 6 and 7 show the effect of weight of
LP-metric objective function on the total costs and efficiency
scores, respectively. Total costs decrease by increasing the
weight, and sum of efficiencies increases by decreasing it.
Figure 8 shows that relative variation of efficiency scores by
relative variation of total cost. % 11.38 increase in the costs of

Table 1: Results of solving the MSCFLP-DEA model for example 1.

ω 0 0.5 0.6 0.7 0.8 0.9 1
Objectives
Fixed costs 2620 2620 2320 1950 1510 1510 1010
Transportation costs 17789 11057 10795 10677 10165 10165 10497
Total costs (Z∗1 ) 20409 13677 13115 12627 11675 11675 11507
Sum of efficiency scores (Z∗2 ) 83.5998 83.5998 78.0917 70.2095 45.8466 45.8466 6.216

DMUs
No. of open facilities 7 7 6 5 4 4 3
No. of links 105 105 90 75 60 60 45
Average score of links 0.7961 0.7961 0.8676 0.9361 0.7641 0.7641 0.1381
Minimum score of links 0.1493 0.1493 0.1493 0.1493 0.1493 0.1493 0.043

Mathematical Problems in Engineering 5



locations pattern leads to % 90.19 increase in efficiencies.(e
maximum efficiency is achieved by about % 67.47 increase in
the costs.

Similar results hold for example 2. Sum of efficiencies of
the links increases by increasing the total costs, and an
efficient pattern can be achieved by a little additional cost.

Table 2: Results of solving the SSCFLP-DEA model for example 1.

ω 0 0.2 0.4 0.5 0.6 0.8 1
Objectives
Fixed costs 2620 1370 1620 1620 1950 1880 1880
Transportation costs 26927 13768 12408 11596 8897 7733 7733
Total costs (Z∗1 ) 29547 15138 14028 13216 10847 9613 9613
Sum of efficiency scores (Z∗2 ) 29.3766 26.4868 25.2418 23.4283 14.3910 8.0088 2.2980

DMUs
No. of open facilities 7 5 5 4 4 3 3
Average score of links 1.958 1.7657 1.6827 1.56188 1.5618 0.5339 0.1532
Minimum score of links 1.2312 0.5644 0.1888 0.1888 0.1888 0.1888 0.064

Table 3: Results of solving the MSCFLP-DEA model for example 2.

ω 0 0.2 0.4 0.5 0.6 0.8 1
Objectives
Fixed costs 1251 1251 1251 1251 753 500 500
Transportation costs 9392 6257 6257 6257 5720 5449 5449
Total costs (Z∗1 ) 10643 7508 7508 7508 6473 5949 5949
Sum of efficiency scores (Z∗2 ) 28.1392 28.1392 28.1392 28.1392 22.6252 18.8038 1.961

DMUs
No. of open facilities 5 5 5 5 3 2 2
No. of links 40 40 40 40 24 16 16
Average score of links 0.7034 0.7034 0.7034 0.7034 0.9427 1.1752 0.1225
Minimum score of links 0.2156 0.2156 0.2156 0.2156 0.3220 0.3220 0.046

Table 4: Results of solving the SSCFLP-DEA model for example 2.

ω 0 0.2 0.4 0.5 0.6 0.8 1
Objectives
Fixed costs 1251 500 500 500 500 500 500
Transportation costs 9018 6315 5755 5755 5755 5228 5228
Total costs (Z∗1 ) 10269 6815 6255 6255 6255 5728 5728
Sum of efficiency scores (Z∗2 ) 14.6151 13.2075 12.2591 12.2591 12.2591 9.5926 0.959

DMUs
No. of open facilities 5 2 2 2 2 2 2
Average score of links 1.8268 1.6509 1.5323 1.5323 1.5323 1.1990 0.1198
Minimum score of links 1.2467 0.5923 0.5012 0.5012 0.5012 0.5012 0.0460
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(e results of examples 1 and 2 confirm that the optimum
solutions of the MSCFLP and the SSCFLP do not necessarily
have efficient location-allocation pattern. In other words, the
solutions of these problems under the cost criterion are
different from the ones under efficiency criterion. So, to
increase efficiency of allocations in the MSCFLP and the
SSCFLP, more fixed cost or transportation costs are needed.
It means that the total cost and the efficiency of the location-
allocation pattern are conflicting objectives. (e results of

these examples show that, in a location-allocation pattern
which has minimum cost, achieving high level of efficiency is
cheap.

7. Conclusions

In this paper, we have incorporated the concept of the ef-
ficiency into two kinds of capacitated facility location
problems, SSCFLP and MSCFLP, using DEA models. We
have proposed two bi-objective integer programs for
SSCFLP-DEA and MSCFLP-DEA models using the CCR
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model of DEA for performance evaluation and measuring
efficiency. (e developed model for MSCFLP-DEA has less
variables and constraints compared with the one proposed
by Klimberg and Ratick in [13]. In both SSCFLP-DEA and
MSCFLP-DEAmodels, the number of facilities to be located
is not predetermined and the models should specify it. Our
models can determine location pattern including location of
facilities and assignment of customers to them and also
consider efficiency scores simultaneously. We used an LP-
metric procedure to solve the bi-objective models, and
computational results on two numerical examples show that
these models are more reliable and efficient. Results of
numerical examples show that the high level of efficiency can
be achieved by only little increase in the costs. Due to the
uncertainty of data in real-world applications, studying this
problem under uncertainty can be considered as a future
research direction.
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