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*e computational efficiency and nonconvergence of the iteration are two main difficulties in contact problems, especially in the
creep of the foundation. *is paper proposes a method to analyze the structural soft foundation system affected by time. *e
methodology is an explicit method, combining the finite element method with the analytical method. *e creep deformation of
soft foundation is obtained based on Laplace transforms.*e structural deformation contains the statically determinate structural
deformation and rigid body displacement, solved by the finite method. *e contact forces are calculated by the deformation
coordination equations and equilibrium equations. *e methodology is validated through augmented Lagrangian (AL) method.
*e results can clearly illustrate the local disengagement phenome, greatly overcome the nonconvergence of the iteration, and
significantly improve computing efficiency.

1. Introduction

Hydraulic structures in plain areas are mostly built on soft
soil which have high water content, low strength, and low
bearing capacity. It often needs taking measures to
strengthen the foundation during the construction period.
*e soil layer bottom of the foundation is the bottleneck
controlling the bearing capacity and also the main place
where the creep occurs [1]. *e creep property results in the
significant alteration of the foundation deformation, which
leads to the uneven settlement in the upper structure [2]. In
contrast to traditional problem of beam or plate on an elastic
foundation, the influence of creep can be recognized as a
necessary long-term stability method to analyze stress state
of the structure [3]. Long-term monitoring data show that
the creep deformation continues to increase during the
operation period, and it can reachmore than twice at the end
of construction period [4]. *e creep creates unique contact
changing laws of the soft foundation and is cognized as the
most serious factor that directly affects stress redistribution
of the structure. In addition, the computational efficiency
and calculation accuracy of the contact forces also face great
challenge.

In structural soft foundation system, the contact surfaces
are deterministic and searching of contact surfaces is not
necessary. Contact forces are time-sensitive and spatiality-
nonlinear. *erefore, the contact problem can be simplified
to finding the solution of contact forces, which mainly in-
clude analytical method, direct iterative method, mathe-
matical programming method, penalty method, augmented
Lagrangian method, and contact element method. In 1881,
Hertz obtained an analytical solution in two contact bodies
[5]. Signorini added the general formulation and defined it
as a unilateral contact problem [6]. Winkler established the
liner relationship between contact forces and deflection
deformation, and got the analytical solution of contact
problem in beam on elastic foundation [7]. Analytical
method is still studied today and is widely used to solve the
problem of dynamic load in rail transportation [8, 9]. *e
direct iterative method is numerical. For typical example,
Francavilla obtained flexibility matrices in terms of contact
forces at possible contact surfaces of two bodies and solved
the quasilinear problem [10].*e direct iterative method has
a clear concept, but the computational complexity is heavy
owing to large quantities of the possible contact forces. In
mathematical programming method, it is regarded as linear
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complementarity problem (LCP) or parametric linear
complementarity problem (PLCP). Anders and Gunnar
formulated the contact problems including varying contact
surfaces and friction through the mathematical program-
ming method [11, 12]. *e advantage of the penalty method
is imposing the contact conditions without increasing the
number of variables. A penalty term is used to enforce the
contact constraints. Luenberger discussed the ill-condi-
tioned numerical problem caused by large values for penalty
parameters [13]. Augmented Lagrangian method combines
the penalty method and the Lagrangian method. It trans-
forms the problem of original constraints into optimization
so that it is well suited to the method of finite element and
widely used in related software. Simo proposed the tech-
nique updating Lagrangian multipliers with penalty pa-
rameters to inherit the advantage of Lagrangian method
[14]. Contact element method describes the contact behavior
in interfaces. It expresses the contact stresses regarded as a
function of the relative displacements in the mean planes of
the microscopically rough surfaces. In another word, it
assumes that the interface is a kind of element type and has
constitutive laws. Goodman proposed the four-node planar
and nonthickness contact surface element [15].

A series of studies in contact problems of beam on elastic
foundation make excellent contributions to long-span en-
gineering programs [8]. It assumes that the reactive force of
the foundation carrying a loaded beam at every point is
proportional to the corresponding deflection of the beam
[7]. Higher-order nonlinear partial differential equation can
be used to reflect the contact phenomena [16, 17]. *rough
these researches, Gao considered the beam and foundation
as two different element types, and each can use an own type
of finite element [18]. *is idea inspires us to study further.
*e key to contact problem lies in finding the solution of
unilateral problems. *e structure and soft foundation are
two different contacting bodies, and each can be solved
independently. *erefore, when the time-affection rela-
tionship of soft foundation is established, the same of the
contact problems can be solved.

*e creep deformation of soft foundation has received
extensive attention. Any foundation needs to quantitatively
descript soil structure, rheological characteristic, spatial
distribution, and mechanical property, evaluating accurately
the bearing capacity, the effective stress, and settlement
deformation. Terzaghi and Biot derived the three-dimen-
sional consolidation equations based on the principle of
effective stress [19, 20]. *ese equations have been well
applied in complex foundation so far [21–23]. Singh adopted
creep rate and creep function to construct a famous em-
pirical creep model [24]. When the characterization of
deformation is obtained, it is necessary to develop visco-
elastic or elastic-viscoplastic constitutive theories based on
micromechanics. *e component models are applied to
describe the rheological property and comprised of varying
Hooke units and Kelvin units, such as the Kelvin model, the
Maxwell model, and the Burgers model [25, 26]. Some
elastic-viscoplastic constitutive models are built based on the
Can-Clay creep model and modified Can-Clay creep model
[27, 28]. Furthermore, Lee proposed an analytical method to

solve the viscoelastic deformation by Laplace transform [29].
*is analytical method has few parameters and can be easily
used in soft foundation. *erefore, this method can be used
to describe the contact forces and deformation of the soft
foundation in the unilateral constraint problem.

In this paper, the contact problem is considered as a
unilateral constraint problem. *is paper introduces a
methodology to analyze the time affection on structural soft
foundation system. *e methodology is presented as a
numerical implementation and combining finite element
method with analytical method. It aims to solve the contact
problem and focus on the contact forces varying with time.
In this methodology, the finite element method is used to
solve the structure deformation. *e analytical method is
based on the Maxwell model and Lee’s theory, extended to
three dimensions and applied to the soft foundation. *en,
the deformation coordination equation and force-method
asymmetric matrix equation for quasilinear problems of the
contact surface can be established. *e contact situations,
contact forces, and deformation at each time increment step
are determined finally.

2. Analysis of the Problem Formulations

Similar to the direct method, contact forces are split into
forces and reaction forces in the structural soft foundation
system [7]. *erefore, the contact problems of the structural
soft foundation system are divided into two unilateral
constraint problems. As Figure 1 shows, contact forces are
treated as unknown variables and act on the structure and
foundation separately. *e deformation coordination
equations of contact surface can be put on solving the
contact forces. *en, these contact forces can act on the
structure, and the stress state of the structure is obtained.

*e deformation of structure contains the statically
determinate structural deformation and rigid body dis-
placement. *e force method based on the Boltzmann su-
perposition principle is used to solve the statically
determinate structural deformation. Firstly, the basic de-
formation caused by each unit force of contact surface is
calculated. Secondly, the deformation caused by external
forces of contact surface is calculated. *irdly, the statically
determinate structural deformation is shown as

Ust � Uf0 + δ1 × X1 + · · · + δn × Xn, (1)

where Ust is the deformation obtained by all forces in the
statically determinate structural system; Uf0 is the defor-
mation obtained by the external forces; δ1 . . . δn. are the
deformation obtained by each unit force separately; and
X1 . . . Xn are the unknown contact forces.

*e rigid body displacement of the structure can be
shown by the deformation of six supports.*rough the Lee’s
method, the deformation of contact surface can also be
shown by n contact force on the soft foundation multiplied
by the deformation caused by the corresponding unit force.
A total of n+ 6 variables are formed. It still needs to add the
force and bending moment equilibrium equations. Finally,
the contact surface equations include n deformation
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coordination equations and 6 equilibrium equations. It can
be simplified as follows:

Ust + Urb � Usf,

 Fx � 0;  Fy � 0;  Fz � 0,

 Mx � 0;  My � 0;  Mz � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where Urb is the rigid body displacement of structural
contact surface; Ust is the contact surface deformation of soft
foundation; and  F � 0 M � 0 are composited by the
forces and bending moments in three directions. *e de-
formation coordination equations of the contact surface are
built in the first line in (2). *e force and bending moment
equilibrium equations in three directions are added. *e
contact forces and rigid body displacement are calculated.
*en, the stress state of the structure can be calculated.

3. Analytical Solution of Soft Foundation

*e analytical solution of viscoelastic deformation is ob-
tained by Lee’s method. Taking Kelvin model as an example,
the elastic solution of a semi-infinite space body subjected to
concentrated load is integrated to derive the solution of
distributed force based on the principle of superposition.
*en, the viscoelastic deformation in the Laplace space is
obtained based on the elastic-viscoelastic correspondence
principle. Finally, the solution of the viscoelastic deforma-
tion under distributed force can be obtained by inverse
Laplace transformation.

As shown in Figure 2, there is a rectangle with length a
and width b on the boundary of the semi-infinite foundation.
*e normal uniform load (Figure 2(a)) and tangential
uniform load (Figure 2(b)) are concentration of 1/ab. *ey
act on the rectangle. *e elastic deformation acted normal
concentrated force is shown:

uzz �
(1 + μ)P

2πER
2(1 − μ) +

z
2

R
2 ,

uzr �
(1 + μ)P

2πER

rz

R
2 −

(1 − 2μ)r

R + z
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where uzr is the radial deformation; uzz is the normal de-
formation; P is the normal concentrated force; R is the
distance from a point to the origin of coordinates; r is the
distance from a point to the normal line; E is the elasticity
modulus; and μ is Poisson’s ratio. (3) has no solution when
R� 0 so that unit distribution force is considered. *e
normal differential force dP shown based on Lagrangian
coordinate system is dηdξ/ab. *e elastic deformation acted
normal concentrated force is shown:

δzz �
1 − μ2

abπE
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x
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where δzx, δzy, δzz are the deformation in x, y, z directions
under unit distribution force in z direction. According to
elastic-viscoelastic correspondence principle, after Laplace
transforms, the viscoelastic deformation formula is
obtained:

δzz(s) �
1 − [μ(s)]

2

abπ[E(s)]
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− ts
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 Fk,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where Fk � 
η�x+(a/2)

η�x− (a/2)

ξ�y+(b/2)

ξ�y− (b/2)
dξdη/

������

ξ2 + η2


is obtained by
the numerical integration method.

Structure

So� foundation
Gravel soil
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Figure 1: Structural soft foundation system. (a) Structure and soft foundation. (b) Load combination.
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Kelvin viscoelastic solution is derived by inverse Laplace
transformation.

δzz �
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(6)

where K is the bulk modulus; G1 is the shear stiffness; and η1
is the coefficient of viscosity. Tangential load causes the

deformation; the elastic deformation is shown in the fol-
lowing equation [30]:
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Figure 2: Normal and tangential uniform loads act on space semi-infinite foundation. (a) Normal uniform load. (b) Tangential uniform
load.
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*rough the Laplace transformation and inverse Laplace
transformation, the viscoelastic deformation can also be
solved and shown in the following equation:
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is ob-

tained by the numerical integrationmethod, where δxx, δxy, δxz

are the deformation in x, y, z directions under unit distribution

force in x direction. *e analytical solution of viscoelastic de-
formation based on the Maxwell model can be calculated by
MATLAB. *e process is given in the appendix. *e final
equation is shown as follows:
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(9)

where G2, G3 are the parameters of shear stiffness. *e
deformation at any point of the contact surface on soft
foundation acted on a force can be shown as

Usfx

Usfy

Usfz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

δxx δyx δzx
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fx

Fy

Fz
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)
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where Usfx, Usfy, andUsfz are the deformation of soft
foundation in three directions. Fx, Fy , andFz are the
contact forces of soft foundation in three directions. (10)
shows the deformation of a single point under a distribution
force. *e real contact surface deformation is more
complicated.

4. Structure Deformation

4.1. Statically Determinate Structural Deformation. *e
contact forces are treated as unknown variables and act on
the structure and foundation separately. As Figure 3
shows, in order to ensure the structure statically deter-
minate, the structure has six constraints on the contact
surface. It is divided into multiple hexahedrons. Each unit
distribution force acts on the bottom of underside ele-
ment. Note that the unit distribution force acting on the
contact surface separating two adjacent volume elements
in the structure and the soft foundation must be equal and
opposite. *e resultant point of distributed force is under
the bottom of element. *e deformation of the resultant
point can be shown by deformation of element nodes. *e
equation is as follows:

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

N1 0 0 . . . N4 0 0

0 N1 0 ... 0 N4 0

0 0 N1 . . . 0 0 N4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦q
e
, (11)

where N1, N2, N3, N4 are the shape function of the four
nodes which are at the bottom of the hexahedron element
and qe is the deformation of element. *e programming of
these deformations can be finished with DLOAD sub-
routine and UTRACLOAD subroutine in Abaqus. *e
DLOAD subroutine is used to get the solution of the
deformation acted by each unit distribution force in z-axis
direction. *e UTRACLOAD subroutine is used to get the
solution of the deformation acted by each unit distribu-
tion force in x and y direction. *e xleft, xright, yleft, and
yright are the four boundaries of the unit distributed
force. *e xstart, xend, ystart, and yend are the first and
final coordinates of the unit distributed force. *e
T_user(1), T_user(2), and T_user(3) are the direction of
the unit distribution force. *e v and time are the speed
and time of the unit distributed force. *e coord (1) and
coord (2) are the x and y coordinates of each position of
the contact surface. It determines where the unit dis-
tributed force is applied and where the force is zero.
Figure 4 shows the flow chart of subroutines in Abaqus. (1)
All parameters are input in the subroutine. (2) *e pa-
rameters of xleft, xright, yleft, and yright are updated. (3)
*e position of force is determined. (4) *e time is
updated and the above process is repeated.

A unit distributed force moves from the bottom of the
first element to the bottom of the last element on the un-
derside element. *e deformation during the movement is
recorded. According to equation (11), the deformation of the
resultant point is calculated by numerical software.*en, the
statically determinate structural deformation can also be
expressed in the same form as (10).

5. Rigid Body Displacement

*e rigid body displacement of statically determinate
structure can be described by Cauchy equations. It means
that the strain of the structure is zero. For infinitesimal
motion, the relationship between strain and displacement is

εx �
zu

zx
, εy �

zv

zy
, εz �

zw

zz
,

cyz �
zw

zy
+

zv

zz
, czx �

zu

zz
+

zw

zx
, cxy �

zv

zx
+

zu

zy
,

εx � εy � εz � cyz � czx � cxy � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where εx, εy, εz are the normal strain in x, y, z directions and
cyz, czx, cxy are the shearing strain in x, y, z directions.
Solving the above formulas, the rigid body displacement can
be obtained as

u � u0 + φyz − φzy,

v � v0 + φzx − φxz,

w � w0 + φxy − φyx,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

where u, v, w are the rigid body displacement in x, y, z
directions; φx,φy,φz are the rigid body rotation angles in x,
y, z directions; and u0, v0, w0 are the translational defor-
mations in x, y, z directions. *ese equations can be com-
prehended through geometric transformation in Figure 5. It
is important that the sign of rigid body rotation angles
follows the right hand’s spiral rule. When z� 0, the equation
shows the deformation of undersurface. (13) can be sim-
plified as linear matrix equation:

u

v

w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

1 0 0 0 0 − y

0 1 0 0 0 x

0 0 1 y x 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u0

v0

w0

φx

φy

φz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

After the statically determinate structural deformation
and rigid body displacement are obtained, the contact
surface deformation can be described as the sum of them in
the structure.

Figure 3: Statically determinate structure deformation.
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6. Force Equilibrium Equations and Bending
Moment Equilibrium Equations

By means of rational mechanics, the force equilibrium
equations and bendingmoment equilibrium equations of 3D

structure can be elucidated in three directions. *ese
equations are as follows:



n

k�1
Xk + Fx � 0, 

n

k�1
Yk + Fy � 0, 

n

k�1
Zk + Fz � 0, 

n

k�1
bkZk − 

n

k�1
ckYk

⎛⎝ ⎞⎠ + yFFz − zFFy  � 0, 

n

k�1
ckXk − 

n

k�1
akZk

⎛⎝ ⎞⎠
⎧⎨

⎩

+ zFFx − xFFz(  � 0, 

n

k�1
akYk − 

n

k�1
bkXk

⎛⎝ ⎞⎠ + xFFy − yFFx  � 0,

(15)

Input: xstart, xend, ystart, yend, xle�, xright, yle�, yright, loadwighth,
v, time, endtime, coords(1), coords(2), T_user(1), T_user(2), T_user(3)

xright < xend ?

Yes

Calculate: xright, yle�, yright

Update: xle�, xright, yle�, yright

Calculate: xle� = xle� + v∗ (time – 1)

Begin: time = 1

xle� < coords(1) < xright
yle� < coords(2) < yright ?

No

No

Yes

F = 0 F = 1

Time = time + 1

Time > endtime

No

End

Yes

(a)

Input: xstart, xend, ystart, yend, xle�, xright, yle�, yright, 
loadwighth, v, time, endtime, coords(1), coords(2)

xright < xend ?

Yes

Calculate: xright, yle�, yright

Update: xle�, xright, yle�, yright

Calculate: xle� = xle� + v∗ (time – 1)

Begin: time = 1

xle� < coords(1) < xright
yle� < coords(2) < yright ?

No

No

Yes

F = 0 F = 1

Time = time + 1

Time > endtime

No

End

Yes

(b)

Figure 4: Flow chart of subroutines in Abaqus. (a) UTRACLOAD subroutine. (b) DLOAD subroutine.

xy

z

x′y′
z′

x′
y′

z′

xy

z

φy φx

φz
(u0, v0, w0)

Figure 5: Rigid body displacement of contact surface.
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where 
n
k�1 Xk, 

n
k�1 Yk, 

n
k�1 Zk are the sum of contact

forces in x, y, z directions; ak, bk, ck are the coordinates of
the contact forces’ functional point; xF, yF, zF are the

coordinates of the external forces’ functional point; and
Fx, Fy, Fz are the external forces in x, y, z directions. When
c� 0, (15) can be simplified as linear matrix equation:

1 ... 1 0 ... 0 0 ... 0

0 ... 0 1 ... 1 0 ... 0

0 ... 0 0 ... 0 1 ... 1

0 ... 0 0 ... 0 b1 ... bn

0 ... 0 0 ... 0 − a1 ... − an

− b1 ... − bn a1 ... an 0 ... 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X1

...

Xn

Y1

...

Yn

Z1

...

Zn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− Fx

− Fy

− Fz

− yFFz + zFFy

− zFFx + xFFz

− xFFy + yFFx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

7. Mixed Finite Element Methodology

*rough the analysis of Sections 3, the time affection of soft
foundation can be resolved. When the parameters of
foundation are determined, the contact forces can be dis-
cussed. *is contact problem is solved based on the de-
formation coordination equations.

*e eight-node isoparametric elements are used to make
the structure discrete. *ree connecting rods at the bottom
center point of the underside element are set along the x, y,
and z directions. *ey are used to connect the structure with

foundation. *e increment of the normal deformation Δz
and the increment of the rigid body rotation angles ΔφxΔφy

are taken as unknown quantities. Taking time step l for
example, the finite element method is used to obtain the
deformation of nodes and the deflection of the bottom
center point of the underside elements.*e deformation and
deflection are caused by the external loads and unit link
force. *e normal incremental equation of structure on
viscoelastic foundation is solved by combining finite element
with the analytical method. It is shown as


n

k�1
δ(l)

ki ΔZ
(l)
k + Δz + biΔφx − aiΔφy + Δ(l)

ip � 0,

n formulas in total, i � 1, 2, . . . , n,



n

k�1
ΔZ(l)

k + ΔF(l)
z � 0,



n

k�1
bkΔZ

(l)
k + ΔM(l)

x � 0,



n

k�1
akΔZ

(l)
k + ΔM(l)

y � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

where δ(l)
ki is the deformation of i position under unit dis-

tribution force acting on k position in z direction in the time
step l; Δ(l)

ip is the deformation of i position under external
forces at z direction in the time step l; ai is the coordinate of
y-axis at i position in the time step l; bi is the coordinate of x-
axis at i position in the time step l; ΔZ(l)

k is the element
connecting rod force at z direction in the time step l; ΔF(l)

z is

the composition of forces at z direction in the time step l;
ΔM(l)

x , ΔM(l)
y are the composition of bending moments at x

and y directions in the time step l.*e basic unknown quantities
can be solved by the Gaussian elimination with partial pivoting
method. *en, the increment of each unknown quantity of the
system in the time step is obtained. *e equations of contact
surface in three-dimensional are also shown as
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n

k�1
δ(l)

xxkiΔX
(l)
k + δ(l)

yxkiΔY
(l)
k + δ(l)

zxkiΔZ
(l)
k  + Δx(l)

− biΔφ
(l)
z  + Δ(l)

ipx � 0,



n

k�1
δ(l)

xykiΔX
(l)
k + δ(l)

yykiΔY
(l)
k + δ(l)

zykiΔZ
(l)
k  + Δy(l)

− aiΔφ
(l)
z  + Δ(l)

ipy � 0,



n

k�1
δ(l)

xzkiΔX
(l)
k + δ(l)

yzkiΔY
(l)
k + δ(l)

zzkiΔZ
(l)
k  + Δz(l)

+ aiΔφ
(l)
x − biΔφ

(l)
y  + Δ(l)

ipz � 0,

3n formulas in total, i � 1, 2, . . . , n,



n

k�1
ΔX(l)

k + ΔF(l)
x � 0,



n

k�1
ΔY(l)

k + ΔF(l)
y � 0,



n

k�1
ΔZ(l)

k + ΔF(l)
z � 0,



n

k�1
akΔZ

(l)
k + ΔM(l)

x � 0,



n

k�1
bkΔZ

(l)
k + ΔM(l)

y � 0,



n

k�1
bkΔX

(l)
k + 

n

k�1
akΔY

(l)
k + ΔM(l)

z � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(l)
mki � δ(l)

stmki + δ(l)
sfmki, m � xx, yx, zx, xy, yy, zy, xz, yz, zz,

(18)

where δ(l)
mki is the deformation of i position under unit

distribution force acting on k position atm-axis direction in
the time step l; δ(l)

sfmki, δ
(l)
stmki are the deformation of foun-

dation and structure under unit distribution force;
ΔX(l)

k , ΔY(l)
k , ΔZ(l)

k are the contact forces at k position in x, y,
and z directions in the time step l.

*e program flow chart is shown in Figure 6. (1) *e
structure is meshed with hexahedral elements and the
position of each connecting rod on the contact surface is
set. (2) *e analytical solution for soft foundation of each
unit distribution force and FEM solution for the structure
are obtained. (3) *e coefficient matrix and typical

Meshing the structure with hexahedral elements

Getting the analytical solution of so� foundation

Getting the FEM solution of structure 

Reading the basic data of each time step l = 1,2...

Forming a matrix of the coefficients

Forminga column matrix of loads

Getting the solution of the contact forces and foundation deformation

Judging the contact status and redistributing the contact forces

End

Figure 6: Program flow chart.
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equation are formed. (4) *e increment of contact forces
and foundation deformation are solved. (5) *e contact
state is judged and the redistribution of contact forces are
calculated.

8. Model Validation

8.1. Example 1. *e model validation can be finished
through comparative analysis of our method and the
augmented Lagrangian (AL) method. *e augmented
Lagrangian (AL) method is calculated by Abaqus. *e
time affection of soft foundation is described by Maxwell

UMAT [31]. *e length, width, and height of structure is
separately 10m, 6m, and 3m. *e pressure acting on the
upper surface in z direction is 1000 Pa. *e pressure acting
on the left surface in x direction is 500 Pa. *e total time is
1200 d. *e time increment is 30 d. *e structure can be
dispersed into multiple hexahedrons. *e labels of the
bottom center point of the underside element on the
contact surface are 1, 2,...,240. Each label has three degrees
of freedom (DOF). *ere is a total of 720 contact forces in
three DOF. From (18), the contact forces equations are
shown at time step l:

δxx,1,1 . . . δxx,240,1 δyx,1,1 . . . δyx,240,1 δzx,1,1 . . . δzx,240,1 1 0 0 0 0 − b| x � 0.25

y � 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δxx,1,240 . . . δxx,240,240 δyx,1,240 . . . δyx,240,240 δzx,1,240 . . . δzx,240,240 1 0 0 0 0 − b| x � 9.75

y � 5.75

δxy,1,1 . . . δxy,240,1 δyy,1,1 . . . δyx,240,1 δzy,1,1 . . . δzy,240,1 0 1 0 0 0 a| x � 0.25

y � 0.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δxy,1,240 . . . δxy,240,240 δyy,1,240 . . . δyy,240,240 δzy,1,240 . . . δzy,1,240 0 1 0 0 0 a| x � 9.75

y � 5.75

δxz,1,1 . . . δxz,240,1 δyz,1,1 . . . δyz,240,1 δzz,1,1 . . . δzz,240,1 0 0 1 b| x � 9.75

y � 5.75

a| x � 9.75

y � 5.75

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δxz,1,240 . . . δxz,240,240 δyz,1,240 . . . δyz,240,240 δyz,1,240 . . . δzz,240,240 0 0 1 b| x � 9.75

y � 2.75

− a| x � 9.75

y � 2.75

0

1 . . . 1 0 . . . 0 0 . . . 0 0 0 0 0 0 0

0 . . . 0 1 . . . 1 0 . . . 0 0 0 0 0 0 0

0 . . . 0 0 . . . 0 1 . . . 0 0 0 0 0 0 0

0 . . . 0 0 . . . 0 a| x � 0.25

y � 0.25

. . . 0 0 0 0 0 0 0

0 . . . 0 0 . . . 0 − a| x � 9.75

y � 2.75

. . . 0 0 0 0 0 0 0

− b| x � 0.25

y � 0.25

. . . − b| x � 9.75

y � 5.75

a| x � 0.25

y � 0.25

. . . a| x � 9.75

y � 2.75

0 . . . 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(19)

A B

C 0
 

F

G
  �

D

E
 , (20)

where a, b is the coordinate of center point in x and y di-
rections, respectively. *e matrices in (19) can be portioned
into seven blocks in (20) for programming, as shown in (20).
*e block A stands for the sum of the deformation of
structure and foundation resulted by unit distribution force.
*e block B∗G stands for the rigid body displacement. *e

block C∗F stands for the external forces and bending mo-
ment.*e parameters of structure and foundation are shown
in Table 1.

Figure 7 shows the deformation of soft foundation in
three directions under unit distribution force at 30th day and
1200th day. *e deformation results of δsfxy and δsfyx are
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Table 1: *e parameters of structure and foundation.

Structure Soft foundation
E 3.425∗1010 Pa E1 1.7546∗107 Pa
μ 0.167 E2 1.552∗107 Pa
— — μ 0.31
— — η1 8.139∗108 Pa∗d
— — K 1.5391∗107 Pa
— — G2 6.6969∗106 Pa
— — G3 5.9237∗106 Pa
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Figure 7: Continued.
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center symmetrical about the point of force. *e defor-
mation results of δsfxx, δsfxz , δsfyy, δsfyz, δsfzx, δsfzy, and
δsfzz are symmetrical about one axis. *e influential sphere
of deformation caused by the unit distribution force is
restricted from 0 to 3.5m. *is is mainly attributed to the
elastic modulus and Poisson’s ratio of the soft foundation.
Maximum deformation ranges from 7.93e-8m at the first
step to 1.26e-7m at the final step. It shows a 59.52% in-
crement within the time. Overall, the Lee’s method can be
well used to describe the creep property of soft
foundation.

Figure 8 shows the contact forces in three directions by
two methods on the 30th day. Figure 9 shows the contact
forces in three directions by two methods on the 1200th day.
Figure 10 shows the deformation of the center point in the

contact surface. *rough the contrastive analysis of our
method and AL method, some similarities and differences
can be shown:

(1) From the distribution of contact forces perspective,
both of the two methods almost have the same
distribution of contact forces. *e contact forces in x
direction are fan-shaped distribution and focused on
the boundary. *e contact forces in y direction are
symmetrical about x-axis. *e contact forces in z
direction are basin-shaped distribution. Our method
has larger values of corner points than the AL
method.*e reason behind this scenario may be that
the deformation of soft foundation in Lee’s method is
different with finite method. Overall, contact forces
can be well solved by our method.
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Figure 7: *e deformation of soft foundation in three directions under unit distribution force. (a) On 30th day. (b) On 1200th day.

12 Mathematical Problems in Engineering



5

4

3

2

1

2 4 6 8

W
id

th
 (m

)

Length (m)

184.0

109.6

35.11

–39.33

–113.8

–188.2

–262.7

–337.1

–411.6

–486.0

Fx

5

4

3

2

1

W
id

th
 (m

)

2 4 6 8
Length (m)

794.0

720.9

647.8

574.7

501.6

428.4

355.3

282.2

209.1

136.0

Fz

5

4

3

2

1

W
id

th
 (m

)

2 4 6 8
Length (m)

298.0

231.8

165.6

99.33

33.11

–33.11

–99.33

–165.6

–231.8

–298.0

Fy

(a)

5

4

3

2

1

W
id

th
 (m

)

2 4 6 8
Length (m)

Fx
2.000

–12.83

–27.67

–42.50

–57.33

–72.17

–87.00

–101.8

–116.7

–131.5

5

4

3

2

1

W
id

th
 (m

)

2 4 6 8
Length (m)

449.0

413.8

378.6

343.3

308.1

272.9

237.7

202.4

167.2

132.0

Fz

5

4

3

2

1

W
id

th
 (m

)

2 4 6 8
Length (m)

69.00

53.67

38.33

23.00

7.667

–7.667

–23.00

–38.33

–53.67

–69.00

Fy

(b)

Figure 8: Distribution of contact forces in three directions by two methods on 30th day. (a) Our method. (b) Augmented Lagrangian
method.
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Figure 9: Distribution of contact forces in three directions by two methods on 1200th day. (a) Our method. (b) Augmented Lagrangian
method.
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(2) From the creep property perspective, our method
shows the redistribution of the contact forces. *e
maximum contact force in z direction increases from
796N to 868N, with 9.01% increment. However, the
maximum contact forces in x and y directions, re-
spectively, decrease from 464N to 410N and 286N to
236N, with 13.17% and 21.19% reduction.

(3) From deformations perspective, the displacements of
our method are more viscous than the AL method
with time changing. Both of them almost have the
same final settlement displacement and displace-
ment in x direction.

*e difference between our method and the AL method is
mainly influenced by the solution of foundation. *e AL
method is based on the finite elementmethod and related to the
size of the foundationmodel.*e analytical method is based on
the Laplace transformation and irrelevant to the size of the
foundation model. *erefore, the results are influenced by two
reasons: (1) the principle of calculation; (2) the size of foun-
dation model.*e heavy loading combination and large size of
the foundation model can make these differences not obvious.
In this example, the external loads are in x and z directions and
the length, width, and height of the foundation are three times
of the structure. *e results show good agreement in the final
settlement displacement and displacement in x and z directions
with the AL method and proposed method, while there exists
large difference in y direction.

8.2. Example 2. Example 1 shows that our method has well
adaptability. *e local disengagement of contact surface is
shown in example 2. *e basic situation of this example is
the same as example 1, but the external forces are different
with example 1.*e upper surface of the structure is affected
by pressure and tension. *e pressure acting on the left
square (4.5m∗6m) and right square (4.5m∗6m) is 10 kPa.
*e tension acting on the middle square (1.0m∗6m) is
8.9 kPa.

Figure 11 shows the contact forces in three directions
on the 30th and the 1200th day. *e contact forces in z
direction are directly affected by the external forces. It
represents that there are negative contact forces in the
middle of the contact surface. It means the local dis-
engagement phenomenon appears. Actually, these neg-
ative contact forces in the disengagement area are zeros.
By comparing the positive with negative values, the
disengagement area can be intuitively found. After the
contact forces redistribute, the real contact state and
contact forces are explicitly calculated. *e total time of
the process is usually less than 10 seconds. *e defor-
mation of the center point in the contact surface is shown
in Figure 12, where the center point is in the disen-
gagement area. *e displacement of the point in z di-
rection has creep property. As time increases, the
disengagement area will gradually close, and the contact
forces will regenerate. *e disengagement area does not
always exist.
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Figure 10: Deformation of the center point in the contact surface.
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Figure 11: Contact forces in three directions. (a) Contact forces at 30th d. (b) Contact forces at 1200th d.
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9. Conclusion

*is paper reports a methodology to analyze the time af-
fection on a structural soft foundation system. *e contact
forces are treated as unknown variables and act on the
structure and foundation separately. *e deformation of
structure contains the statically determinate structural de-
formation and rigid body displacement. It can be solved by
the finite method. *e creep deformation of soft foundation
is solved by Lee’s method. *e final equations are formed by
the deformation coordination equations and equilibrium
equations. It is solved by the Gaussian elimination with the
partial pivoting method.*e augmented Lagrangianmethod
is used to verify the accuracy of the method. *e following
important conclusions are summarized:

(1) *e simulations of contact bodies show that our
method shows more viscous than the AL method

with time changing. Our method has larger values of
corner points than the AL method.

(2) *is methodology is an explicit calculating method,
avoiding the occurrence of iteration non-
convergence. It is simpler and more efficient in
solving the contact forces compared with the AL
method.

(3) It is shown that our method can directly describe
local disengagement of two contact bodies. *e re-
distribution phenomenon of contact forces is well
shown with time changing.

Appendix

*e analytical solution of viscoelastic deformation based on
the Maxwell model can be calculated by MATLAB. *e
codes are as follows:

%% in x direction, laplacetransform
syms inta1 G2 G3 s K a b � fi fg x y
p1 = inta1/G2; q1 = (G3/G2 + 1)∗inta1;
xs = 2∗(G3 + q1∗s)/(1 + p1∗s)
miu_0 = (3∗K – xs)/(6∗K + xs)
e_0 = 9∗K∗xs/(6∗K + xs)
udx_la = (1 + miu_0)/(pi∗e_0∗a∗b)∗((1 – miu_0)∗� + miu_0∗x∗x∗fg)/s;
udy_la = (1 + miu_0)∗miu_0/(pi∗e_0∗a∗b)∗x∗y∗fg/s
udz_la = (1+miu_0)∗(1 – 2∗miu_0)/(2∗pi∗e_0∗a∗b)∗x∗fi/s
udx_ila = ilaplace(udx_la, s)
udy_ila = ilaplace(udy_la, s)
udz_ila = ilaplace(udz_la, s)
%% laplace inverse transform
syms inta1 G2 G3 s K a b � fi fg x y t
t01 = t;
disp ----------udx-----------
udx = subs(udx_ila, [s], [t01])
disp ----------udy-----------
udy = subs(udy_ila, [s] ,[t01])
disp ----------udz-----------
udz = subs(udz_ila, [s], [t01])

%% in z direction, laplacetransform
syms inta1 G2 G3 s K a b � x y
p1 = inta1/G2; q1 = (G3/G2 + 1)∗inta1
xs = 2∗(G3 + q1∗s)/(1 + p1∗s)
miu_0 = (3∗K – xs)/(6∗K + xs)
e_0 = 9∗K∗xs/(6∗K + xs)
wdx_la = (1 + miu_0)∗(2∗miu_0 – 1)/(2∗pi∗e_0∗a∗b)/s∗x/((x^2 + y^2)^(1/2))∗�
wdy_la = (1 + miu_0)∗(2*miu_0 – 1)/(2∗pi∗e_0∗a∗b)/s∗y/((x^2 + y^2)^(1/2))∗�
wdz_la = (1 – miu_0∗miu_0)/(a∗b∗pi∗e_0)/s∗�
wdx_ila = ilaplace(wdx_la, s)
wdy_ila = ilaplace(wdy_la, s)
wdz_ila = ilaplace(wdz_la, s)
%% laplace inverse transform
syms inta1 G2 G3 s K a b � x y t 
t01 = t;
disp --------wdx--------
wdx = subs(wdx_ila, [s], [t01])
disp --------wdy--------
wdy = subs(wdy_ila, [s], [t01])
disp --------wdz---------
wdz = subs(wdz_ila, [s], [t01])
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Figure 12: Deformation of the center point in the contact surface.
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[18] D. Gao, J. Machalová, and H. Netuka, “Mixed finite element
solutions to contact problems of nonlinear Gao beam on
elastic foundation,” Nonlinear Analysis: Real World Appli-
cations, vol. 22, pp. 537–550, Elsevier, Amsterdam, Nether-
lands, 2015.

[19] K. Terzaghi, “*eoretical soil mechanics,” 1943.
[20] M. A. Biot, “General theory of three-dimensional consoli-

dation,” Journal of Applied Physics, vol. 12, no. 2, pp. 155–164,
1941.

[21] Y. Chen, G. Chen, and X. Xie, “Weak Galerkin finite element
method for Biot’s consolidation problem,” Journal of Com-
putational and Applied Mathematics, vol. 330, pp. 398–416,
2018.

[22] M. Borregales, K. Kumar, F. A. Radu, C. Rodrigo, and
F. J. Gaspar, “A partially parallel-in-time fixed-stress splitting
method for Biot’s consolidation model,” Computers &
Mathematics with Applications, vol. 77, no. 6, pp. 1466–1478,
2019.

[23] L. Wang, Y. Xu, X. Xia, and A. Zhou, “Semi-analytical so-
lutions to the two-dimensional plane strain consolidation for
unsaturated soil with the lateral semi-permeable drainage
boundary under time-dependent loading,” Computers and
Geotechnics, vol. 124, Article ID 103562, 2020.

[24] J. Mitchell and A. Singh, “General stress-strain-time function
for soils,” ASCE, vol. 94, no. 1, pp. 21–46, 1968.

[25] F. Cavalieri, A. A. Correia, H. Crowley, and R. Pinho, “Dy-
namic soil-structure interaction models for fragility charac-
terisation of buildings with shallow foundations,” Soil
Dynamics and Earthquake Engineering, vol. 132, Article ID
106004, 2020.

[26] Z. Chang, H. Gao, F. Huang, J. Chen, J. Huang, and Z. Guo,
“Study on the creep behaviours and the improved burgers
model of a loess landslide considering matric suction,”
Natural Hazards, vol. 103, no. 1, pp. 1479–1497, 2020.

[27] X. Li, M. Huang, and L. Wang, “Bounding surface elasto-
viscoplastic constitutive model for rheological behaviors of
soft clays,” Chinese Journal of Rock Mechanics and Engi-
neering, vol. 26, no. 7, pp. 1393–1401, 2007.

[28] V. M. G. Zapata, E. B. Jaramillo, and A. O. Lopez, “Imple-
mentation of a model of elastoviscoplastic consolidation
behavior in Flac 3D,” Computers and Geotechnics, vol. 98,
pp. 132–143, 2018.

[29] E. H. Lee, “Stress analysis in visco-elastic bodies,”Quarterly of
Applied Mathematics, vol. 13, no. 2, pp. 183–190, 1955.
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