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,e forecast of carbon dioxide (CO2) emissions has played a significant role in drawing up energy development policies for
individual countries. Since data about CO2 emissions are often limited and do not conform to the usual statistical assumptions,
this study attempts to develop a novel multivariate grey prediction model (MGPM) for CO2 emissions. Compared with other
MGPMs, the proposedmodel has several distinctive features. First, both feature selection and residual modification are considered
to improve prediction accuracy. For the former, grey relational analysis is used to filter out the irrelevant features that have weaker
relevance with CO2 emissions. For the latter, predicted values obtained from the proposed MGPM are further adjusted by
establishing a neural-network-based residual model. Prediction accuracies of the proposed MGPM were verified using real CO2
emission cases. Experimental results demonstrated that the proposed MGPM performed well compared with other
MGPMs considered.

1. Introduction

Carbon dioxide (CO2) is mainly produced from fossil fuel
combustion [1], and reducing the impact that energy con-
sumption and economic growth have on CO2 emissions has
become a global challenge [2]. According to the Interna-
tional Energy Agency (IEA) [3], total emissions of green-
house gas in 2018 were a record 33.1 billion tons, along with
a global economic growth rate that increased by 3.2%.
Despite a CO2 emission plateau from 2014 to 2016, the IEA
reported that China and USA were the highest energy-using
and carbon-emitting countries, and CO2 emissions went up
in each country by 2.5% and 3.1%, respectively, mainly
arising from an increased use of fossil fuel to meet the energy
demand. In fact, CO2 emissions can significantly give rise to
climate change and have a negative impact on economic
growth. ,erefore, to keep a green economic growth, the
national authorities make an effort to devise energy devel-
opment policies that reduce the impact of CO2 emissions.

An accurate forecast of CO2 emissions becomes a re-
markable issue when public sectors set up policies.

From the viewpoint of the grey system theory [4–6], the
prediction of CO2 emissions can be viewed as a grey system
problem because although the relevant features, such as
energy consumption, population, and gross domestic
product (GDP) [7–9], influence CO2 emissions, the precise
relationship between these features and emissions is not
clear. Furthermore, it is possible that emissions data do not
conform to any statistical assumptions [7]. Compared with
the prediction models implemented by artificial intelligence
techniques [10–15], statistical models including logistic
models [16], multivariate regression [17, 18], and time series
analysis [19, 20], MGPMs have the advantage of charac-
terizing an unknown system using limited samples [6],
without requiring conformance with statistical assumptions.
Despite huge amount of data we can collect, only a few
sample data points are required to achieve reliable and
acceptable prediction accuracy [21, 22]. ,erefore, it is

Hindawi
Mathematical Problems in Engineering
Volume 2020, Article ID 8829948, 10 pages
https://doi.org/10.1155/2020/8829948

mailto:xjc@sdu.edu.cn
https://orcid.org/0000-0002-1585-8988
https://orcid.org/0000-0003-3090-1515
https://orcid.org/0000-0003-4876-693X
https://orcid.org/0000-0001-7018-5483
https://orcid.org/0000-0002-2920-9057
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8829948


interesting to apply the multivariate grey prediction models
(MGPMs) to CO2 emissions.

In contrast to the frequently used GM (1, 1), the first-
order grey differential equation with one variable, which
does not consider the influence of relevant factors on the
system [23], the GM (1, N), which consists of a system’s
characteristic sequence and several relevant factor se-
quences, is fundamental to MGPMs and has been widely
applied to time series forecasting, such as the forecasting of
traffic flow [24], number of motor vehicles [25], production
in high-tech industries [26, 27], energy consumption
[28, 29], integrated circuit output [30, 31], OFDI analysis
[32], and pattern classification [33, 34]. Many GM (1, N)
variants have been introduced to improve the prediction
accuracy of the traditional GM (1, N), such as a rolling
multivariable model [8], background value optimization
[27], the optimization of GM (1, N) (OGM (1, N)) using grey
differential equations with linear correction and grey
quantity terms [25, 35], nonlinear grey models (NGM (1,N))
using grey differential equations with power exponents, and
transformed NGM (1, N) (TNGM (1, N)) [28]. ,ese
MGPMs have shown their superior prediction performance
when used with time series problems.

Grey prediction has demonstrated its effectiveness on
CO2 emissions forecasting, such as univariate grey predic-
tionmodels by Pao et al. [36],Wu et al. [2], and Xu et al. [37],
prediction models based on trends of driving coefficients
(TDVGM (1, N)) by Ding et al. [7], TNGM (1, N) by Wang
and Ye [28], multikernel nonlinear multivariable grey model
by Duan et al. [23], a forecasting method for the traffic-
related emissions by Xie et al. [38], a nonlinear grey power
model (DGPM (1, N)) by Ding et al. [39], and a nonequigap
grey Verhulst model by Wang and Li [40]. ,is study
contributed to developing a distinctive MGPM with feature
selection and residual modification performed to improve
prediction accuracy. For the former, since system perfor-
mance can be improved by feature selection [41], the pro-
posed MGPM performs grey relational analysis (GRA)
[4–6, 42] to estimate relevance between independent vari-
ables and CO2 emissions. For the latter, it has been suggested
that the prediction accuracy of the GM (1, 1) can be im-
proved by residual modification [4]. However, it is very
interesting to extend residual modification to the GM (1, N).
A neural-network-based residual model is thus created for
the proposed MGPM to adjust predicted values from the
GM (1, N). To sum up, the proposed MGPM with feature
selection and residual modification can be treated as a re-
sidual modification model. Genetic algorithms (GAs) are
employed to determine required parameters of the GRA and
GM (1, N) to construct the proposed MGPM with high
prediction accuracy. Experimental results have indicated
that the proposed MGPM performs well compared with the
other MGPMs considered. It is noted that, to estimate the
correlation between the system behavior variable and the
influential factors, the proposed prediction model used GA
to determine a threshold value that is not easily prespecified.
In contrast, Xie et al. [38] applied GRA to identify relevant
factors from passenger cars per 1000 inhabitants, stock of
vehicles, volume of freight transport relative to GDP

(VFTRG), and volume of passenger transport relative to
GDP, but only VFTRG (with time lags four) with maximum
correlation was considered. Meanwhile Ding et al. [39] used
a prespecified threshold value to evaluate the relationship
among factors.

,e remainder of the paper is organized as follows.
Section 2 introduces the traditional GM (1, N), grey residual
modification model, and Section 3 introduces the proposed
MGPM with residual modification on the basis of a neural
network. Section 4 examines prediction performances of the
proposed MGPM using two real cases of CO2 emissions.
Section 5 discusses the outcomes and presents conclusions.

2. The GM (1, N) Model

,e GM (1, N) is a grey prediction model with N variables,
including a dependent variable (system characteristic), x1,
and N− 1 explanatory variables (relevant factors), x2, x3,. . .,
xN [5]. ,en, an original sequence or a time series x
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Step 3. Determine the development and the driving
coefficients.
A grey differential equation of the GM (1, N) is as
follows:
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where the background value z
(1)
1 (k) with the generating

coefficient α (0≤ α≤1) being usually set to 0.5 is for-
mulated as
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,us, a linear regression model consisting of grey
differential equations is used to estimate a, b2,. . ., and
bN through the ordinary least squares (OLS) method:
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Step 4. Perform the inverse accumulated generating
operation (IAGO).
When x

(1)
i varies slightly, x

(0)
k can be generated by

means of the IAGO:

x
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where x
(1)
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To improve the prediction performance of the traditional
GM (1, N), several improved versions of MGPMs have been
proposed by deriving new whitening and grey differential
equations:

(1) ,e transformed model of nonlinear GM (1, N)
(TNGM (1, N)) [28]: the TNGM (1, N) has been
applied to forecast Chinese carbon emissions. ,e
whitening equation of the TNGM (1, N) is defined as
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,e solution of the whitening equation x
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a, b2,. . ., and bN can be further derived by OLS as
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Any optimization technique such as a GA can be
used to derive the optimal c2, c3,. . ., and cN.

(2) ,e optimization of the GM (1, N) (OGM (1, N))
[35]: the grey difference equation of the OGM (1, N)
is defined as
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a, b2,. . ., bN, h1, and h2 can be obtained by OLS as
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Zeng et al. [25] applied a variant of the OGM (1,N) to
forecast the number of motor vehicles in Beijing.

(3) ,e MGPM based on trends of driving coefficients
(TDVGM (1, N)) [7]: the development of the
TDVGM (1, N) addressed an issue of forecasting
Chinese CO2 emissions. ,is prediction model ini-
tially divided data from the first year by data from
each year. ,en, it predicted trends of driving co-
efficients by defining the grey differential equation
for bj (j� 2, 3, . . ., N) as
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3. The Proposed Multivariate Grey
Prediction Model

For the proposed MGPM, GRA was first used to keep ex-
planatory variables that are more relevant to CO2 emissions.
,en, the proposed MGPM can be constructed by GAs.
Subsequently, a residual GM (1, 1) model can be embedded
into the proposed MGPM by establishing a functional-link
net to adjust x

(0)
1 (k).

3.1. Feature Selection byGreyRelational Analysis. In contrast
to statistical correlation analysis that measures the rela-
tionship between any two random variables, GRA can ef-
fectively measure the relationships between one reference
sequence and the other comparative sequences by viewing
the reference sequence as the desired goal [44]. ,e grey
relational coefficient, ξjk, for the time period k (1≤ j≤N− 1,
1≤ k≤m) is addressed by the discriminative coefficient ρ
(0≤ ρ≤1) to indicate the relationship between x

(0)
j (k) and

x
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It is seen that ξjk lies in [0, 1] and approaches 1 if Δjk

approaches Δmin.
To measure the degree of proximity between xj and x1,

the grey relational grade (GRG) cj can be calculated as
follows:

cj �
1
m



m

k�1
ξik, (26)

where cj ranges from 0 to 1.,e greater the value of ci is, the
more relevant xj is to x1. In other words, to construct the
proposed model, xj can be retained for constructing the
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proposed MGPM when cj surpasses a threshold value λ;
otherwise, xj can no longer be considered for the proposed
MGPM. ,at means, for equation (3), both bj and x

(1)
j (k +

1) associated with xj can be retained when cj is above λ;
otherwise, they can be removed directly. However, λmay not
be prespecified easily beforehand.

3.2. Construction of Multivariate Grey Prediction Models
Using Genetic Algorithms. ,is study aims to find the op-
timal solution to construct the proposed MGPM with
high prediction accuracy. ,is problem can be thus for-
mulated as the following single objective optimization
problem by minimizing the mean absolute percentage error
(MAPE):

Minimize
1

m − 1


m
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x
(0)
1 (k)

. (27)

Instead of OLS, a real-valued GA using MAPE as its
fitness function can be developed to automatically determine
the optimal values of development coefficient (a), the driving
coefficients (b2, b3, . . ., bN), and the cut value (λ).

For the GA, a set of strings making up a population is
generated initially. All parameters for each string are
randomly generated as real numbers. Using the Genetic Al-
gorithm and the Direct Search Toolbox in MATLAB, a real-
valued GA is easily developed to automatically determine all
parameters. ,e best chromosome with the maximum fitness
value of all successive generations is the desired solution for
examining the generalizability of the proposed MGPM.

3.3. Residual Modification Using a Functional-Link Net.
x

(0)
1 (k) produced by the proposed MGPM can be further

adjusted by residual modification to improve prediction
accuracy. Let ε(0)

1 � (ε(0)
1 (2), ε(0)

1 (3), ..., ε(0)
1 (m)) denote the

sequence of absolute residual values, where
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, k � 2, 3, ..., m. (28)

Because no dependent variables are considered for ε1, a
residual GM (1, 1) model can be established for ε(0)

1 , where
the predicted value of ε(0)

1 (k) is
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 e
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where aε and bε are the developing coefficient and the control
variable, respectively. ε(1)

1 (2) � ε(0)
1 (2). ,e problem of

constructing a residual GM (1, 1) model can be formulated as
the following single objective optimization problem by
minimizing the MAPE:

Minimize 
m
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ε(0)
1 (k) − ε(0)

1 (k)




ε(0)
1 (k)

. (30)

MAPE can be used as the fitness function of a real-valued
GA that is used to determine optimal aε and bε instead of
OLS.

,en, following a mechanism of residual modification
recommended by Wang and Hu [41], the final predicted
value x

(0)
k of the proposed MGPM is produced by means of

x
(0)
1 (k):

x
(0)
1 (k) � x

(0)
1 (k) + 3ykε(0)

1 (k), k � 2, 3, ..., n, (31)

where yk ranges from −1 to 1 and can be computed by
presenting (tk, sin (πtk), cos (πtk), sin (2πtk), and cos (2πtk))
to a single-layer perceptron, namely, the functional-link net,
with effective function approximation capability [45–48]:

yk � tanh w1tk + w2 sin πtk(  + w3 cos πtk( (

+ w4 sin 2πtk(  + w5 cos 2πtk(  + θ,
(32)

where tanh represents a hyperbolic tangent function, and
w1, . . . , w5 are connection weights. ,is means that
the amount of adjusting x

(0)
k could be as much as 3ε(0)

k if
yk � 1. In contrast, the adjustable amount can be −3ε(0)

k if
yk � −1.

4. Empirical Results

Empirical studies were conducted using real datasets to
compare the CO2 emission forecasting ability of the pro-
posed MGPM with the other MGPMs considered. As
mentioned above, urban population (UP), GDP, and energy
consumption have a dominant influence on CO2 emissions.
In addition to the traditional GM (1, N), the Autoregressive
Integrated Moving Average model (ARIMA) and the
aforementioned improved MGPMs with comprehensible
distinctive features were considered.

4.1. Case I. Statistics from the IEA [3] revealed that, in 2015,
the total amount of CO2 emissions in China was 9,040
million tons, reaching the highest level worldwide. To devise
energy plans that would effectively reduce CO2 emissions
while promoting green economic growth, the ability to
predict CO2 emissions has played a very significant role in
China. ,erefore, we were intrigued to examine the pre-
diction performance of MGPMs that consider CO2 emis-
sions in China. ,e data on urban population (million
persons) and GDP (million USD dollars) were collected
from the World Bank (http://data.worldbank.org.cn), and
energy consumption (million tons of oil equivalent) and
CO2 emissions (million tons) were collected from the IEA
(http://www.iea.org).

As shown in Table 1, the historical annual data were
collected from 2005 to 2015, data from 2005 to 2012 were
used for the model-fitting, and data from 2013 to 2015 were
used for ex-post testing. Results shown in Table 2 are
summarized as follows:

(1) ,e MAPE of the traditional GM (1, N), the TNGM
(1, N), the OGM (1, N), the TDVGM (1, N), the
ARIMA, and the proposed MGPM for model-fitting
were 3.34%, 0.81%, 0.02%, 3.14%, 1.98%, and 1.71%,
respectively. ,e OGM (1, N) thus demonstrated its
superiority in model-fitting.
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(2) For ex-post testing, the MAPE of the traditional GM
(1, N), the TNGM (1, N), the OGM (1, N), the
TDVGM (1, N), the ARIMA, and the proposed
MGPMwere 2.06%, 2.44%, 2.62%, 4.54%, 2.43%, and
1.87%, respectively.

(3) Although the proposed MGPM is inferior to the
TNGM (1, N) and the OGM (1, N) for model-fitting,
it is superior to otherMGPMs considered for ex-post
testing.

It should be noted that, when evaluating a prediction
model, more emphasis should be placed on generalization
rather than onmodel-fitting [49]. Figure 1 also demonstrates
the superiority of the generalization ability of the proposed
MGPM over the other prediction models considered.

4.2. Case II. From statistics reported by the IEA [47], the
total and average amounts of CO2 emissions in Taiwan in
2015 were the 21st and the 19th highest in the world, re-
spectively. ,is means that Taiwan still has room to reduce
CO2 emissions. ,e second real case involved the historical
annual CO2 emission data collected in Taiwan from 2005 to
2015. ,e data on urban population (million persons) and
GDP (million USD dollars) were collected from the United

Nations Conference on Trade and Development (UNCTAD)
(http://unctad.org/en/Pages/statistics.aspx), and energy
consumption (million tons of oil equivalent) and CO2
emissions (million tons) were collected from the IEA.

As shown in Table 3, data collected from 2005 to 2012
were used for the model-fitting, and data from 2013 to 2015
were used for ex-post testing. ,e results obtained from the
different prediction models are shown in Table 4. ,e results
are summarized as follows:

(1) ,e MAPE of the traditional GM (1, N), the TNGM
(1, N), the OGM (1, N), the TDVGM (1, N), the
ARIMA, and the proposed MGPM for model-fitting
were 3.35%, 0.23%, 0.21%, 2.59%, 2.10%, and 1.86%,
respectively. ,e TNGM (1, N) and the OGM (1, N)
demonstrated their superiority in model-fitting.

(2) ,e MAPE of the traditional GM (1, N), the TNGM
(1, N), the OGM (1, N), the TDVGM (1, N), the
ARIMA, and the proposed MGPM for ex-post
testing were 1.28%, 4.75%, 8.43%, 4.54%, 0.86%, and
1.09%, respectively. ,e proposed MGPM is slightly
inferior to the TDVGM (1, N).

(3) Although the proposed MGPM is inferior to the
TNGM (1, N) and the OGM (1, N) for model-fitting,
it is superior to those twoMGPMs for ex-post testing.

Table 1: Annual carbon dioxide emissions with GDP, UP, and EC in China.

Year GDP UP EC CO2

2005 2285966 554.37 1184.158 5357.71
2006 2752132 575.12 1273.683 5911.96
2007 3552182 595.67 1368.733 6468.27
2008 4598206 616.48 1417.323 6608.14
2009 5109954 637.41 1480.672 7025.82
2010 6100620 658.50 1578.852 7706.65
2011 7572554 679.77 1692.063 8465.64
2012 8560547 700.86 1747.103 8620.58
2013 9607224 721.69 1816.852 8995.79
2014 10482372 742.30 1868.17 9036.47
2015 11064666 762.59 1905.679 9040.74

Table 2: MAPE (%) obtained by different MGPMs for carbon dioxide emissions in China.

Year Actual
GM (1, N) TNGM (1, N) OGM (1, N) TDVGM (1, N) ARIMA ,e proposed

MGPM
Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE

2005 5357.7 5357.7 0.00 5357.7 0.00 5357.7 0.00 5435.9 1.32 5357.71 0.00 5357.7 0.00
2006 5912.0 5007.9 15.29 5869.3 0.72 5912.1 0.00 5786.9 2.12 5916.89 0.08 5919.4 0.13
2007 6468.3 6941.3 7.31 6478.3 0.15 6467.7 0.01 6160.3 4.76 6437.24 0.48 6850.5 5.91
2008 6608.1 6753.8 2.20 6495.6 1.70 6609.7 0.02 6551.9 0.85 6919.37 4.71 6739.0 1.98
2009 7025.8 7003.8 0.31 7083.0 0.81 7023.3 0.04 6962.3 0.90 7366.09 4.84 7026.6 0.01
2010 7706.7 7651.5 0.72 7703.0 0.05 7709.3 0.03 7390.9 4.10 7779.98 0.95 7556.9 1.94
2011 8465.6 8429.1 0.43 8255.0 2.49 8464.0 0.02 7838.3 7.41 8163.48 3.57 8186.0 3.30
2012 8620.6 8660.7 0.47 8665.3 0.52 8621.1 0.01 8303.9 3.67 8518.80 1.18 8582.9 0.44
MAPE — — 3.34 — 0.81 — 0.02 — 3.14 — 1.98 — 1.71
2013 8995.8 9039.7 0.49 9011.6 0.18 9080.8 0.94 8788.2 2.31 8848.02 1.64 8990.6 0.06
2014 9036.5 9248.2 2.34 9270.5 2.59 9282.2 2.72 9290.3 2.81 9153.05 1.29 9242.6 2.28
2015 9040.7 9342.8 3.34 9452.7 4.56 9419.1 4.19 9809.9 8.51 9435.68 4.37 9335.2 3.26
MAPE — — 2.06 — 2.44 — 2.62 — 4.54 — 2.43 — 1.87
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Figure 1: Comparisons between different MGPMs for carbon dioxide emissions prediction in China.

Table 3: Annual carbon dioxide emissions with GDP, UP, and EC in Taiwan.

Year GDP UP EC CO2

2005 375787 22.603 60.437 253.64
2006 388547 22.725 61.276 260.86
2007 408221 22.833 65.511 263.94
2008 417038 22.929 63.393 252.75
2009 392106 23.017 62.892 239.68
2010 446141 23.102 67.855 256.22
2011 485671 23.185 65.405 254.7
2012 495919 23.264 65.289 246.55
2013 511599 23.34 67.808 247.59
2014 530515 23.414 68.014 249.66
2015 525236 23.486 68.566 249.38

Table 4: MAPE (%) obtained by different MGPMs for carbon dioxide emissions in Taiwan.

Year Actual
GM (1, N) TNGM (1, N) OGM (1, N) TDVGM (1, N) ARIMA ,e proposed

MGPM
Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE

2005 253.64 253.64 0.00 253.64 0.00 253.64 0.00 250.18 1.36 253.64 0.00 253.64 0.00
2006 260.86 220.24 15.57 260.33 0.20 260.38 0.18 250.79 3.86 255.91 1.90 261.36 0.19
2007 263.94 270.58 2.52 264.40 0.17 264.29 0.13 251.06 4.88 251.58 4.68 258.87 1.92
2008 252.75 253.11 0.14 253.18 0.17 252.48 0.11 251.24 0.60 252.39 0.14 249.56 1.26
2009 239.68 252.71 5.44 239.68 0.00 239.66 0.01 251.36 4.87 252.24 5.24 233.84 2.44
2010 256.22 256.63 0.16 255.82 0.16 256.81 0.23 251.43 1.87 252.26 1.54 250.40 2.27
2011 254.70 249.01 2.23 252.97 0.68 252.88 0.71 251.43 1.28 252.26 0.96 241.07 5.35
2012 246.55 248.41 0.75 247.71 0.47 247.24 0.28 251.37 1.95 252.26 2.32 242.89 1.48
MAPE — — 3.35 — 0.23 — 0.21 — 2.59 — 2.10 — 1.86
2013 253.64 251.97 1.77 254.77 2.90 257.98 4.20 251.24 1.47 252.26 1.89 249.91 0.94
2014 260.86 251.07 0.56 260.44 4.32 268.40 7.51 251.04 0.55 252.26 1.04 251.72 0.83
2015 263.94 253.13 1.50 266.89 7.02 283.29 13.60 250.77 0.56 252.26 1.15 253.15 1.51
MAPE — — 1.28 — 4.75 — 8.43 — 0.86 — 1.36 — 1.09

Mathematical Problems in Engineering 7



In Figure 2, we can see that the proposed MGPM per-
forms well compared with other prediction models
considered.

5. Discussion

What this study focuses on is the forecast rather than the
projection. Compared with the projection, the forecast
places value on estimating the amount of CO2 emissions
based on an established model such as a MGPM for which
MAPE is a useful metric for measuring the prediction
performance [50].,e projection can answer “what-if ” kind
of questions to extrapolate the development trend. In other
words, it is concerned about what would happen to CO2
emission based on some future scenarios, for instance, how
CO2 is produced and how it is influenced by what kind of
factors.

As mentioned above, the forecast of CO2 emissions can
be regarded as a grey system problem. Furthermore, CO2
emission data might well not conform to statistical as-
sumptions. ,erefore, it is reasonable to apply MGPMs to
forecast the amount of CO2 emissions. Compared with the
other MGPMs, feature selection and residual modification
are taken into account in the proposed MGPM to improve
prediction accuracy. In particular, GRA and a functional-
link net are employed to implement feature selection and
residual modification, respectively. ,e empirical results
reveal that feature selection and residual modification can
boost the prediction performance of the proposedMGPM. It
is noted that although the OGM (1, N) variant [25] also
applied GRA to filter out irrelevant features, the cut value (λ)
was arbitrarily assigned by a prespecified value. However, λ
can be optimized by the GA to improve the prediction
accuracy of the proposed MGPM.

With real-world datasets, from Tables 2 and 4, we can see
that the generalization ability of the proposed MGPM for
CO2 emissions was quite encouraging. ,e outcomes

verified that the results obtained by the proposedMGPM are
comparable to other prediction models considered. It is
interesting to note that the TNGM (1, N) and the OGM (1,
N) are superior to the traditional GM (1, N) and the pro-
posed MGPM for model-fitting but inferior for ex-post
testing. In other words, both the TNGM (1,N) and the OGM
(1, N) appear to be overfitting. Experimental results show
that the fitting and generalization abilities of the proposed
MGPM are superior to the traditional GM (1, N). ,us, the
prediction ability of the traditional GM (1, N) could be
effectively improved by feature selection and residual
modification indeed.

6. Conclusions

Undoubtedly, the reduction of greenhouse gas emissions is
critical to environmental protection. For many countries,
CO2 is mainly produced from fuel combustion, which forms
the majority of greenhouse gases. How to reduce the impact
that energy consumption and economic growth have on CO2
emissions has gained increasing global attention. Revela-
tions from the IEA [3] showed that, along with global
economic growth, global CO2 emissions plateaued from
2014 to 2016 due to the growth of renewable electricity, the
replacement of coal with natural gas, and changes to the
economic structure. ,ere appeared to be a decoupling of
economic growth and environmental degradation. However,
this does not mean that CO2 emissions have reached a
summit. To continuously inhibit carbon emissions and re-
main competitive, it is necessary for the authorities to make
use of prediction models on carbon emissions, set up
comprehensive policies on the development of new energy
technologies, and increase demand for renewable energies
(e.g., solar, wind, and natural gas) and environmental
protection.

In addition to CO2 emissions, there are several multi-
variate prediction problems, such as energy demand
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Figure 2: Comparisons between different MGPMs for carbon dioxide emissions prediction in Taiwan.
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forecasting, which need to be resolved. In fact, energy de-
mand prediction has become increasingly important when
devising development plans for a country, particularly for
developing countries [51]. Meanwhile, energy demand
forecasting can be regarded as a grey system problem [52]
because a few factors, such as income and population, have
an influence on energy demand, but how exactly these
factors affect energy demand is not clear. On the basis of the
conspicuous forecasting performance of the proposed
MGPM for CO2 emissions, it would be interesting to explore
its applicability to energy demand forecasting.
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[10] P. A. González and J. M. Zamarreño, “Prediction of hourly
energy consumption in buildings based on a feedback artificial
neural network,” Energy and Buildings, vol. 37, no. 6,
pp. 595–601, 2005.

[11] P. Lauret, E. Fock, R. N. Randrianarivony, and J.-F. Manicom-
Ramsamy, “Bayesian neural network approach to short time
load forecasting,” Energy Conversion and Management,
vol. 49, no. 5, pp. 1156–1166, 2008.

[12] C. Xia, J. Wang, and K.McMenemy, “Short, medium and long
term load forecasting model and virtual load forecaster based
on radial basis function neural networks,” International
Journal of Electrical Power & Energy Systems, vol. 32, no. 7,
pp. 743–750, 2010.

[13] W. Sun and M. Liu, “Prediction and analysis of the three
major industries and residential consumption CO2 emissions
based on least squares support vector machine in China,”
Journal of Cleaner Production, vol. 122, pp. 144–153, 2016.

[14] O. Kaynar, I. Yilmaz, and F. Demirkoparan, “Forecasting of
natural gas consumption with neural network and neuro
fuzzy system,” Energy Education Science and Technology Part
A: Energy Science and Research, vol. 26, pp. 221–238, 2011.

[15] R. Li, X. Chen, T. Balezentis, D. Streimikiene, and Z. Niu,
“Multi-step least squares support vector machine modeling
approach for forecasting short-term electricity demand with
application,” Neural Computing and Applications, 2020.

[16] M. Meng and D. Niu, “Modeling CO2 emissions from fossil
fuel combustion using the logistic equation,” Energy, vol. 36,
no. 5, pp. 3355–3359, 2011.

[17] A. Azadeh, M. Khakestani, and M. Saberi, “A flexible fuzzy
regression algorithm for forecasting oil consumption esti-
mation,” Energy Policy, vol. 37, no. 12, pp. 5567–5579, 2009.

[18] Q. Yan, W. Zhang, J. Yuan, T. Balezentis, and Y. Zhang, “How
much electricity will be consumed in 2020 under the new
normal economy in China?” Transformations in Business &
Economics, vol. 18, no. 2, pp. 88–102, 2019.
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