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In this paper, we initiated a method to estimate the direction of arrival (DOA) of far-field, narrowband, and incoherent targets
using coprime array. First, we proposed a coprime array structure and analysed the distribution of difference coarray (DCA). *e
degrees of freedom (DOF) of the proposed coprime array became clearer by referring to the DCA conception. However, previous
algorithm only uses the continuous virtual array, which causes the virtual array elements in the repeated position being
abandoned. *erefore, the paper analyses the distribution of virtual array based on DCA conception and averages the receiving
signal on these redundant virtual array elements to increase the utilization of receiving data. As a result, the algorithm has high
precision in parameter estimation. Simulation results have shown the superiority of the proposed algorithm.

1. Introduction

Because sparse arrays can overcome the limitation of
interelement spacing, direction of arrival (DOA) estimation
based on it has attracted great attention. Compared to the
uniform linear arrays (ULAs), sparse arrays, such as mini-
mum redundancy array (MRA) [1], nested array (NA) [2, 3],
and coprime array (CPA) [4], have great advantages in
improving estimation accuracy, enhancing angle resolution,
and reducing physical cost [5–8]. Larger array element
spacing expands the virtual aperture, which leads to the rise
in the number of detectable sources and angle resolution. In
addition, it can also effectively suppress the mutual coupling
effect of array elements and the coherence of received noise.
*us, improving the estimation, low redundancy can ef-
fectively reduce wastage of resources and accelerate oper-
ation [9–11].

Coprime arrays have more DOFs than ULAs and have
no mutual coupling problems compared with nested arrays
[12]. Furthermore, it has closed form expression of freedom
extension degree and systematic array structure design.
*erefore, DOA estimation based on coprime arrays has

become a research hotspot. Most algorithms with coprime
arrays derive extended virtual array and operate the cor-
responding signals to estimate DOA [13–16]. In [17], the
paper proposes a modified Toeplitz matrix reconstruction
method using a random nonzero row of the covariance
matrix in the virtual uniform linear array. Besides, a full rank
covariance matrix is obtained by restructuring a Toeplitz
matrix. In [18], the author recovered the Toeplitz matrix by
solving a nuclear norm minimization problem and deco-
hered the signal. In addition, the discrete virtual array el-
ements are utilized by interpolating virtual elements.
However, the virtual arrays in repeated position were
abandoned. In [16], a generalized coprime array configu-
ration for DOA estimation is proposed. Based on general-
ized sum and difference coarray (GSDC) concept, the
proposed configuration enlarges the interelement space, and
hence, the DOFs of the arrays are increased. Besides, there
are a large number of virtual arrays in the same position
which are not utilized. On the other hand, in [19], an al-
gorithm with low computational complexity and high es-
timation accuracy was initiated. *e method first used
estimates signal parameters via rotational invariance
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technique (ESPRIT) algorithm. *en, the search scope was
narrowed down based on the initial results. Finally, more
accurate estimation results were obtained by multiple signal
classification (MUSIC). Similarly, in order to reduce the
computational cost, the authors of [20] propose a successful
signal subspace fitting (SSF) method from a computationally
efficient perspective. All of the algorithms above focused
either on improving the array structure to obtain higher
DOFs and larger virtual array aperture or on reducing the
complexity by avoiding spatial spectrum search and so on.
Obviously, the redundant virtual elements in the same
position were not utilized, and their data are wasted.

In this paper, we take the coprime array with the dif-
ference coarray (DCA) as an example to illustrate the re-
dundant virtual array elements distribution and then
average the virtual elements in the repeated position to
increase the utilization efficiency of received signal data.
Consequently, the snapshots of received signal have in-
creased, and the DOA estimation performance of targets is
improved noticeably.

2. Coprime Array Signal Model

As shown in Figure 1, a coprime array structure consists of
two uniform linear subarrays. Subarray 1 has N sensors with

an interelement spacing N. *e other subarray has 2M − 1
sensors with interelement spacing M. Mand N are a pair of
coprime integers (M<N). We assume the unit of inter-
element spacing is d, where d � λ/2 is half-wavelength.

According to Figure 1, sensors’ location is expressed as
follows:

S � Mnd, 0≤ n≤N − 1{ }∪ Nmd, 0≤m≤ 2M − 1{ }. (1)

We assume narrowband and uncorrelated sources in the
far-field from distinct angles impinging on the array with
sensors. *e output of the received signal after the matched
filter can be denoted as

X(t) � AS(t) + N(t). (2)

In the above equation, S(t) � [s1(t), s2(t), . . . , sK(t)]T,
where sk(t) is the reflection coefficient of the kth target. N(t)
is the complex-valued additive white Gaussian noise matrix
with mean value 0 and variance σ2. Ais the steering vector
which can be denoted as

A � a θ1( 􏼁, a θ2( 􏼁, . . . , a θK( 􏼁􏼂 􏼃, (3)

where a(θk) can be expressed as

a θk( 􏼁 � 1, e
− jπ sin θk( ), e

− jπM sin θk( ), . . . , e
− jπ(N− 1)M sin θk( ), e

− jπN sin θk( ), . . . , e
− jπ(2M− 1)N sin θk( )􏼔 􏼕

T

. (4)

*en, the covariance matrix can be given as

R � E X(t)XH
(t)􏽨 􏽩 � ARSA

H
+ σ2IN×N, (5)

where RS � E[S(t)SH(t)] represents the target covariance
matrix. E[·] denotes mathematical expectation; [·]H denotes
conjugate transpose; σ2 denotes the energy of the noise; and
IN×N is N × N dimensional identity matrix. Because the
signal is incoherent, RS � E[S(t)SH(t)] can be given as

RS � E S(t)SH
(t)􏽨 􏽩 � diag σ21, σ

2
2, . . . , σ2K􏽨 􏽩, (6)

where the σ2k denotes the power of the signal.
In practice, the signal covariance matrix is often esti-

mated with L snapshots.

􏽢R �
1
L

􏽘

L

t�1
X(t)XH

(t). (7)

􏽢R needs to be vectorized to obtain the virtual array el-
ements. Consequently, the vectorizing covariance matrix of
signal can be expressed as

r � vec(􏽢R) � A∗ ∘A( 􏼁p + σ2vec IN×N( 􏼁

� Bp + σ2vec IN×N( 􏼁,
(8)

where vec(·) denotes vectorizing the covariance matrix, (·)∗

denotes conjugate operation, and ∘ denotes Khatri–Rao
product.*e virtual array elements are formed from steering
vector B � A∗ ∘A. *en, combining formulae (3) and (8),
the DAC conception can be expressed as

B � A∗ ∘A

� a∗ θ1( 􏼁⊗ a θ1( 􏼁, a∗ θ2( 􏼁⊗ a θ2( 􏼁, . . . , a∗ θK( 􏼁⊗ a θK( 􏼁􏼂 􏼃,

(9)

where ⊗ denotes the Kronecker product. *us, vectorizing
the covariance matrix 􏽢R is an effective method for obtaining
the virtual array and extending the array’s aperture.

We express the virtual array elements as SCPA, and then it
can be represented as

SCPA � dn − d􏽥n, dn, d􏽥n ∈ PCPA􏼈 􏼉 � Ss ∪ Sc,

Ss � ±Mn, n � 0, . . . , N − 1{ }∪ ±Nm, m � 0, . . . , 2M − 1{ },

Sc � ±(Mn − Nm), m � 0, 1, . . . , 2M − 1, n � 0, 1, . . . , N − 1{ },

(10)
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where Ss denotes the self-difference set and Sc denotes the
cross-difference set.

From Ss ⊂ Sc, formula (10) can be simplified as

SCPA � ±(Mn − Nm), m � 0, 1, . . . , 2M − 1, n � 0, 1, . . . , N − 1{ }. (11)

From formula (11), DOFs of the virtual array is O(MN)

that only needs 2M + N − 1 physical sensors. It is obvious
that the virtual array elements are discontinuous. For ex-
ample, when M � 2, N � 3, the continuous range of virtual
elements is [− 7, 7]. Next, the distribution and application of
virtual redundant elements are discussed.

3. Improved Algorithm for Coprime Array

In this section, we will compare traditional algorithms based
on difference coarray and reuse the redundant virtual
elements.

3.1. Review of Traditional Algorithm. In equations (8) and
(9), the virtual elements formed by the vectorization of the
signal covariance matrix are reordered, and redundant
virtual elements are deleted. *en, a new steering vector of
the single snapshot can be acquired and is marked as signal
􏽢B, which is expressed as

􏽢B �

e
− jπNMax sin θ1 e

− jπNMax sin θ2 · · · e
− jπNMax sin θK

⋮ ⋮ ⋱ ⋮

e
− jπ sin θ1 e

− jπ sin θ2 · · · e
− jπ sin θK

1 1 · · · 1

e
jπ sin θ1 e

jπ sin θ2 ⋱ e
jπ sin θK

⋮ ⋮ ⋮ ⋮

e
jπNMax sin θ1 e

jπNMax sin θ2 · · · e
jπNMax sin θK

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

where NMax � MN + M − 1 denotes the maximum position
of extended continuous virtual elements. Correspondingly,
the range of the virtual array elements is [− NMax, NMax].

Figure 2 shows the distribution of virtual array elements
when M � 2 andN � 3.

In Figure 2, there are many redundant virtual array
elements in the repeated position.

In the previous algorithm, redundant virtual elements in
duplicate positions are deleted and reordered. In addition,
the Toeplitz matrix method is used to eliminate the single
snapshot effect and obtain a new signal covariance matrix.

*e new single snapshot signal is marked as r0. Based on
formulae (8) and (12), r0 can be expressed as

r0 � 􏽢Bp + σ2n e
→

, (13)

where r0 denotes that a virtual ULA with continuous sensors
in the range of [− (MN + M − 1), MN + M − 1]. Based on
the observation vector of the virtual ULA r0, the covariance
matrix of the virtual array can be expressed as

Rv � r0r
H
0 . (14)

Because the new vector r0 is a single snapshot signal, the
rank of virtual array covariance is one. *us, estimating the
DOA by traditional algorithm is inappropriate. However,
the Toeplitz matrix method with the symmetric structure of
the steering vector can solve the coherence problem.

We assume that [r0]i(− NMax ≤ i≤NMax) denotes
i + NMax row of the vector r0. Obviously, [r0]i � [r0]

∗
− i, and a

Toeplitz matrix can be constructed as

􏽥R1 �

r0􏼂 􏼃0 r0􏼂 􏼃− 1 · · · r0􏼂 􏼃− NMax

r0􏼂 􏼃1 r0􏼂 􏼃0 · · · r0􏼂 􏼃− NMax+1

⋮ ⋮ ⋱ ⋮

r0􏼂 􏼃NMax
r0􏼂 􏼃NMax− 1 · · · r0􏼂 􏼃0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

In this way, the traditional subspace methods can be
employed on the covariance matrix R1 for DOA estimation
based on the coprime array.

In order to making full use of redundant virtual array
elements and increase the utilization of received signal data,

Md

Nd
0 1 2 ... N – 1

0 1 ... 2M – 1

Subarray 1

Subarray 2

0 1 2 ... N – 1

θk
Coprime array

structure 

Figure 1: Coprime array MIMO radar structure.
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data of redundant elements are compiled into a new received
signal. Section 3.2 will show how the algorithm works.

3.2. Improved Algorithm Based on Reusing the Redundant
Virtual Array Elements. In order to effectively utilize the

received signal information in the redundant virtual array
element, we take the average redundant elements in the
repeated positions. Moreover, we replace the virtual ele-
ments in the original positions with the averaging redundant
elements. *e process is as follows:

− 7, . . . , − 3, − 3, − 3􏽼√√√√􏽻􏽺√√√√􏽽
averaging values

, − 2, − 2, − 2􏽼√√√√􏽻􏽺√√√√􏽽
averaging values

− 1, − 1􏽼√√􏽻􏽺√√􏽽
averaging values

, 0, 0, 0, 0, 0, 0􏽼√√√√√􏽻􏽺√√√√√􏽽
averaging values

, 1, 1􏽼√􏽻􏽺√􏽽
averaging values

, 2, 2, 2􏽼√√􏽻􏽺√√􏽽
averaging values

, 3, 3, 3􏽼√√􏽻􏽺√√􏽽
averaging values

, . . . , 7
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (16)

From equation (16), the redundant virtual array ele-
ments are fully utilized. *en, we can get a new observation
vector r0, which is denoted as

r0 � 􏽢Bp + σ2n e
→

. (17)

In equation (17), the new covariance matrix R is
reconstructed by restructuring the Toeplitz matrix method.
*en, Root-MUSIC algorithm for DOA estimation is in-
troduced with covariance matrix R. Firstly, we define a
polynomial as follows:

f(z) � e
H
i p(z), i � K + 1, . . . , NMax, (18)

where ei is NMax − K smaller eigenvectors of the covariance
matrix R and p(z) � [1, z, . . . , zNMax]T. Because the signal
subspace and noise subspace are orthogonal, equation (18)
can be expressed as

f(z) � pH
(z)UNU

H
Np(z). (19)

Considering the conjugate of z existing in f(z), formula
(19) can be modified into

f(z) � z
NMax− 1pT

z
− 1

􏼐 􏼑UNU
H
Np(z). (20)

*erefore, the DOAs of the targets can be expressed by
the following formula:

θi � arcsin
λ

2πd0
arg zi( 􏼁􏼠 􏼡, i � 1, . . . , K. (21)

3.3. Algorithm Steps. In order to better illuminate the
algorithm ideas, we add detailed algorithm steps in
Algorithm 1.

4. Simulation Results

In this section, in the coprime array with M � 2 and N � 3,
we assume that both subarrays start from zero. Obviously,
the total physical sensors are 2M + N − 1 � 6. We compared
the performance of improved algorithm with traditional
algorithm based on coprime array and ULA with six (M �

6) physical sensors.
Simulation will show advantages of reusing the redun-

dant virtual array elements in terms of root means square
error and spatial spectral resolution.
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Figure 2: Distribution of virtual array.
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4.1. Simulation of Spatial Spectral Resolution. In the simu-
lation, a pair of coprime integers are assumed as
M � 2 andN � 3. Similarly, the uniform linear array has
M � 6 physical sensors. Considering three equal power
targets impinging on the coprime array from the directions
in [− 20∘, 0∘, 20∘] with SNR � 0 dB, the snapshots is L � 500.
*e following formula helps achieve the spatial spectrum:

fMUSIC(θ) �
1

aH
(θ)Un

����
����
2, (22)

where a(θ) denotes the steering vector of the signal and Un

consists of eigenvectors corresponding to NMax − K

eigenvalues.
Figure 3 shows the resolution performance of the three

algorithms. It can be seen that the spectrum peak of the
algorithm with redundant virtual array element (red solid
line) is sharper, and the side lobe is lower. *us, the red line
represents the best performance. Similarly, the algorithm
resolution with conventional CPA structure is better than
the ULAs referring to the higher array aperture.

4.2. Relationship between SNR and RMSE. We assume three
incoherent signals with equal power impinging on the arrays
from the directions θ1 � 10∘, θ2 � 20∘, andθ3 � 30∘. *en,
the SNR varies from − 10 dB to 10 dB with an interval of 2 dB.
Meanwhile, the number of snapshots is L � 500 , which is the
same with that of Monte-Carlo trials. *e noise is assumed
to be Gaussian white noise with a mean value of 0 and
variance of σ2. In the next all simulations, we will use the
Root-MUSIC algorithm to calculate the DOAs of the targets.
*e formula for calculating root mean square error is de-
fined as

RMSE �

������

1
LK

􏽘

500

i�1

􏽶
􏽴

􏽘

K

k�1

􏽢θ
i

k − θk􏼒 􏼓
2

􏼢 􏼣 , (23)

where K denotes the number of the targets, while L denotes
the snapshots of the received signal (i � 1, 2, . . . , K).

As shown in Figure 4, under the same SNR condition,
the root mean square error of the proposed algorithm is the
smallest. With the increase of SNR, the algorithm obtains

Input: received signal X(t){ }

Output: 􏽢θk􏽮 􏽯, k � 1, 2, . . . , K

Step 1: after the matched filter, received signal X(t){ }will be obtained.
Step 2: according to the formula R � E[X(t)XH(t)] � ARSAH + σ2IN×N, the received signal covariance matrix is obtained.
Step 3: the covariance matrix R is vectorized to obtain the vector matrix r.
Step 4: the virtual array elements in the vector matrix r are sorted according to the position size.
Step 5: averaging the virtual array elements in the same position.
Step 6: new vector r will be obtained.
Step 7: making r become a Toeplitz matrix to overcome the single snapshot effect, then a new covariance matrix 􏽥R1 will be obtained.
Step 8: using Root-MUSIC algorithm to estimate DOA of targets.

ALGORITHM 1: Algorithm steps.
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Figure 3: Comparison of resolution performance.
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higher estimation accuracy and smaller root mean square
error value.

4.3. Relationship between Snapshots andRMSE. Based on the
same assumption in part B, the SNR is 0 dB. *e number of
snapshots L varies from 100 to 1000 with an interval of 100.

Moreover, the number of Monte-Carlo trials is 500. *e
noise is assumed to be Gaussian white noise with a mean
value of 0 and variance of σ2.

From Figure 5, with the increase of snapshots, the root
means square error plummets. Under the same number of
snapshots, the proposed algorithm has better
performance.
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Figure 4: Relationship between SNR and RMSE.
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5. Conclusions

In this paper, a new algorithm via reusing the redundant
virtual array elements is proposed for DOA estimation of
uncoherent targets. *is method averages the virtual array
elements in the repeated position. In this way, a new co-
variance matrix of signal is constructed, which increases the
utilization of the received signal data. In addition, Root-
MUSIC algorithm is employed to estimate the DOAs of
these targets. Unlike the existing algorithm, the improved
algorithmmakes full use of the information in the redundant
virtual array elements. Consequently, the proposed algo-
rithm has greatly improved the resolution performance and
reduced estimation error. Furthermore, the algorithm can
also be introduced to the MARs and NAs based on the
conception of difference coarray and sum-difference coar-
ray. Simulation results show that our algorithm provides
better performance for uncoherent signals than conven-
tional methods.
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