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(is work is chiefly concerned with the stability behavior and the appearance of Hopf bifurcation of fractional-order delayed
Cohen–Grossberg neural networks. Firstly, we study the stability and the appearance of Hopf bifurcation of the involved neural
networks with identical delay ϑ1 � ϑ2 � ϑ. Secondly, the sufficient criterion to guarantee the stability and the emergence of Hopf
bifurcation for given neural networks with the delay ϑ2 � 0 is set up. (irdly, we derive the sufficient condition ensuring the
stability and the appearance of Hopf bifurcation for given neural networks with the delay ϑ1 � 0. (e investigation manifests that
the delay plays a momentous role in stabilizing networks and controlling the Hopf bifurcation of the addressed fractional-order
delayed neural networks. At last, software simulation results successfully verified the rationality of the analytical results. (e
theoretical findings of this work can be applied to design, control, and optimize neural networks.

1. Introduction

It is common knowledge that neural networks have broad
application perspectives in a number of subjects such as data
science, biology, artificial intelligence, control engineering,
biomedical treatment, and so on [1–6]. During a long period,
in order to further grasp the inherent laws and dynamic
characteristics of neural networks, a great deal of scholars
have made great efforts to study neural networks and fruitful
results have constantly been emerging. For instance, Haji-
hosseini et al. [7] investigated the Hopf bifurcation for a class
of delayed neural networks by applying the frequency do-
main approach. In [8], Lin et al. [8] dealt with Turing in-
stability and Turing–Hopf bifurcation for a kind of reaction-
diffusion neural networks with leakage term. In 2019, Aouiti
et al. [9] established the sufficient condition to ensure the
existence and exponential stability of piecewise pseudo al-
most periodic solution for delayed inertial neural networks
with impulse. In 2020, Xu et al. [10] obtained new results on
pseudo almost periodic solutions for quaternion-valued
delayed fuzzy cellular neural networks. Kumar and Das [11]
made a detailed discussion on exponential stability of
delayed BAM neural network by applying the matrix

measure method. For more related knowledge on these
dynamics of neural networks, we refer the readers to
[12–23].

It is worth pointing out that all the mentioned works are
concerned with the integer-order neural networks. For a
long time in the past, the development of fractional calculus
has been kept in a very low state due to the lack of practical
background and the imperfection of the theoretical system.
In recent decades, fractional calculus has been found to have
wide applications in numerous fields such as electromag-
netic waves, biological engineering, control theory, network
science, and so on [24–27]. (e fractional calculus has
greater advantages than integer-order ones since it can better
portray memory nature and hereditary information for the
dynamical systems in natural world [24–27]. Nowadays,
many scholars pay much attention to the fractional-order
dynamical models. Especially, the study on fractional-order
neural networks has aroused the close attention of many
scholars. Many outstanding achievements on fractional-
order neural networks are available (see [28–31]).

Hopf bifurcation, which acts as a vital dynamical phe-
nomenon of neural networks, naturally arouses the extensive
research interest from plenty of scholars. During the past
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several decades, lots of researchers only deal with the Hopf
bifurcation for integer-order neural networks. However, the
investigation on Hopf bifurcation for fractional-order ones
is very scarce. At present, some works on Hopf bifurcation
for fractional-order neural networks have been reported. For
example, Eshaghi et al. [32] discussed the Hopf bifurcation,
chaos control, and synchronization for a chaotic fractional-
order model. Yuan et al. [33] obtained the new results on
bifurcation for fractional-order complex-valued delayed
neural networks. Xiao et al. [34] dealt with the fractional-
order PD control of Hopf bifurcations for delayed fractional-
order small-world networks. For more detailed publications,
one can see [35–38]. Our concern arises: what influence do
different delays have on the stability peculiarity and bifur-
cation phenomenon of the involved neural networks? (e
answer will play a key role in controlling neural networks.
Inspired by this viewpoint, in this present work, we shall deal
with the Hopf bifurcation of delayed neural networks by
selecting different delays as bifurcation parameters. Detailed
works include the following points: (a) probe into the in-
fluence of delay on stability and Hopf bifurcation of frac-
tional-order Cohen–Grossberg neural networks with delays
and (b) establish some new sufficient conditions to ensure
the stability and the appearance of Hopf bifurcation for
fractional-order Cohen–Grossberg neural networks by re-
garding different delays as bifurcation parameters.

In [39], Liu and Xu studied the following integer-order
delayed Cohen–Grossberg neural networks:

du1(t)

dt
� − α1 u1(t)( 􏼁 β1 u1(t)( 􏼁 − c1h2 u2 t − ϑ2( 􏼁( 􏼁􏼂 􏼃,

du2(t)

dt
� − α2 u2(t)( 􏼁 β2 u2(t)( 􏼁 − c2h1 u1 t − ϑ1( 􏼁( 􏼁􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where uj(t) stands for the state of the jth neuron; αj(·)

stands for the amplification function; βj(·) denotes the
behaved function; cj denotes the connection weight; hj(·)

represents the signal function of the jth neuron at time t; and
ϑj is a delay that corresponds to the finite speed of the axonal
signal transmission at time t, j � 1, 2 [39]. By selecting the
sum of two delays as bifurcation parameter, the authors
established the sufficient conditions to guarantee the sta-
bility and the emergence of Hopf bifurcation of model (1). In
addition, with the aid of the center manifold theory and the
normal form knowledge, the direction and stability of bi-
furcating periodic solutions are analyzed. Inspired by the
analysis above, on the basis of model (1), we establish the
following fractional-order version of model (1):

dψu1(t)

dt
ψ � − α1 u1(t)( 􏼁 β1 u1(t)( 􏼁 − c1h2 u2 t − ϑ2( 􏼁( 􏼁􏼂 􏼃,

dψu2(t)

dt
ψ � − α2 u2(t)( 􏼁 β2 u2(t)( 􏼁 − c2h1 u1 t − ϑ1( 􏼁( 􏼁􏼂 􏼃,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

where uj(t) stands for the state of the jth neuron; αj(·) stands
for the amplification function; βj(·) denotes the behaved
function; cj denotes the connection weight; hj(·) represents
the signal function of the jth neuron at time t; ϑj is a delay that
corresponds to the finite speed of the axonal signal trans-
mission at time t, j � 1, 2 [39]; and ψ ∈ (0, 1) is a constant.

In order to find the key results of this work, we first give
the assumptions as follows:

(i) (Q1) βj(0) � 0, hj(0) � 0, j � 1, 2.
(ii) (Q2)∃ αj and αj such that 0< αj ≤ αj ≤ αj, j � 1, 2.

(is paper is structured as follows. Section 2 gives some
related knowledge on fractional differential systems. In
Sections 3–5, the stability behavior and the emergence of
Hopf bifurcation for neural networks (2) with three different
cases are investigated. In Section 6, three examples are
prepared to indicate the rationality of the established key
conclusions and bifurcation diagrams are clearly displayed.
Section 7 concludes the paper.

2. Basic Theory

In this part, some necessary knowledge on fractional cal-
culus is prepared.

Definition 1 (see [40]). (e Caputo fractional-order deriv-
ative can be defined in the following:

D
ψ
h(ϱ) �

1
Γ(n − ψ)

􏽚
ϱ

ϱ0

h
(l)

(])

(ϱ − ])
ψ− l+1d], (3)

where h(ϱ) ∈ (ϱ0,∞), R, Γ(]) � 􏽒
∞
0 ϱ

]− 1e− ϱdϱ, ϱ ≥ ϱ0, and
l ∈ Z+, l − 1≤ψ < l.

(e Laplace transform of Dψ is given by

L D
ψ
h(t); s􏼈 􏼉 � s

ψ
H(s) − 􏽘

i− 1

k�0
s
ψ− k− 1

w
(k)

(0),

i − 1≤ψ < i ∈ Z
+
,

(4)

where H(s) � L h(t){ }. If h(k)(0) � 0, k � 1, 2, . . . , i, then
L Dψh(t); s􏼈 􏼉 � sψH(s).

Definition 2 (see [41]). We say that (u10, u20) is an equi-
librium point of system (2) provided that

− α1 u10( 􏼁 β1 u10( 􏼁 − c1h2 u20( 􏼁􏼂 􏼃 � 0,

− α2 u20( 􏼁 β2 u20( 􏼁 − c2h1 u10( 􏼁􏼂 􏼃 � 0.
􏼨 (5)

Lemma 1 (see [42, 43]). Let u∗ be the equilibrium point of
the following system:

dψu(t)

dt
ψ � h(t, u(t)), u(0) � u0, (6)

where ψ ∈ (0, 1) and h(t, u(t)): R+ × Rm⟶ Rm. u∗ is lo-
cally asymptotically stable provided that total eigenvalues ϑ of
(zh(t, u)/zu)|u�u∗

satisfy |arg(ϑ)|> (ψπ/2).
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Lemma 2 (see [44]). Consider the system
dψ1W1(t)

dt
ψ1

� k11W1 t − ϑ11( 􏼁 + k12W2 t − ϑ12( 􏼁 + · · · + k1nWm t − ϑ1n( 􏼁,

dψ2W2(t)

dt
ψ2

� k21W1 t − ϑ21( 􏼁 + k22W2 t − ϑ22( 􏼁 + · · · + k2nWm t − ϑ2n( 􏼁,

⋮

dψnWn(t)

dt
ψn

� kn1W1 t − ϑn1( 􏼁 + kn2W2 t − ϑn2( 􏼁 + · · · + knnWn t − ϑnn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where 0<ψj < 1(j � 1, 2, . . . , n), the initial conditions
Wj(t) � ϕj(t) ∈ C[− maxj,hϑjh, 0], and t ∈ [− maxj,hϑjh, 0],
j, h � 1, 2, . . . , n. Set

Δ(σ) �

σψ1 − k11e
− σϑ11 − k12e

− σϑ12 · · · − k1ne
− σϑ1n

− k21e
− σϑ12 σψ2 − k22e

− σϑ22 · · · − k2ne
− σϑ2n

⋮ ⋮ ⋱ ⋮

− kn1e
− σϑn1 − kn2e

− σϑn2 · · · σψn − knne
− σϑnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

(e zero solution of system (8) is Lyapunov asymp-
totically stable provided that total roots of det(Δ(σ)) � 0
have negative real parts.

3. Bifurcation for System
(2) with ϑ1 = � ϑ2 = � ϑ

In this part, we will investigate the stability and the ap-
pearance of Hopf bifurcation for system (2) with ϑ1 � ϑ2 � ϑ.
In terms of (Q1) and (Q2), it is easy to see that system (2) has
a unique equilibrium point E(0, 0). Under the conditions
(Q1) and (Q2), system (2) becomes

dψu1(t)

dt
ψ � − α1 u1(t)( 􏼁 β1 u1(t)( 􏼁 − c1h2 u2(t − ϑ)( 􏼁􏼂 􏼃,

dψu2(t)

dt
ψ � − α2 u2(t)( 􏼁 β2 u2(t)( 􏼁 − c2h1 u1(t − ϑ)( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

(e linear system of model (9) around E(0, 0) takes the
following form:

dψu1(t)

dt
ψ � − α1(0)β1′ (0)u1(t) + α1(0)c1h2′(0)u2(t − ϑ),

dψu2(t)

dt
ψ � − α2(0)β2′(0)u2(t) + α2(0)c2h1′(0)u1(t − ϑ).􏼨 (10)

Let

a1 � − α1(0)β1′ (0), a2 � α1(0)c1h2′(0), b1 � − α2(0)β2′(0), b2 � α2(0)c2h1′(0).􏼈 (11)

(en, system (10) becomes

dψu1(t)

dt
ψ � a1u1(t) + a2u2(t − ϑ),

dψu2(t)

dt
ψ � b1u2(t) + b2u1(t − ϑ).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

(us, we obtain the following associated characteristic
equation for (12):

det
s
ψ

− a1 − a2e
− sϑ

− b2e
− sϑ

s
ψ

− b1

⎡⎢⎣ ⎤⎥⎦ � 0. (13)

According to (13), we get

s
2ψ

− a1 + b1( 􏼁s
ψ

+ a1b1 − a2b2e
− 2sϑ

� 0. (14)

Assume that(Q3) a1 + b1 < 0, a1b1 > a2b2.

Lemma 3. If ϑ � 0 and (Q3) is fulfilled, then model (9) is
locally asymptotically stable.

Proof. When ϑ � 0, then (14) becomes

λ2 − a1 + b1( 􏼁λ + a1b1 − a2b2 � 0. (15)

By (Q3), one knows that all roots λl of (15) satisfy
|arg(λl)|> (ψπ/2)(l � 1, 2). So, Lemma 3 holds. (e proof
ends. □

Suppose that s � iξ � ξ(cos(π/2) + i sin(π/2)) is a root
of (14). (en, one has

a2b2 cos 2 ξϑ � ξ2ψ cosψπ − a1 + b1( 􏼁ξψ cos
ψπ
2

+ a1b1,

a2b2 sin 2 ξϑ � ξ2ψ sinψπ − a1 + b1( 􏼁ξψ sin
ψπ
2

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

By (16), one has

a
2
2b

2
2 � ξ2ψ cosψπ − a1 + b1( 􏼁ξψ cos

ψπ
2

+ a1b1􏼔 􏼕
2

+ ξ2ψ sinψπ − a1 + b1( 􏼁ξψ sin
ψπ
2

􏼔 􏼕
2
,

(17)

which can be written in the following form:

ξ4ψ + c3ξ
3ψ

+ c2ξ
2ψ

+ c1ξ
ψ

+ c0 � 0, (18)

where
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c0 � a
2
1b

2
1 − a

2
2b

2
2,

c1 � − 2a1b1 a1 + b1( 􏼁cos
ψπ
2

,

c2 � a1 + b1( 􏼁
2
,

c3 � − 2 a1 + b1( 􏼁
2 cosψπ cos

ψπ
2

− sinψπ sin
ψπ
2

􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Denote

M1(ξ) � ξ4ψ + c3ξ
3ψ

+ c2ξ
2ψ

+ c1ξ
ψ

+ c0,

M2(η) � η4 + c3η
3

+ c2η
2

+ c1η + c0.
(20)

In view of Lemma 3.7 of [45], we have the following
conclusion.

Lemma 4. (i) If ci > 0(i � 0, 1, 2, 3) and (Q3) is true, then
equation (14) has no root with zero real parts. (ii) If c0 < 0,
then equation (14) has at least a pair of purely imaginary
roots. (iii) If c0 > 0 and ∃ v0 > 0 which satisfies M1(v0)< 0,
then equation (14) possesses at least two pairs of purely
imaginary roots.

For the proof of this lemma, one can see [45]. Here we
omit it.

Assume that equation (14) has four positive real roots
ξh(h � 1, 2, 3, 4). By (16), one has

ϑl
f �

1
2ξf

arcsin
ξ2ψf sinψπ − a1 + b1( 􏼁ξψf sin(ψπ/2)

a2b2

⎛⎝ ⎞⎠ + 2lπ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(21)

where l � 0, 1, 2, . . . , f � 1, 2, 3, 4. Set

ϑ0 � minf�1,2,3,4 ϑ0f􏽮 􏽯, ξ0 � ξ|ϑ�ϑ0. (22)

Next, the following assumption is prepared.(Q4)

A11A21 + A12A22 > 0, where

A11 � a1 + b1( 􏼁ψξψ− 1
0 cos

(ψ − 1)π
2

− 2ψξ2ψ− 1
0 cos

(2ψ − 1)π
2

,

A12 � a1 + b1( 􏼁ψξψ− 1
0 sin

(ψ − 1)π
2

− 2ψξ2ψ− 1
0 sin

(2ψ − 1)π
2

,

A21 � 2a2b2ξ0 sin 2ξ0ϑ0,

A22 � 2a2b2ξ0 cos 2ξ0ϑ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Lemma 5. If s(ϑ) � χ(ϑ) + iξ(ϑ) is the root of equation (14)
around ϑ � ϑ0 such that χ(ϑ0) � 0, ξ(ϑ0) � ψ0, then we get
Re[ds/dϑ]|ϑ�ϑ0 ,ξ�ξ0 > 0.

Proof. In terms of equation (14), one has

2ψs
2ψ− 1ds

dϑ
− a1 + b1( 􏼁ψs

ψ− 1ds

dϑ
+ 2a2b2e

− 2sϑ ds

dϑ
ϑ + s􏼠 􏼡 � 0.

(24)

(en,

ds

dϑ
􏼢 􏼣

− 1

�
a1 + b1( 􏼁ψs

ψ− 1
− 2ψs

2ψ− 1

2a2b2se
− 2sϑ −

ϑ
s
. (25)

(us,

Re
ds

dϑ
􏼢 􏼣

− 1

ϑ�ϑ0 ,ξ�ξ0

� Re
a1 + b1( 􏼁ψsψ− 1 − 2ψs2ψ− 1

2a2b2se
− 2sϑ􏼢 􏼣

ϑ�ϑ0 ,ξ�ξ0

�
A11A21 + A12A22

A
2
21 + A

2
22

.

(26)

According to (Q4), one gets

Re
ds

dϑ
􏼢 􏼣

− 1

ϑ�ϑ0 ,ξ�ξ0

> 0. (27)

(e proof ends.
On the basis of above analysis, it is easy to establish the

following result. □

Theorem 1. If (Q1) − (Q4) are true, then the equilibrium
point E(0, 0) of system (2) is locally asymptotically stable
when ϑ ∈ 0, ϑ0 and a Hopf bifurcation will happen around the
equilibrium point E(0, 0) if ϑ � ϑ0.

4. Bifurcation for System (2) with ϑ2 = � 0

In this part, we will investigate the stability and the ap-
pearance of Hopf bifurcation for system (2) with ϑ2 � 0. In
terms of (Q1) and (Q2), it is easy to see that system (2) has a
unique equilibrium point E(0, 0). Under the conditions
(Q1) and (Q2), system (2) becomes

dψu1(t)

dt
ψ � − α1 u1(t)( 􏼁 β1 u1(t)( 􏼁 − c1h2 u2(t)( 􏼁􏼂 􏼃,

dψu2(t)

dt
ψ � − α2 u2(t)( 􏼁 β2 u2(t)( 􏼁 − c2h1 u1 t − ϑ1( 􏼁( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)
(e linear system of model (28) aroundE(0, 0) takes the

form:

dψu1(t)

dt
ψ � − α1(0)β1′ (0)u1(t) + α1(0)c1h2′(0)u2(t),

dψu2(t)

dt
ψ � − α2(0)β2′(0)u2(t) + α2(0)c2h1′(0)u1 t − ϑ1( 􏼁.􏼨 (29)
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(at is,

dψu1(t)

dt
ψ � a1u1(t) + a2u2(t),

dψu2(t)

dt
ψ � b1u2(t) + b2u1 t − ϑ1( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(30)

where a1, a2, b1, b1 are defined by (11). (us, we obtain the
following associated characteristic equation for (30):

det
s
ψ

− a1 − a2

− b2e
− sϑ1 s

ψ
− b1

⎡⎣ ⎤⎦ � 0. (31)

According to (31), we get

s
2ψ

− a1 + b1( 􏼁s
ψ

+ a1b1 − a2b2e
− sϑ1 � 0. (32)

Lemma 6. If ϑ1 � 0 and (Q3) is fulfilled, then model (28) is
locally asymptotically stable.

Proof. When ϑ1 � 0, then (32) becomes

λ2 − a1 + b1( 􏼁λ + a1b1 − a2b2 � 0. (33)

By (Q3), one knows that all roots λl of (33) satisfy
|arg(λl)|> (ψπ/2)(l � 1, 2). So, Lemma 6 holds. (e proof
ends.

Suppose that s � iϱ � ϱ(cos(π/2) + i sin(π/2)) is a root
of (32). (en, one has

a2b2 cos ϱϑ1 � ϱ2ψ cosψπ − a1 + b1( 􏼁ϱψ cos
ψπ
2

+ a1b1,

a2b2 sin ϱϑ1 � ϱ2ψ sinψπ − a1 + b1( 􏼁ϱψ sin
ψπ
2

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(34)

By (34), one has

a
2
2b

2
2 � ϱ2ψ cosψπ − a1 + b1( 􏼁ϱψ cos

ψπ
2

+ a1b1􏼔 􏼕
2

+ ϱ2ψ sinψπ − a1 + b1( 􏼁ϱψ sin
ψπ
2

􏼔 􏼕
2
, (35)

which can be written in the following form:

ϱ4ψ + c3ϱ
3ψ

+ c2ϱ
2ψ

+ c1ϱ
ψ

+ c0 � 0, (36)

where ci(i � 0, 1, 2, 3) is defined by (19). Denote

N1(ϱ) � ϱ4ψ + c3ϱ
3ψ

+ c2ϱ
2ψ

+ c1ϱ
ψ

+ c0,

N2(ζ) � ζ4 + c3ζ
3

+ c2ζ
2

+ c1ζ + c0.
(37)

In view of Lemma 3.7 of [45], we have the following
conclusions. □

Lemma 7. (i) If ci > 0(i � 0, 1, 2, 3) and (Q3) is true, then
equation (32) has no root with zero real parts. (ii) If c0 < 0,
then equation (32) has at least a pair of purely imaginary
roots. (iii) If c0 > 0 and ∃ u0 > 0 which satisfies N1(u0)< 0,
then equation (32) possesses at least two pairs of purely
imaginary roots.

For the proof of this lemma, one can see [45]. Here we
omit it.

Assume that equation (32) has four positive real roots
ϱ1h(h � 1, 2, 3, 4). By (34), one has

ϑl
1f �

1
ϱf

arcsin
ϱ2ψf sinψπ − a1 + b1( 􏼁ϱψf sin(ψπ/2)

a2b2

⎛⎝ ⎞⎠ + 2lπ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(38)

where l � 0, 1, 2, . . . , f � 1, 2, 3, 4. Set

ϑ10 � minf�1,2,3,4 ϑ01f􏽮 􏽯, ϱ0 � ϱ|ϑ1�ϑ10. (39)

Next, the following assumption is prepared.(Q5)

B11B21 + B12B22 > 0, where

B11 � a1 + b1( 􏼁ψϱψ− 1
0 cos

(ψ − 1)π
2

− 2ψϱ2ψ− 1
0 cos

(2ψ − 1)π
2

,

B12 � a1 + b1( 􏼁ψϱψ− 1
0 sin

(ψ − 1)π
2

− 2ψϱ2ψ− 1
0 sin

(2ψ − 1)π
2

,

B21 � a2b2ϱ0 sin ϱ0ϑ10,

B22 � a2b2ϱ0 cos ϱ0ϑ10.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

Lemma 8. If s(ϑ1) � α(ϑ1) + iϱ(ϑ1) is the root of equation
(32) around ϑ1 � ϑ10 such that α(ϑ10) � 0, ϱ(ϑ10) � ϱ0, then
we get Re[ds/dϑ]|ϑ1�ϑ10 ,ϱ�ϱ0 > 0.

Proof. In terms of equation (32), one has

2ψs
2ψ− 1 ds

dϑ1
− a1 + b1( 􏼁ψs

ψ− 1 ds

dϑ1
+ a2b2e

− sϑ1 ds

dϑ1
ϑ1 + s􏼠 􏼡 � 0.

(41)

(en,

ds

dϑ1
􏼢 􏼣

− 1

�
a1 + b1( 􏼁ψs

ψ− 1
− 2ψs

2ψ− 1

a2b2se
− sϑ1

−
ϑ1
s

. (42)

(us,
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Re
ds

dϑ1
􏼢 􏼣

− 1

ϑ1�ϑ10 ,ϱ�ϱ0

� Re
a1 + b1( 􏼁ψsψ− 1 − 2ψs2ψ− 1

a2b2se− sϑ1
􏼢 􏼣

ϑ1�ϑ10 ,ϱ�ϱ0

�
B11B21 + B12B22

B
2
21 + B

2
22

.

(43)
According to (Q5), one gets

Re
ds

dϑ1
􏼢 􏼣

− 1

ϑ1�ϑ10 ,ϱ�ϱ0

> 0. (44)

(e proof ends.
On the basis of above analysis, it is easy to establish the

following result. □

Theorem 2. If (Q1), (Q2), (Q3), and (Q5) are true, then the
equilibrium point E(0, 0) of system (28) is locally asymp-
totically stable when ϑ1 ∈ 0, ϑ10 and a Hopf bifurcation will
happen around the equilibrium point E(0, 0) if ϑ1 � ϑ10.

5. Bifurcation for System (2) with ϑ1 = � 0

In this part, we will investigate the stability and the ap-
pearance of Hopf bifurcation for system (2) with ϑ1 � 0. In
terms of (Q1) and (Q2), it is easy to see that system (2) has a
unique equilibrium point E(0, 0). Under the conditions
(Q1) and (Q2), system (2) becomes

dψu1(t)

dt
ψ � − α1 u1(t)( 􏼁 β1 u1(t)( 􏼁 − c1h2 u2 t − ϑ2( 􏼁( 􏼁􏼂 􏼃,

dψu2(t)

dt
ψ � − α2 u2(t)( 􏼁 β2 u2(t)( 􏼁 − c2h1 u1(t)( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(45)

(e linear system of model (45) aroundE(0, 0) takes the
form

dψu1(t)

dt
ψ � − α1(0)β1′ (0)u1(t) + α1(0)c1h2′(0)u2 t − ϑ2( 􏼁,

dψu2(t)

dt
ψ � − α2(0)β2′(0)u2(t) + α2(0)c2h1′(0)u1(t).􏼨 (46)

(at is,

dψu1(t)

dt
ψ � a1u1(t) + a2u2 t − ϑ2( 􏼁,

dψu2(t)

dt
ψ � b1u2(t) + b2u1(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(47)

where a1, a2, b1, b1 are defined by (11). (us, we obtain the
following associated characteristic equation for (47):

det
s
ψ

− a1 − a2e
− sϑ2

− b2 s
ψ

− b1

⎡⎣ ⎤⎦ � 0. (48)

According to (48), we get

s
2ψ

− a1 + b1( 􏼁s
ψ

+ a1b1 − a2b2e
− sϑ2 � 0. (49)

Lemma 9. If ϑ2 � 0 and (Q3) is fulfilled, then model (45) is
locally asymptotically stable.

Proof. When ϑ2 � 0, then (49) becomes
λ2 − a1 + b1( 􏼁λ + a1b1 − a2b2 � 0. (50)

By (Q3), one knows that all roots λj of (50) satisfy
|arg(λj)|> (ψπ/2)(j � 1, 2). So, Lemma 9 holds. (e proof
ends.

Suppose that s � iσ � σ(cos(π/2) + i sin(π/2)) is a root
of (49). (en, one has

a2b2 cos σϑ2 � σ2ψ cosψπ − a1 + b1( 􏼁σψ cos(ψπ/2) + a1b1,

a2b2 sin σϑ2 � σ2ψ sinψπ − a1 + b1( 􏼁σψ sin(ψπ/2).

⎧⎨

⎩

(51)

By (51), one has

a
2
2b

2
2 � σ2ψ cosψπ − a1 + b1( 􏼁σψ cos(ψπ/2) + a1b1􏽨 􏽩

2

+ σ2ψ sinψπ − a1 + b1( 􏼁σψ sin(ψπ/2)􏽨 􏽩
2
,

(52)
which can be written in the following form:

σ4ψ + c3σ
3ψ

+ c2σ
2ψ

+ c1σ
ψ

+ c0 � 0, (53)

where ci(i � 0, 1, 2, 3) is defined by (19). Denote

K1(σ) � σ4ψ + c3σ
3ψ

+ c2σ
2ψ

+ c1σ
ψ

+ c0,

K2(ς) � ς4 + c3ς
3

+ c2ς
2

+ c1ς + c0.
(54)

In view of Lemma 3.7 of [45], we have the following
conclusions. □

Lemma 10. (i) If ci > 0(i � 0, 1, 2, 3) and (Q3) is true, then
equation (49) has no root with zero real parts. (ii) If c0 < 0, then
equation (49) has at least a pair of purely imaginary roots. (iii) If
c0 > 0 and ∃w0 > 0 which satisfies K1(w0)< 0, then equation
(49) possesses at least two pairs of purely imaginary roots.

For the proof of this lemma, one can see [45]. Here we
omit it.

Assume that equation (49) has four positive real roots
ϱ2h(h � 1, 2, 3, 4). By (51), one has

ϑl
2f �

1
σf

arcsin
σ2ψf sinψπ − a1 + b1( 􏼁σψf sin(ψπ/2)

a2b2

⎛⎝ ⎞⎠ + 2lπ⎡⎢⎢⎣ ⎤⎥⎥⎦,

(55)
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where l � 0, 1, 2, . . . , f � 1, 2, 3, 4. Set

ϑ20 � minf�1,2,3,4 ϑ02f􏽮 􏽯, σ0 � σ|ϑ2�ϑ20. (56)

Next, the following assumption is prepared.(Q6)

C11C21 + C12C22 > 0, where

C11 � a1 + b1( 􏼁ψσψ− 1
0 cos

(ψ − 1)π
2

− 2ψσ2ψ− 1
0 cos

(2ψ − 1)π
2

,

C12 � a1 + b1( 􏼁ψσψ− 1
0 sin

(ψ − 1)π
2

− 2ψσ2ψ− 1
0 sin

(2ψ − 1)π
2

,

C21 � a2b2σ0 sin σ0ϑ10,

C22 � a2b2σ0 cos σ0ϑ10.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(57)

Lemma 11. If s(ϑ2) � β(ϑ2) + iσ(ϑ2) is the root of equation
(32) around ϑ2 � ϑ20 such that β(ϑ20) � 0, σ(ϑ20) � ϱ0, then
we get Re[ds/dϑ2]|ϑ2�ϑ20 ,σ�σ0 > 0.

Proof. In terms of equation (49), one has

2ψs
2ψ− 1 ds

dϑ2
− a1 + b1( 􏼁ψs

ψ− 1 ds

dϑ2
+ a2b2e

− sϑ2 ds

dϑ2
ϑ2 + s􏼠 􏼡 � 0.

(58)

(en,

ds

dϑ2

− 1

�
a1 + b1( 􏼁ψs

ψ− 1
− 2ψs

2ψ− 1

a2b2se
− sϑ2

−
ϑ2
s

. (59)

(us,

Re
ds

dϑ2
􏼢 􏼣

− 1

ϑ2�ϑ20 ,σ�σ0

� Re
a1 + b1( 􏼁ψsψ− 1 − 2ψs2ψ− 1

a2b2se− sϑ2
􏼢 􏼣

ϑ2�ϑ20 ,σ�σ0

�
C11C21 + C12C22

C
2
21 + C

2
22

.

(60)

According to (Q6), one gets

Re
ds

dϑ2
􏼢 􏼣

− 1

ϑ2�ϑ20 ,σ�σ0

> 0. (61)

(e proof ends.
On the basis of above analysis, it is easy to establish the

following result. □

Theorem 3. If (Q1), (Q2), (Q3), and (Q6) are true, then the
equilibrium point E(0, 0) of system (45) is locally asymp-
totically stable when ϑ2 ∈ 0, ϑ20 and a Hopf bifurcation will
happen around the equilibrium point E(0, 0) if ϑ1 � ϑ20.

Remark 1. In [39], Liu and Xu have dealt with the bifur-
cation of integer-order delayed Cohen–Grossberg neural
networks (1) by selecting the sum of two delays as bifur-
cation parameter. (ey did not consider the impact of two
different delays on the stability and Hopf bifurcation of the
neural networks (1). In this paper, we set up new fractional-
order delayed Cohen–Grossberg neural networks (2). We
have focused on the impact of two different delays on the
stability and Hopf bifurcation of the established neural
networks (2) by regarding the three different delays ((1)
ϑ1 � ϑ2 � ϑ, (2) ϑ1, and (3) ϑ2) as bifurcation parameters.
Based on this viewpoint, we think that our work is a good
complement and improvement of Liu and Xu [39].

Remark 2. In [2], the authors studied the Hopf bifurcation
of integer-order delayed neural networks by the frequency
domain approach. Now we cannot investigate the Hopf
bifurcation of fractional-order delayed Cohen–Grossberg
neural networks by the frequency domain approach.

Remark 3. Now we cannot investigate the direction and
stability of Hopf bifurcation of the involved neural networks
due to the lack of theoretical tools.

6. Three Examples

Example 1. Given the following system:

dψu1(t)

dt
ψ � − 4.25 + sin u1(t)􏼂 􏼃 1.22u1(t) − 1.23 tanh u2(t − ϑ)( 􏼁􏼂 􏼃,

dψu2(t)

dt
ψ � − 6.13 + sin u2(t)􏼂 􏼃 2.13u2(t) − 2.05 tanh u1(t − ϑ)( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(62)

Clearly, system (62) possesses the equilibrium point
E(0, 0). Using the computer software, one derives
φ0 � 0.0499 and ϑ0 � 0.142 and the hypotheses (Q1) − (Q4)

in (eorem 1 are fulfilled. So, one knows that E(0, 0) of
model (62) maintains locally asymptotically stable state
provided that 0≤ ϑ< 0.142. Choosing ϑ � 0.12< ϑ0 � 0.142,
we get the simulation plot (Figure 1) which manifests that
the states of two neurons will tend to be zero. Model (62) will
be unstable, and the Hopf bifurcation phenomenon takes
place provided that ϑ≥ 0.142. Selecting
ϑ � 0.23> ϑ0 � 0.142, one gets the simulation plot (Figure 2)
which shows that the states of two neurons will keep periodic
vibration in the vicinity ofE(0, 0). We give bifurcation plots
(see Figures 3 and 4) to display the bifurcation point. Be-
sides, the quantity change for ξ0 and ϑ0 is shown in Table 1.

Example 2. Given the following system:

dψu1(t)

dt
ψ � − 4.25 + sin u1(t)􏼂 􏼃 1.22u1(t) − 1.23 tanh u2(t)( 􏼁􏼂 􏼃,

dψu2(t)

dt
ψ � − 6.13 + sin u2(t)􏼂 􏼃 2.13u2(t) − 2.05 tanh u1 t − ϑ1( 􏼁( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(63)
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Figure 1: Simulation plots of model (62) with ϑ � 0.12< ϑ0 � 0.1420.
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Figure 2: Continued.
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Clearly, system (63) possesses the equilibrium point
E(0, 0). Using the computer software, one derives
ϱ0 � 0.0955 and ϑ1 � 0.2380 and the hypotheses
(Q1) − (Q3) and (Q5) in (eorem 2 are fulfilled. So, one
knows that E(0, 0) of model (63) maintains locally
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Figure 2: Simulation plots of model (62) with ϑ � 0.23> ϑ0 � 0.1420.
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Figure 3: Bifurcation plot of model (62): ϑ − u1.
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Figure 4: Bifurcation plot of model (62): ϑ − u2.

Table 1: (e change plot of ξ0 and ϑ0 for model (62).

ξ0 ϑ0
0.0088 0.0251
0.0395 0.1124
0.0499 0.1420
0.1214 0.3455
0.1471 0.4188
0.1764 0.5022
0.2506 0.7135
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Figure 5: Continued.
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Figure 5: Simulation plots of model (63) with ϑ1 � 0.16< ϑ10 � 0.2380.
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Figure 6: Simulation plots of model (63) with ϑ1 � 0.28> ϑ10 � 0.2380.
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asymptotically stable state provided that 0≤ ϑ1 < 0.2380.
Choosing ϑ1 � 0.16< ϑ10 � 0.2380, we get the simulation
plot (Figure 5) which manifests that the states of two
neurons will tend to be zero. Model (63) will be unstable, and
the Hopf bifurcation phenomenon takes place provided that

ϑ1 ≥ 0.142. Selecting ϑ1 � 0.28> ϑ10 � 0.2380, one gets the
simulation plot (Figure 6) which shows that the states of two
neurons will keep periodic vibration in the vicinity of
E(0, 0). We give bifurcation plots (see Figures 7 and 8) to
display the bifurcation point. Besides, the quantity change
for ϱ0 and ϑ0 is shown in Table 2.

Example 3. Given the following system:

dψu1(t)

dt
ψ � − 4.25 + sin u1(t)􏼂 􏼃 1.22u1(t) − 1.23 tanh u2 t − ϑ2( 􏼁( 􏼁􏼂 􏼃,

dψu2(t)

dt
ψ � − 6.13 + sin u2(t)􏼂 􏼃 2.13u2(t) − 2.05 tanh u1(t)( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(64)
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Figure 7: Bifurcation plot of model (63): ϑ1 − u1.
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Figure 8: Bifurcation plot of model (63): ϑ1 − u2.

Table 2: (e change plot of ϱ0 and ϑ10 of model (63).

ϱ0 ϑ10
0.0362 0.0902
0.0526 0.1311
0.0955 0.2380
0.1243 0.3098
0.2218 0.5531
0.2456 0.6123
0.2847 0.7099
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Figure 9: Simulation plots of model (64) with ϑ2 � 0.18< ϑ20 � 0.2380.
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Figure 10: Continued.
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Clearly, system (64) possesses the equilibrium point
E(0, 0). Using the computer software, one derives
σ0 � 0.0973 and ϑ20 � 0.2380 and the hypotheses (Q1) −

(Q3) and (Q6) in(eorem 3 are fulfilled. So, one knows that
E(0, 0) of model (64) maintains locally asymptotically stable
state provided that 0≤ ϑ2 < 0.2380. Choosing
ϑ2 � 0.18< ϑ20 � 0.2380, we get the simulation plot (Fig-
ure 9) which manifests that the states of two neurons will
tend to be zero. Model (63) will be unstable, and the Hopf
bifurcation phenomenon takes place provided that
ϑ2 ≥ 0.2380. Selecting ϑ2 � 0.31> ϑ20 � 0.2380, one gets the
simulation plot (Figure 10) which shows that the states of
two neurons will keep periodic vibration in the vicinity of
E(0, 0). We give bifurcation plots (see Figures 11 and 12) to
display the bifurcation point. Besides, the quantity change
for σ0 and ϑ20 is shown in Table 3.

7. Conclusions

As everyone knows, the stability nature and Hopf bifur-
cation of fractional-order models have become a focus
problem in dynamical systems. In this study, we handle the
stability and the emergence of Hopf bifurcation of a class of
fractional-order delayed Cohen–Grossberg neural net-
works under three delay cases: (1) ϑ1 � ϑ2 � ϑ; (2) ϑ2 � 0;
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Figure 10: Simulation plots of model (64) with ϑ2 � 0.31> ϑ20 � 0.2380.
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Figure 11: Bifurcation plot of model (64): ϑ2 versus u1.
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Figure 12: Bifurcation plot of model (64): ϑ2 versus u2.

Table 3: (e change plot of σ0 and ϑ20 of model (64).

σ0 ϑ20
0.0322 0.0788
0.0423 0.1034
0.0973 0.2380
0.1253 0.3065
0.2585 0.6322
0.2884 0.7055
0.3358 0.8213
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and (3) ϑ1 � 0. (e investigation shows that the delay plays
a crucial role in stabilizing and generating Hopf bifurcation
for the addressed network model. (ree differential suffi-
cient criteria are set up to guarantee the stability and the
emergence of Hopf bifurcation of the considered neural
networks under different cases. (e software simulations
verify the established theoretical findings. (e derived
conclusions replenish and consummate the earlier publi-
cations. (e derived results can also help us manage the
operation of the neural networks. In the near future, we will
study the Hopf bifurcation with multiple delays and
consider the Hopf bifurcation by choosing other param-
eters as bifurcation parameters. Also, we will deal with the
Hopf bifurcation of fractional-order neural networks with
different orders.
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