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-is paper presents an effective approach for robust design optimization of car-door structures with spatially varied material
properties.-is spatially varied material property causes structural response quantities; for example, the natural frequency and the
lateral stiffness coefficient become random variables. In this regard, the Karhunen-Loève expansion is first used to represent the
elastic modulus and the mass density random fields as a series of random variables. -en, a stochastic finite-element model is
formulated for uncertainty quantification of the car-door structure. Combined with a polynomial-based response surfacemodel to
mimic the true performance indicator, this allows one to efficiently evaluate probability constraints for the robust design op-
timization of the uncertain car-door structure. In numerical simulations, design variables of the uncertain car-door structure are
defined as thickness values of the tailor rolled blank structure at various regions, whereas multiple design objectives are formulated
via the structural weight, the first-order natural frequency, and the lateral stiffness coefficient. Results have shown that the mean
value of performance indicators can be generally improved, whereas the response variance is further minimized to archive the
robust design objective. -e probability-based constraint is significant to relate the Pareto optimum set to the targeted structural
safety level. -e proposed approach is simple, suggesting an attractive tool for the robust design optimization of car-door
structures with spatially varied material uncertainties.

1. Introduction

-e design optimization of car-door structures has received
considerable attention due to its significant role in the daily
safe commuting of students [1, 2]. In this regard, Kuna-
kornong et al. [3] realized the design optimization of bus
structures by considering Sandwich composite via the finite-
element approach. Lan et al. [4] presented the comparative
design optimization of bus side structures with and without
supporting members between longitudinal beams, whereas
the multiobjective design optimization of bus structures was
considered in Zhong et al. [5] to simultaneously minimize
the structural total weight and maximize the torsional
stiffness. Together with the lightweight design objective,
performance indicators are formulated as the structural
lateral stiffness and the first-order natural frequency in this
paper. Specifically, probability constraints to evaluate the

exceeding probability of the two performance indicators
over their design limits are further considered to account for
structural safety concerns.

Numerical iterations for design optimization of the car-
door structure are usually realized based on a finite-element
(FE) model that depicts the structural implicit function, for
example, the first-order natural frequency and the lateral
stiffness coefficient. -e gradient-based optimization algo-
rithm, however, needs to recursively run the FE model for
optimum design variables [6, 7]. -is is computationally
demanding for the design optimization involving high-di-
mensional input parameters. Many surrogate modelling
algorithms, for example, the Gaussian process regression
method [8], the polynomial chaos expansion, and the ar-
tificial neural networks, were considered in the literature
[9, 10]. Once a response surface model that mimics the true
performance function is analytically or numerically
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available, the Pareto optimal set can be obtained for the
lightweight and the dynamic/strength design optimization
of the car-door structure.

Another issue is about various sources of input uncer-
tainties associated with the structural simulation model, for
example, the geometry, the material property, and the
loading parameters [11]. Take the elastic modulus and the
mass density car-door structure as examples, which are
actually realized as the high-strength alloy steel. -is ma-
terial property might show spatially varied uncertainties due
to fluctuated manufacturing factors, for example, the
pressure, the temperature, and the milling force. -is mo-
tivates us to employ the random field theory for structural
uncertainty simulation [12]. -is is because the optimum
obtained via the deterministic model sometimes becomes
unrealistic and less meaningful in reality [13]. Along with
various contributions of the deterministic optimization in
the literature [14, 15], this paper considers optimizing the
structural performance and minimizing the response vari-
ance, that is, the robust-based design optimization of car-
door structures with uncertain input factors.

In general, a realization of the spatially varied material
property consists of an infinite number of random variables,
which occur explicitly in the structural governing equation
[16]. After considering the safety constraint for highly re-
liable structures, the spatially varied input uncertainty
cannot be directly handled by ordinary simulation algo-
rithms [17, 18]. -e uncertainty quantification of the un-
certain car-door structure, hence, becomes a challenging but
highly demanding task [19]. To address the spatially varied
input uncertainty, the Karhunen-Loève (K-L) expansion is
used to represent the material random field as a small
number of deterministic functions and independent random
variables [20].-is is useful to develop a stochastic FEmodel
for uncertainty simulation of the car-door structure.

Once a simulation model is set up to depict the implicit
design performance function of the car-door structure, the
multiple design objectives can be numerically optimized via
a global iteration algorithm [21], for example, the genetic
algorithm in this paper. -erefore, the dynamic character-
istics of the car-door structure are first modelled by the FE
formulation and the Mindlin plate theory [22–24]. Herein,
the stochastic stiffness and mass formulations are deter-
mined based on the numerical results of the material ran-
dom field. Note that the material property has been
subjectively assumed as deterministic constants, which
implies that the Gauss-Legendre scheme with three to six
points can be used to evaluate the stiffness and mass inte-
grals. -e introduction of the spatially varied random field,
however, results in high-order eigenfunctions to define the
stochastic FE matrix, and high-order Gauss-quadrature
schemes are required to address the multivariate integration
problem. Specifically, the FE model becomes stochastic due
to input random variables associated with the material
random field. -is motivates the robust design optimization
to minimize the structural response variance. Note that
other advanced plate models can be alternatively used to
perform a numerical simulation of the car-door structure.
-e presented stochastic FE model and the robust design

method are general to determine the corresponding design
optimization results.

-e objective of this manuscript is to present an effective
approach for the robust design optimization of car-door
structures with spatially varied material uncertainties. To
begin with, the elastic modulus and the mass density of the
car-door structure are modelled as the Gaussian random
field, which is numerically represented through the K-L
expansion method with a small number of deterministic
spatial functions and Gaussian random variables. -en, a
stochastic FE model for structural uncertainty analysis is set
up based on the simulated material random field and the
Mindlin plate theory. -is allows one to numerically de-
termine stochastic samples for uncertain analysis, for ex-
ample, the natural frequency and the lateral stiffness
coefficient of the car-door structure. To reduce the com-
putational cost for recursively running the stochastic FE
model, a polynomial-based response surface is used to
mimic the true design performance function. -e robust
design objective is formulated via the structural lightweight
indicator, the first-order natural frequency, and the lateral
stiffness coefficient. Note that the minimization of the re-
sponse variance has been taken into account to search for
robust design solutions. Together with structural safety
constraints in terms of the nonexceeding probability with
respect to the natural frequency and the lateral stiffness, the
Pareto optimum set is obtained for robust design optimi-
zation car-door structures with spatially varied material
uncertainties.

-e rest of this manuscript is organized as follows.
Section 2.1 briefly summarizes the K-L expansion method
for numerical representation of material random fields,
whereas simulation results for the elastic modulus and the
mass density random fields are demonstrated in Section 2.2.
In Section 3, the stochastic finite-element model for
structural uncertainty simulation is further developed. -is
is used to define multiple design objectives and safety
constraints in Section 4.1. To reduce computational cost
caused by recursively running the stochastic FE model, a
polynomial-based response surface model is presented in
Section 4.2 to mimic the true design performance indicator.
Combined with the genetic algorithm to search for the global
optima, the Pareto sets are determined in Section 4.3 for
various structural safety levels. Conclusions are summarized
in Section 5.

2. Uncertain Modelling of Spatially Varied
Material Properties

To model spatially varied material properties of the car-door
structure, this section first briefly summarizes the K-L ex-
pansion method. Numerical simulation results for the mass
density and Young’s modulus random fields are followed to
demonstrate the engineering applications. Due to the spa-
tially varied material uncertainty, the structural response
quantity, for example, the first-order natural frequency or
the lateral stiffness coefficient, becomes a random variable.
-is motivates the robust design optimization to minimize
the response variance of the car-door structure. To begin
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with, the numerical representation of the material random
field is presented based on the K-L expansion method as
follows.

2.1. %e Karhunen-Loève Expansion. -e section considers
the numerical representation of a two-dimensional material
random field H(x, y; ξ). A sample of the spatially varied
material property contains infinity numbers of random
variables. -is motivates the utility of the K-L expansion
method to represent the random field by means of random
variables.

Following the random field theory, the expectation of the
two-dimensional material random field is defined as

μH(x, y) � 􏽚
D

H(x, y; ξ)dξ, (1)

and H′(x, y; ξ) � H(x, y; ξ) − μH(x, y) denotes the fluc-
tuation of H(x, y; ξ) with respect to the mean-value func-
tion. -erefore, the covariance function of the material
random field is defined as

Cov x, x′; y, y′( 􏼁 � E H′(x, y; ξ)H′(x, y; ξ)􏼂 􏼃, (2)

which is a nonnegative quantity for any function ϕ(x, y) on
a subregion Ωe⊆Ω:

􏽘

x,x′ ,y,y′∈Ωe

Cov x, x′; y, y′( 􏼁ϕ(x, y)ϕ x′, y′( 􏼁> 0.
(3)

-rough the K-L expansion method, the two-dimen-
sional random field H(x, y; ξ) can be represented as [25]

HH(x, y; ξ) � μH(x, y) + 􏽘
∞

i�1

��
λi

􏽰
ϕi(x, y)ξi, (4)

where μH(x, y) represents the mean value of the random field
and the eigenvalues λi and eigenfunctions ϕi(x, y) are the
solution of the two-dimensional homogeneous Fredholm
integral equation of the second kind [26]:

􏽚
Ω
Cov x, x′; y, y′( 􏼁ϕ(x, y)dxdy � λϕ x′, y′( 􏼁. (5)

Specifically, arbitrary two orders of the eigenfunction are
orthogonally defined with respect to each other; that is,
􏽒Ωϕi(x, y)ϕj(x, y)dxdy � δij, where δij is the Kronecker
symbol.-is determines uncorrelated random variables ξi as

ξi �
1
��
λi

􏽰 􏽚
Ω

H′(x, y; ξ)ϕi(x, y)dxdy, (6)

and the eigendecomposition of the covariance model is
given as

Cov x, x′; y, y′( 􏼁 � 􏽘

∞

i�1
λiϕi(x, y)ϕi x′, y′( 􏼁, (7)

which contains infinity orders of the eigensolution
λi, ϕi(x, y)􏼈 􏼉.

After truncating the K-L expansion after M terms, an
approximation of the two-dimensional material random
field H(x, y; ξ) is given as

􏽢H(x, y; ξ) � μH(x, y) + 􏽘
M

i�1

��
λi

􏽰
ϕi(x, y)ξi, (8)

which is approximated by M-order eigenfunctions and the
corresponding Gaussian random variables ξi(i � 1, . . . , M).

Numerical simulation of the random field needs to solve
the integral eigenvalue problem (IEVP) in equation (6), and
the analytic solution is seldom available except for a few
covariance models defined on canonical regions, for ex-
ample, the rectangular and circles in the two-dimensional
case. One has to resort to a numerical algorithm, for ex-
ample, the collocation or the expansion optimal linear es-
timation (EOLE) method in the literature [27].

Once numerical results for the eigensolution
λi, ϕi(x, y)􏼈 􏼉 are derived, a realization of the two-dimen-
sional material random field can be given as

􏽢H(x, y; ξ) � μH(x, y) + 􏽘
M

i�1

��
􏽢λi

􏽱
􏽢ϕi(x, y)ξi, (9)

where 􏽢λi,
􏽢ϕi(x, y)􏽮 􏽯 denote numerical solutions of the true

but unknown eigenpairs, which are numerically determined
via the high-order polynomial-based Ritz-Galerkin ap-
proximation approach [28]. -e corresponding simulation
results of the two-dimensional material random field are
further presented as follows.

2.2. Numerical Realizations of the Material Random Field.
To demonstrate the utility of the K-L expansion method for
numerical representation of spatially varied material un-
certainties, this section presents simulation results for the
elastic modulus random field of the car-door structure. To
begin with, Figure 1 depicts the structural simulation do-
main, which has been discretized via 1028 Q4 elements. Note
that this random field simulation algorithm can deal with
other structural geometries once the corresponding FEmesh
result is available.

For the sake of illustration, the elasticity modulus of the
car-door structure is assumed as the Gaussian random field
with the exponential covariance model as follows:

Cov x, y; x′, y′( 􏼁 � σ2E(x, y)exp −
x − x′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δx

−
y − y′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

δy

􏼠 􏼡,

as∀x, x′, y, y′ ∈ Ω.

(10)

Herein, the correlation length parameters in the x- and
y-dimension are given as δx � δy � 1.0m. Note that the
mean-value function is assumed as homogeneous; that is,
μE(x, y) � 2.068 × 105 MPa. Given the coefficient of vari-
ation (COV) 20%, the standard deviation function is defined
as σE(x, y) � 0.2 × μE(x, y). Based on the FE mesh result of
the car-door structure in Figure 1(b), the high-order
polynomial-based Rize-Galerkin approach is used to de-
termine numerical results for the eigenvalues and eigen-
functions of the car-door structure.
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Figure 2 first presents numerical results for eigenvalues
of the exponential covariance model, whereas the corre-
sponding results for the first-eight orders of the two-di-
mensional eigenfunction are depicted in Figure 3. Note that
the eigenpair result λi,ϕi(x, y)􏼈 􏼉 is no long analytically
available for the car-door structure due to its noncanonical
simulation region. -e tensor-based approximation ap-
proach, therefore, is not applicable to simulate the multi-
variate material random field in this paper.

Once numerical results for the eigenpair are available,
numerical realizations of the elastic modulus random field
can be generated as

􏽢HE(x, y; ξ) ≈ μE(x, y) + 􏽘
M

i�1

��
λi

􏽰
ξiϕi(x, y), (11)

where the truncation order parameter is given as M � 10 in
subsequent simulations.

Four realizations of the elastic modulus random field are
presented in Figure 4. For the sake of illustration, they are
randomly selected from totally 104 stochastic realizations of
the material random field. To implement the Monte-Carlo
simulation (MCS) of the material random field, 104 samples
of the standard Gaussian variables ξi(i � 1, . . . , M) in
equation (11) are first digitally generated. Substituting for
the corresponding results of the eigenvalues the eigen-
functions in Figures 2 and 3, equation (11) is able to de-
termine the corresponding sample of the elastic modulus
random field in conjunction with the truncation order
parameter M � 10.

It is observed that numerical realizations of the elastic
modulus random field are continuously varied around the
mean value 2.068 × 105 MPa within the whole simulation
domain (x, y) ∈ Ω, rather than being deterministically fixed
as a constant value in conventional formations. With this

spatially varied material uncertainty, structural response
quantities, for example, the first-order natural frequency and
the lateral stiffness coefficient, become random variables.
-is motivates the robust design of the car-door structure to
simultaneously optimize the performance indicator and
minimize the response variance as follows.

Figure 5 further presents relative errors for the mean and
the standard deviation functions of the simulated random
field, which are generally less than 0.5% and 6.0%, respec-
tively, compared to the benchmark result provided by the
MCSmethod with 104 samples. -is implies the utility of the
truncation parameter M � 10 is able to include the majority
of input uncertainties for uncertainty simulation of the car-
door structure. Similar results for the mass density random
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Figure 3: Numerical results for eigenfunctions 􏽢ϕi(x, y)(i � 1, . . . , 8) of the car-door structure based on the exponential covariance mode:
the first-eight orders (a∼h) of the eigenfunction results.
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Figure 4: Continued.
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field are determined, yet they are omitted here for the sake of
brevity. -is has verified the applicability of the K-L ex-
pansion method for digital simulations of the structural
material random fields, and the corresponding stochastic FE
model is further derived as follows.

3. Stochastic Finite-Element Model of the Car-
Door Structure

Rather than being assumed as deterministic constants, the
elastic modulus and the mass density of the car-door
structure are further modelled via the random field theory.
-e utility of the K-L expansion method can represent the
material random field by means of a limited number of

random variables. Due to this spatially varied material
property, uncertain simulation of the car-door structure
requires stochastic finite-element models. In this regard, the
Mindlin plate theory is first presented for deterministic FE
simulation of the car-door structure, whereas stochastic
stiffness and mass formulations are further derived to ac-
count for the spatially varied material uncertainties. -is
determines a stochastic FE model for uncertainty analysis of
the car-door structure.

3.1. %e Mindlin Plate %eory. Following the Mindlin plate
theory, the general displacement for the car-door structure
can be represented as [29]
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Figure 4: Four realizations (a∼d) of the elasticity random field based on the truncation parameter M � 10 (unit: MPa).
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u(x, y) � z(x, y)θx(x, y) � z(x, y)
zw(x, y)

zx
,

v(x, y) � z(x, y)θy(x, y) � z(x, y)
zw(x, y)

zy
,

w(x, y) � w(x, y),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where u, v, and w denote displacements in the x-, y-, and the
z-direction, respectively, whereas θx and θy represent the
corresponding rotation angles as a reference to the neutral
surface of the x-z and y-z planes, respectively.

Given the shape functionN(x, y) for the Q4 element, the
structural displacement vector can be further interpolated as

w(x, y) � 􏽘
i

Ni(x, y)wi(x, y),

θx(x, y) � 􏽘
i

Ni(x, y)θx(x, y),

θy(x, y) � 􏽘
i

Ni(x, y)θy(x, y).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Herein, wi(x, y), θxi(x, y), and θyi(x, y) denote the
displacement components at an ith node of the FE mesh
result.

Following the linear stress-strain relation, the stress
vector is expressed as

σ � Dε, (14)

where σ � [σx,σycxy,cxz,cyz,]
T and ε � [εx,εyεxy,εxz,εyz,]

T

denote the stress and strain tensors, respectively, whereas the
matrix D is given in a diagonal form as

D �
Db 0

0 Ds

􏼠 􏼡. (15)

Herein, the bending and shearing matrices are

Db �
E

1 − ]2

1 ] 0

] 1 0

0 0
1 − ]
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ds �
E

2(1 + ])

1 0
0 1

􏼠 􏼡.

(16)

-is determines the stiffness matrix for an element of the
FE model as

Ke �
h
3

12
B
Ωe

BT
bDbBbdxdy + αhB

Ωe

BT
s DsBsdxdy. (17)

Note thatΩe defines the element of representing the car-
door structure, whereas α � (5/6) represents the correction
factor associated with the thickness parameter h. Note that
the strain matrices Bb and Bs are generally defined by partial
derivatives of (zNi(x, y)/zx) and (zNi(x, y)/zy) of the
shape function [30].

Similarly, the mass matrix is formulated as

Me � B
Ωe

ρNTdiag h,
h
3

12
,
h
3

12
􏼢 􏼣Ndxdy, (18)

where the two-dimensional integration can be exactly eval-
uated via the three-order Gauss-Legendre quadrature [30].

Once spatially varied mass and density random fields are
considered, the K-L approximation in equation (9) deter-
mines the eigenfunction 􏽢ϕi(x, y) as high-order polynomials.
-erefore, a high-order Gauss-quadrature scheme is re-
quired for numerical evaluation of the mass and the stiffness
matrix integrals. Besides, the finite-element formulation is
derived via the standardMindlin plate theory [31], and other
advanced plate theories can be alternatively used. Once an
ordinary FE model is available, a similar stochastic simu-
lation model can be developed as follows for uncertainty
simulation of the car-door structure with spatially varied
material uncertainties.

3.2. %e Stochastic Finite-Element Model. Following the
random field simulation procedure presented in Section 2.2,
the elastic modulus and the mass density of the car-door
structure are realized as spatially varied input uncertainties.
-e corresponding stiffness andmassmatrices of the FEmodel
become spatially dependent within the whole simulation do-
main. -is derives the stochastic FE model as follows.

Following the K-L approximation result, numerical re-
alizations of the elastic modulus and the mass density are
given as

􏽢HE(x, y; ξ) ≈ μE(x, y) + 􏽘
M

i�1

���
􏽢λEi

􏽱
􏽢ϕEi(x, y)ξEi,

􏽢Hρ(x, y; ξ) ≈ μρ(x, y) + 􏽘
M

i�1

���
􏽢λρi

􏽱
􏽢ϕρi(x, y)ξρi.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

Substituting for the uncertain material property, the
matrix D in equation (14) is further realized as

Db(x, y; ξ) �
􏽢HE(x, y; ξ)
1 − v

2

1 v 0

v 1 0

0 0
1 − v

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Ds(x, y; ξ) �

􏽢HE(x, y; ξ)
2(1 + v)

0

0
􏽢HE(x, y; ξ)
2(1 + v)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(20)

-is determines the corresponding stiffness matrix
similar to the deterministic result in equation (17) as

Ke(x, y; ξ) �
h
3

12
B
Ωe

BT
bDb(x, y; ξ)Bbdxdy

+ αhB
Ωe

BT
s Ds(x, y; ξ)Bsdxdy,

(21)
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which becomes spastically varied due to random factors ξi

and eigenfunctions 􏽢ϕEi(x, y) (i � 1, . . . , M).
Similarly, the mass matrix that accounts for the material

random field is given as

Μe(x, y; ξ) � B
Ωe

􏽢Hρ(x, y; ξ)NT
(x, y)

· diag h,
h
3

12
,
h
3

12
􏼢 􏼣N(x, y)dxdy.

(22)

Substituting for the mass density 􏽢Hρ(x, y; ξ) result, the
stochastic mass matrix is finally realized as

Μe(x, y; ξ) � B
Ωe

μρ(x, y)NT
(x, y)diag h,

h
3

12
,
h
3

12
􏼢 􏼣

· N(x, y)dxdy + 􏽘
M

i�1

���
􏽢λρi

􏽱

ξρi×

· B
Ωe

􏽢ϕρi(x, y)NT
(x, y)diag h,

h
3

12
,
h
3

12
􏼢 􏼣

· N(x, y)dxdy.

(23)

Compared to the deterministic result in equation (18), an
introduction of the spatially varied material uncertainties
results in high-order integrals with respect to the mean-
value function μ(x, y) and eigenfunctions 􏽢ϕρi(x, y). Note
that μ(x, y) is assumed to be constant for a homogeneous
random field in this paper, whereas approximation results
for 􏽢ϕρi(x, y) in Figure 3 require high-order polynomials.
-erefore, a high-order Gaussian quadrature scheme is
necessary for a reliable result of Ke(x, y; ξ) and Me(x, y; ξ)

in reality.
Given the isotropic transform of the shape function

N(x, y), the Gauss-Legendre quadrature is used to evaluate
the stochastic stiffness and mass matrices. -is further de-
termined the global FE model for uncertainty analysis of the
car-door structure:

K(x, y; ξ) � 􏽘
e

TeKe(x, y; ξ)TeM(x, y; ξ)

� 􏽘
e

TeMe(x, y; ξ)Te.
(24)

Herein,Te represents the coordinate transformation
matrix, whereas 􏽐e denotes the procedure to assembly all
element results together towards the global matrix.

In summary, the stochastic simulation of the car-door
structure with spatially varied material uncertainties in-
cludes the representation of material random fields via the
K-L expansion in Section 2.1, the simulation of the elastic
modulus and the mass random fields in Section 2.2, the
derivation of stochastic stiffness and mass matrices in
equation (21) and (23), and the formulation of stochastic FE
models via equation (24).

To demonstrate numerical applications of the pre-
sented stochastic FE model for uncertainty simulation of

the car-door structure, average models for the elastic
modulus and the mass density are constantly assumed as

μE(x, y) � 2.068 × 105 MPa,

μρ(x, y) � 7.9 × 103 kg/m3
.

(25)

Given the coefficient of variation (COV) as 20%, the
standard deviation function becomes σ(x, y) � 0.2× μ(x, y).

-e K-L expansion with the truncation parameter M �

10 is first used to simulate the stochastic material property as
shown in Figure 4. -en, a sample of the standard Gaussian
random variables ξEi and ξρi (i � 1, . . . , 10) is digitally
generated to realize the stiffness and mass matrices, and a
solution of the general eigenvalue problem determines the
corresponding sample of the structural natural frequency.

Repeating this simulation procedure 104 times, a col-
lection of all samples allows one to determine an estimation
of the mean-value result for the mode shape as shown in
Figure 6. Note that the outer boundary of the car-door
structure is fully fixed to mimic the closed-door scenario for
the natural frequency analysis. In addition, the empirical
probability distribution for the first-order natural frequency
of the car-door structure is depicted as shown in Figure 7,
which has been closely fitted by the Gaussian distribution.

To account for the stiffness characteristic of the car-door
structure, the lateral stiffness coefficient is defined as the
ratio between the applied force at the door-handle position
and the maximal structural deflection. Herein, the applied
force is deterministically assumed as 500N. -erefore, a
solution of the equation K(x, y; ξ)U(x, y; ξ) � Q deter-
mines the deflection U(x, y; ξ) and the corresponding
sample of the lateral stiffness coefficient.

Figure 8 demonstrates the empirical distribution result
of the lateral stiffness coefficient based on 10−4 samples of the
elastic modulus random field. It is observed that the natural
frequency and the lateral stiffness coefficient become ran-
dom variables after taking into account the spatially varied
material uncertainties. -is motivates the robust design
optimization of the uncertain car-door structure to optimize
the performance indicator and simultaneously minimize the
response variance as follows.

4. Robust Design Optimization of the Car-
Door Structure

-is section considers the robust design optimization
(RDO) of the car-door structure with spatially varied
material uncertainties. To begin with, the multiobjective
design functions in terms of the lightweight indicator, the
first-order natural frequency, and the lateral stiffness co-
efficient are formulated. To overcome the computational
demanding cost associated with the uncertainty analysis, a
polynomial-based regression model is proposed to mimic
the true performance function. Together with the proba-
bility-based constraint on the structural safety level, this
finalizes an effective procedure for the robust design op-
timization of car-door structures with spatially varied
material properties.
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4.1. %e Robust Performance Function. -e performance
indicators, for example, the first-order natural frequency, the
total weight, and the lateral stiffness coefficient, are directly
linked with spatially varied material uncertainties of the car-
door structure. -is is modelled via a stochastic FE for-
mulation based on the Mindlin plate theory. In this respect,

the proposed approach can be extended to other plate
theories for uncertainty analysis and robust design opti-
mization of the car-door structure.

Due to the input material uncertainties, performance
indicators of the car-door structure become random vari-
ables. To achieve the robust design optimization, the
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Figure 6: Mean-value results for the first-six orders of the structural natural frequency: from (a) to (g).
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Figure 7:-e empirical probability distribution for the first-order nature frequency of the car-door structure with spatially varying material
properties. (a) -e probability density function. (b) -e cumulative distribution function.
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objective function is usually defined via the average per-
formance μY(t) and the variance σ2Y(t). -erefore, three
types of the robust design model have been considered in the
literature [32]:

(1) Nominal-the-best:

F μY, σ2Y; ξ, t􏼐 􏼑 � δ1
μY − ytarget

μ0 − y0
􏼠 􏼡

2

+ δ2
σY

σ0
􏼠 􏼡

2

. (26)

(i) Herein, ytarget and y0 are the target and the initial
values of the performance indicator Y(t, ξ), re-
spectively, and δ1 ∈ [0, 1] and δ2 ∈ [0, 1] are weights
with the relation δ1 + δ2 � 1. To reduce the di-
mensionality of the mean and the variance objec-
tives, each term has to be normalized by the initial
design results μ0 and σ0.

(2) Smaller-the-best:

F μY, σ2Y; ξ, t􏼐 􏼑 � δ1
μY

μ0
􏼠 􏼡

2

+ δ2
σY

σ0
􏼠 􏼡

2

. (27)

(3) Largest-the-best:

F μY, σ2Y; ξ, t􏼐 􏼑 � δ1
μ0
μY

􏼠 􏼡

2

+ δ2
σY

σ0
􏼠 􏼡

2

. (28)

In this paper, the main objective of the design optimi-
zation is to maximize the first-order natural frequency and
the structural lateral stiffness coefficient and yet minimize
the structural total weight and the response variance. -is
determines the design objective functions as

Fm(ξ, t) � δm1
μm(ξ, t)
μ0m(ξ, t)

􏼠 􏼡 + δm2
σm(ξ, t)
σ0m(ξ, t)

􏼠 􏼡,

Ff(ξ, t) � δf1
μ0f(ξ, t)
μf(ξ, t)

⎛⎝ ⎞⎠ + δf2
σf(ξ, t)

σ0f(ξ, t)
⎛⎝ ⎞⎠,

Fs(ξ, t) � δs1
μ0s (ξ, t)
μs(ξ, t)

􏼠 􏼡 + δs2
σs(ξ, t)
σ0s (ξ, t)

􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Herein, symbols with the subscript “0” represent the
nominal value, whereas μ(·) and σ(·) define the mean value
and the standard variation of the performance indicator.
Together with weighting coefficients δ(·), the mass, the
natural frequency, and the stiffness functions are defined for
the robust-based design optimization.

Specifically, the door structure is manufactured as the
tailor rolled blank with different thickness values, that is, the
hinge reinforcement panel t1, the window frame t2, the lock
reinforcement panel t3, the window reinforcement panel t4,
and the interior and outer panels t5 and t6 [33]. Note that the
initial values of the design variable are assumed as t0 �

[1.5, 2.4, 0.8, 1.2, 1.0, 1.7]T (unit: mm). Together with the
lower and upper design limits tL � [1.0, 1.8, 0.5, 0.7,

0.5, 1.0]T and tU � [2.5, 3.0, 1.5, 2.0, 1.5, 2.5]T, the parame-
ters will be used for design optimizations of the car-door
structure.

Following the stochastic simulation procedure of the
door structure, the mean value of the total weight, the first-
order natural frequency, and the lateral stiffness coefficient
are estimated as 6.66 kg, 23.88Hz, and 136.01N/mm, re-
spectively, whereas the corresponding standard deviation
results are given as 1.03 kg, 2.38Hz, and 22.57N/mm. To
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Figure 8: -e empirical probability distribution for the lateral stiffness coefficient of the car-door structure with spatially varying material
properties. (a) -e probability density function. (b) -e cumulative distribution function.
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efficiently realize the robust design optimization, a poly-
nomial-based response surface method is determined as
follows to reduce the embedded computational cost for
probabilistic simulations.

4.2.%eResponseSurfaceModel. -eperformance indicators
defined in equation (29) are formulated by standard
Gaussian random variables ξ and design parameters
t � [t1, . . . , t6]

T. -e corresponding design iterations need
to recursively run the stochastic FEmodel for themean value
and the variance results of the design function. To reduce the
total amount of the computational cost, a polynomial-based
response surface model is used to mimic the true perfor-
mance function of the car-door structure as follows.

-e polynomial-based response surface model (p-RSM)
has been widely used to represent complex input-output
relations in engineering reality. However, the total number
of samples for a reliable predictor is positively proportional
to the highest-order of the polynomial function, which
motivates us to use quadratic p-RSM including mixed terms
in this paper [34–36]:

y � a + 􏽘
m

i�1
biui + 􏽘

m

i�1
ciu

2
i + 􏽘

m−1

i�1
􏽘

m

j>i
dijuiuj + ∈err. (30)

Herein, the variable y represents a performance indi-
cator, that is, the structural weight, the first-order natural
frequency, and the lateral stiffness coefficient, whereas the
vector u contains all design variables ti and the standard
Gaussian variables ξi due to the discretization result of the
material random field. Totally, l � 2m + 6(m � 10) variables
are finally involved to develop the response surface model.

Or in a matrix form, the second-order p-RSMmodel can
be expressed as

y � uTβ + ∈err. (31)

To determine the regression vector β, totally p � 3 ×

(2m + 6) low-discrepancy realizations of the structural
performance indicator are gathered as the training dataset
y � [y1, . . . , yp]T:

Ξ �

1 u11 · · · u2
1l · · · u1(l−1)u1l

1 u21 · · · u2
2l · · · u2(l−1)u2l

⋮ ⋱ ⋱ ⋮ ⋱ ⋮

1 up1 · · · u2
pl · · · up(l−1)upl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p×q

, (32)

where the parameter q is defined as (l + 1)(l + 2)/2.
-is determines the regression coefficients in equation

(31) as

􏽢β � ΞΤΞ􏼐 􏼑
−1
ΞΤy, (33)

as well as the covariance matrix

Cov(􏽢β) � σ2err Ξ
ΤΞ􏼐 􏼑

−1
. (34)

Here, the symbol σ2err denotes the global variance of the
residual error ∈err, and its unbiased estimator is given as

􏽢σ2err �
z

T Ip − H􏼐 􏼑y
q − p

, (35)

where Ip denotes a p × p identity matrix and
H � Ξ(ΞTΞ)−1ΞT.

Once the training matrix Ξ defined in equation (32) and
the corresponding performance samples y are available, the
minimization of the residual errors allows one to derive the
p-RSM as

􏽢y(ξ, t) � uT􏽢β, whereu � tT, ξT
􏽨 􏽩

T
, (36)

which is used to mimic the true but computationally in-
tensive stochastic finite-element response of the car-door
structure.

Figure 9 presents the polynomial-based surrogate model
for the structural weight M(ξ, t), the first-order natural
frequencyF(ξ, t), and the lateral stiffness coefficientS(ξ, t).
As a reference to the benchmark result provided by the
stochastic finite-element simulation, the numerical accuracy
of the surrogate model 􏽢y can be evaluated by the root-of-
mean-square error (RMSE):

RMSE ≔
1

my

�����������

􏽘

m

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

, (37)

where the mean value of the prediction result is defined as
y � (1/m) 􏽐

m
i�1 yi.

Results for the RMSE in Table 1 have shown the high
accuracy of the p-RSM for reliable prediction results. -e
small statistical error (RMSE≤ 1.956 × 10− 3) has validated
the applicability of the quadratic surrogate model for design
optimization of the uncertain car-door structure.

-erefore, a mathematical model for the probability-
based robust design optimization of the car-door structure is
finally formulated as

Find : t
∗

� t
∗
1 , . . . , t

∗
6􏼂 􏼃

T

min Fm(ξ, t)􏼈 􏼉∩ max Ff(ξ, t)􏽮 􏽯∩ max Fs(ξ, t)􏼈 􏼉

s.t. t
L
i ≤ ti ≤ t

U
i

Pr F(ξ, t)≥f0􏼂 􏼃≥P1

Pr S(ξ, t)≥ s0􏼂 􏼃≥P2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

Herein, F(·)(ξ, t) denotes {design} objectives listed in
equation (29), whereas the weighting coefficients are given as
0.5. -is implies that the mean and variance of the per-
formance function have been equivalently treated for the
robust design optimization. Specifically, the operator Pr(·)

evaluates the probability of a performance indicator over its
design limit. Together with the targeted probability
Pi(i � 1, 2), this allows one to determine the corresponding
design result associated with the targeted safety level, for
example, 90% or 95% in numerical examples.

4.3. Numerical Results for the Design Optimization. -e
robust design optimization of the car-door structure with
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spatially varied material properties is numerically realized
based on the flowchart depicted in Figure 10. -is includes
the reproduction of material random field simulation with
the truncated K-L expansion in equation (11), the devel-
opment of the stochastic finite-element model for uncertain
mass, stiffness coefficient, and natural frequency analysis in
Section 3.2, and the utility of the polynomial-based response
surface model to mimic the structural performance indi-
cators in equation (30). Once the robust design optimization
model in equation (38) is set up, numerical iteration to
optimize design variables is realized with the genetic algo-
rithm in the literature [21].

To begin with, the structural design optimization is
considered based on various objectives in equation (29). In
this regard, the lightweight design objective has been con-
sidered as the priority. Combined with the natural frequency
and the lateral stiffness indicators, this determines two
design cases for the biobjective design optimization.

Table 2 summarizes the robust design optimization re-
sult for the single, bi, and triobjective scenarios. In general,
the design optimization is able to simultaneously improve
the performance indicator and minimize the response
variance. However, the uniobjective design can determine
the most optimum result among all investigated scenarios.
For instance, the mean value of the lateral stiffness coeffi-
cient S(ξ, t) has been improved from 136.01N/mm to
145.25N/mm with an increasing rate 6.79%, whereas the
response variance has been significantly minimized over
61.4% (from 508.95N2/mm2 to 196.28N2/mm2). A small
response variance implies the improved robustness to ac-
commodate potential variabilities caused by input material
uncertainties. As a comparison, results based on the bi- and
triobjective functions are not improved as much as that of

the single-objective case. -erefore, the biobjective scenar-
ios, that is, min Fm(ξ, t)􏼈 􏼉∩ max Ff(ξ, t)􏽮 􏽯 and
min Fm(ξ, t)􏼈 􏼉∩ max Fs(ξ, t)􏼈 􏼉, will be further investigated
in conjunction with various probability-based constraint
levels.

To account for the effect of a probability-based con-
straint on the lightweight design of the uncertain car-door
structure, threshold values for the first-order natural fre-
quency and the lateral stiffness coefficient are given as 22Hz
and 123N/mm, respectively. Following the procedure in
equation (38), Table 3 summarizes the corresponding
lightweight design result associated with the targeted safety
levels 90% and 95%. Note that initial values and design
boundaries of the design variable t are similar to those in the
foregoing section.

Compared to the initial design result, the mean value of
the total mass M(ξ, t) has been generally minimized for all
investigated cases, yet they are all slightly heavier than those
provided in Table 2. -is is mainly due to additional safety
constraints on the first-order natural frequency and the
lateral stiffness. To better understand the effect of this safety-
related constraint, the Pareto optimum sets for the weight-
frequency and the weight-stiffness objectives are determined
as follows.

Figure 11 depicts the Pareto result for the weight-fre-
quency and the weight-stiffness biobjective functions in
conjunction with the 90% and 95% safety levels. -e third
performance function, for example, the lateral stiffness
coefficient in the weight-frequency case, has been used to
define the probability constraint. It is observed that the 95%
probability level determines a more conservative result than
that of the 90% nonexceeding probability. For instance, a
realization of the Pareto optimum set can be determined as
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Figure 9: Numerical verification of the response surface model for the performance indicator of the car-door structure. (a)-e total weight.
(b) -e first-order natural frequency. (c) -e lateral stiffness coefficient.

Table 1: Results for the RMSE of the polynomial-based response surface model.

Total weight M(ξ, t) Natural frequency F(ξ, t) Lateral stiffness S(ξ, t)
RMSE 2.139×10−4 8.365×10−4 1.956×10−3
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(24Hz, 5.81 kg) for the 90% safety level, whereas this total
weight result will be increased to 7.0 kg for the 95% prob-
ability level and the identical natural frequency result. As a
comparison, the Pareto curve for the weight-stiffness case is
almost identical for the two investigated probability sce-
narios. In this regard, one can conclude that the first-order

natural frequency is more sensitive to the variation of
thickness variables than that of the lateral stiffness
coefficient.

To investigate the effect of the input variability on the
design optimization result, Figure 12 presents the corre-
sponding Pareto optimum set based on various COV values

Start

Define design variables and parameters 
for random field simulations

Realize the material random field with the 
truncated K-L model in equation (11)

Formulate the stochastic finite-element 
model in Section 3.2 for uncertain natural 

frequency and stiffness analyses

Develop polynomial-based response 
surface models with respect to the design 
variables for mass, stiffness, and natural 

frequency functions

Optimize the multiobjective function in 
equation (36) for various probability-based 

constraint values

Estimate the response mean and standard 
deviation results with the surrogate model

Converged ?

Update design 
variables

Output of
design variables

No

Yes

Figure 10: -e flowchart for robust design optimization of the car-door structure with spatially varied material properties.

Table 2: Results for the robust design optimization based on various combinations of the objective function.

Initial result Uniobjective Biobjective Triobjective
M0 F0 S0 M∗ F∗ S∗ M∗ ∩F∗ M∗ ∩S∗ M∗ ∩F∗ ∩S∗

Mean 6.66 23.88 136.01 4.37 26.04 145.25 5.01, 24.73 4.87, 142.5 5.06, 24.28, 140.25
Std.D 1.03 2.41 22.56 0.51 1.58 14.10 0.61, 1.84 0.57, 15.22 0.63, 1.96, 16.17
COV 15.5% 10.09% 16.58% 10.98% 10.98% 9.70% 12.17%, 7.44% 11.49%, 10.68% 12.45%, 8.07%, 11.53%
Std.D: standard deviation; COV: coefficient of variation.

Table 3: Results for the lightweight design optimization associated with various probability-based constraints.

Probability-based constraint t∗1 t∗2 t∗3 t∗4 t∗5 t∗6
M(ξ, t∗)

Mean COV (%)

Pr[F(ξ, t)≥f0]≥ 90% 1.4284 1.9427 0.6406 0.7791 0.5985 1.2617 4.9889 9.78
Pr[F(ξ, t)≥f0]≥ 95% 1.4531 1.9819 0.6780 0.8121 0.6369 1.3291 5.1712 10.66
Pr[S(ξ, t)≥f0]≥ 90% 1.4775 2.1364 0.7385 0.8976 0.7643 1.4917 5.6679 8.91
Pr[S(ξ, t)≥f0]≥ 95% 1.4749 2.1245 0.7346 0.9115 0.7585 1.4731 5.8578 10.52
f0 � 22Hz and s0 �123N/mm.
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of thematerial random field. In this regard, the COV value of
the Exponential covariance model has been assumed to vary
from 10% to 30%. Combined with the 95%-based probability
constraint, significantly divergent Pareto optimum sets were
obtained for the weight-frequency objective function. -is
has confirmed the large variation of the first-order natural
frequency with respect to the COV value of the material

random field. -is is obvious for the case of COV� 30%, in
which a small increase of the structural weight can result in a
dramatic increase in the first-order natural frequency. -e
lateral stiffness coefficient, however, is almost insensitive to
the COV value of the material random field. -erefore, the
Pareto optimum sets for the weight-stiffness case are almost
identical for various COV values. In summary, the

5.81kg

27

26

25

24

23

22

21

20

N
at

ur
al

 fr
eq

ue
nc

y 
(H

z)

5 6 7 84
Total weight (kg)

90% safety level
95% safety level

(a)

200

180

160

140

120

100

80

60

La
te

ra
l s

tiff
ne

ss
 (N

/m
m

)

5 6 7 8 9 104
Total weight (kg)

90% safety level
95% safety level

(b)

Figure 11: -e Pareto results for the weight-frequency and the weight-stiffness biobjective functions of the uncertain car-door structure
associated with 90% and 95% probability-based constraints. (a) -e weight-frequency biobjective function. (b) -e weight-frequency
biobjective function.
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Figure 12: -e Pareto result for the lightweight design optimization of the car-door structure (the legends indicate the COV values of the
material random field). (a) -e weight-frequency objective function. (b) -e weight-frequency objective function.
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effectiveness of the proposed procedure has been further
justified by numerical robust design optimization of the
uncertain car-door structure with various COV values of the
material random field.

5. Conclusions

-is paper presents an effective approach for the robust
design optimization of car-door structures with spatially
varied material uncertainties. To implement, the Karhunen-
Loève expansion method is first used to represent the elastic
modulus and the mass density random fields as a few de-
terministic functions and random variables. -en, a sto-
chastic finite-element model is developed for uncertainty
simulation of the car-door structure. To reduce the com-
putational cost for iteratively running the mechanistic
model, a polynomial-based surrogate model is developed to
predict stochastic responses of the uncertain car-door
structure. Combined with various probability-based con-
straints to address the safety issue, robust design optimi-
zation of the uncertain car-door structure is finally realized
through the genetic algorithm to search for optimum mean-
value performance results and simultaneously minimizing
the response variance.

Numerical results have shown that the polynomial-based
surrogate model is able to provide reliable prediction results
for uncertain response quantities of the uncertain car-door
structure, whereas the mean and the variance of the per-
formance function can be generally improved via the pro-
posed robust design model. -e 95%-based probability
constraint function determines a more conservative result
than that of the 90% safety level. -e COV value of the
covariance model has shown a significant effect on the
Pareto optimum set for the first-order natural frequency
performance function, whereas results for the weight-stiff-
ness biobjective function are determined almost identical for
various input COV levels. -is has demonstrated potential
applications of the proposed approach for the robust design
optimization of uncertain car-door structures with spatially
varied material properties.
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