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In this paper, the classification of all single traveling wave solutions to generalized fractional Gardner equations is presented by
utilizing the complete discrimination system method. Under the fractional traveling wave transformation, generalized fractional
Gardner equations can be reduced to an ordinary differential equations. All possible exact traveling wave solutions are given
through the complete discrimination system of the fourth-order polynomial. Moreover, graphical representations of different
kinds of the exact solutions reveal that the method is of significance for searching the exact solutions to generalized fractional
Gardner equations.

1. Introduction

It is common knowledge that fractional partial differential
equations (FPDEs) [1–9] have gained great attention because
they have been widely used to model various complex
physical phenomena in the domain of science and engi-
neering. *erefore, it is of great significance to search the
exact traveling wave solutions [10–24] of FPDEs in the
research of nonlinear science, which can accurately reflect
the propagation of nonlinear waves and better understand
nonlinear physical phenomena. So far, many powerful
methods have been established and developed to analyze the
exact solutions to the FPDE, which include the
(G′/G)-expansion method [25, 26], the integral bifurcations
[27, 28], the Lie symmetry analysis method [29, 30], first
integral method [31], modified trial equation method [32],
the exp-function method [33], F-expansion method [34],
and the Kudryashov method [35].

In this paper, we shall consider the following generalized
fractional Gardner equation [36]:

D
α
t u + pux + qu

n
+ ru

2n
 ux + uxxx � 0,

n≥ 0, r< 0, 0< α≤ 1,
(1)

where Dα
t u is the conformable derivative of u depending on

the variable t. u(t, x) represents the amplitude of the wave
mode, and variables t and x represent the time and spatial
variable, respectively. *e coefficients p, q, and r are con-
stants. Equation (1) can be usually used to describe the
nonlinear propagation of ion-acoustic waves at an
unmagnetized plasma. As we all know, equation (1) is a kind
of very important FPDE. When the parameters of equation
(1) are changed, it can be simplified to the following famous
nonlinear FPDE. For example, when n � 1, q≠ 0, and r � 0,
equation (1) becomes the fractional KdV equation; when
n � 1, q � 0, and r≠ 0, equation (1) becomes the fractional
mKdV equation; and when n � 1, q≠ 0, and r≠ 0, equation
(1) becomes a fractional KdV-mKdV equation. In [36],
Reazadeh et al. obtained the hyperbolic and trigonometric
function solutions to the generalized fractional Gardner
equation by using modified Kudryashov method and hy-
perbolic function method, respectively. But, their research
only focused on acquiring the hyperbolic and trigonometric
function solutions. Motivated by the aforementioned dis-
cussion, in the paper, we will construct new exact traveling
wave solution to the generalized fractional Gardner equa-
tions via the polynomial method.
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*e complete discrimination system for the polynomial
method was first proposed by Liu [37]. It is one of the most
powerful methods to find the single traveling wave solutions
to partial differential equations (PDEs). With the develop-
ment of fractional calculus, the study of exact solution to
FPDEs has been gaining more and more attention by many
experts and scholars. Because of the complexity of fractional
derivative, the exact solution of FPDE develops very slowly
than PDE of integers. Many scholars [38, 39] have been
trying to find new methods to construct the exact solutions
of FPDEs. Recently, Khalil et al. [40] introduced the con-
formable fractional derivative. FPDEs can be reduced into
nonlinear ordinary differential equations by the fractional
traveling wave transformation. In the paper, we will find the
exact solutions to the generalized fractional Gardner
equation by the complete discrimination system of the
polynomial method.

*e main objective of the paper is to draw support from
the complete discrimination system to construct exact
traveling wave solutions to the generalized fractional
Gardner equation. In Section 2, we review the definition of
conformable derivative and introduce the complete dis-
crimination system for constructing the exact traveling wave
solutions of FPDE. *en, in Section 3, we discuss the exact
solutions to the generalized fractional Gardner equation by
using the complete discrimination system. Finally, we give a
brief conclusion in Section 4.

2. Mathematical Preliminaries

2.1. %e Conformable Derivative. *e definition and prop-
erties of the conformable derivative are defined as

Definition 1. Let f: [0,∞)⟶ R. *en, the conformable
derivative of f of order α is defined as

D
α
t f(t) � lim

ε⟶0

f t + εt1− α
  − f(t)

ε
,

∀t ∈ (0, +∞), α ∈ (0, 1],

(2)

and the function f is α-conformable differentiable at a point
t if the limit in equation (2) exists.

Remark 1. *e conformable derivative possesses many
important properties (See [41, 42] and references therein). In
recent years, several scholars [43–47] have developed and
constructed exact solutions of FPDE in the sense of con-
formable derivative.

2.2. Description of the Method. Consider the following
conformable FPDE:

P u, D
α
t u, ux, D

2α
t u, uxx, uxxx, . . .  � 0, 0< α≤ 1, (3)

where u � u(t, x) is an unknown function.
Introducing the following fractional traveling wave

transformation,

u(t, x) � u(ξ),

ξ � k x −
ωt

α

α
 ,

(4)

where k and ω are nonzero constants.
Substituting equation (4) into equation (3), then equa-

tion (3) can be converted into the following integer-order
ordinary differential equation:

Q u, u′, u″, . . .(  � 0, (5)

where Q is a polynomial in u and its derivatives and notation
(′) is the derivative with respect to ξ.

Equation (5) is usually reduced to

u′( 
2

� F(u), (6)

where F(u) is a polynomial.
*en, integrating equation (6) once, we can obtain

± ξ − ξ0(  � 
du
����
F(u)

 , (7)

where ξ0 is an integral constant.
According to the above procedures, recent results have

been reported via the complete discrimination system
[48–50].

3. Applications

When n � 1, q≠ 0, and r≠ 0, equation (1) becomes the
following fractional KdV-mKdv equation:

D
α
t u + pux + qu + ru

2
 ux + uxxx � 0. (8)

Substituting equation (4) into equation (8), equation (8)
can be converted to an ordinary differential equation as
follows:

− kωu′ + pku′ + qu + ru
2

 ku′ + k
3
u″′ � 0. (9)

Integrating the above once with respect to ξ, we obtain

k
3
u″ +(p − ω)ku +

kq

2
u
2

+
kr

3
u
3

� c0. (10)

Multiplying equation (9) on both sides by u′ and then
integrating it with respect to ξ again,

k
3

u′( 
2

+
(p − ω)k

2
u
2

+
kq

6
u
3

+
kr

12
u
4

� c0u + c1, (11)

where c0 and c1 are integral constants. *en, we obtain

u′( 
2

� −
r

12k
2u

4
−

q

6k
2u

3
−

(p − ω)

2k
2 u

2
+

c0

k
3 u +

c1

k
3. (12)

Suppose that a4 � − r/12k2, a3 � − q/6k2, a2 � − p−

ω/2k2, a1 � c0/k3, and a0 � c1/k3; then,

u′( 
2

� a4u
4

+ a3u
3

+ a2u
2

+ a1u + a0. (13)

Making the transformation, we obtain
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Φ � a4( 
1/4

u +
a3

4a4
 ,

ξ1 � a4( 
1/4ξ.

(14)

Substituting transformation (14) into equation (13), it
will be changed into

Φ2ξ1 � Φ4 + b1Φ
2

+ b2Φ + b3, (15)

where b1 � a2/
��
a4

√ , b2 � (a3
3/8a2

4 − a2a3/2a4 + a1) (a4)
− 1/4,

and b3 � − 3a4
3/256a3

4 + a2a
2
3/16a2

4 − a1a3/4a4 + a0.
Integrating equation (15) once, we obtain

± ξ1 − ξ0(  � 
dΦ

������������������

Φ4 + b1Φ
2

+ b2Φ + b3

 , (16)

where ξ0 is the integration constant.
Let G(Φ) � Φ4 + b1Φ2 + b2Φ + b3; then, we can obtain

its complete discrimination system:

D1 � 4,

D2 � − b1,

D3 � − 2b
3
1 + 8b1b3 − 9b

2
2,

E2 � 9b
2
1 − 32b1b3,

D4 � − b
3
1b

2
2 + 4b

4
1b3 + 36b1b

2
2b3 − 32b

2
1b

2
3 −

27
4

b
4
2 + 64b

3
3.

(17)

Integrating formula (16), we will obtain the exact trav-
eling wave solutions of equation (8) under nine cases.

Case 1. D2 < 0, D3 � 0, and D4 � 0. G(Φ) has a pair of
conjugate complex roots of multiplicities two, i.e.,

G(Φ) � (Φ − β)
2

+ c
2

 
2
, (18)

where c> 0. By using equation (16), we attain

ξ1 − ξ0 � 
dΦ

(Φ − β)
2

+ c
2 �

1
c
arctan
Φ − β

c
. (19)

*en, equation (19) is simplified to

Φ ξ1(  � ctan c ξ1 − ξ0( (  + β, (20)

which is a trigonometric function solution. Namely, when
b1 > 0, b2 � 0, and b3 � b21/4; therefore, c � b1/2 and then the
solution of equation (15) is expressed as follows:

u1(ξ) � ±a− 1/4
4 ctan c a

1/4
4 ξ − ξ0   −

a3

4a4
. (21)

For instance, when k � 1, p � 2, ω � 4, q � − 12, r � − 12,
c0 � 0, c1 � 11/16, and ξ0 � 0, we can obtain a trigonometric
solution of equation (8) as follows. Under the given pa-
rameters, we draw the traveling wave 3D solution surfaces

and corresponding 2D solution graphs for the obtained
solution u1(t, x) in Figures 1 and 2:

u1(t, x) �
1
2
tan

1
2

x −
2t

α

α
  −

1
2
. (22)

Case 2. D2 � 0, D3 � 0, and D4 � 0. G(Φ) has real roots of
multiplicities four, namely,

G(Φ) � Φ4. (23)

By using equation (16), we can obtain

ξ1 − ξ0 � 
dΦ
Φ2

� −
1
Φ

. (24)

*en, we can obtain a rational function solution:

Φ ξ1(  � −
1

ξ1 − ξ0
. (25)

*erefore, the solutions of equation (16) can be shown as

u2(ξ) � ∓a− 1/4 1
a

− 1/4ξ − ξ0
−

a3

4a4
. (26)

For example, when k � 1, p � 2, ω � 2, q � 0, r � − 12,
c0 � 0, c1 � 0, and ξ0 � 0, we can obtain a rational function
solution of equation (8) as

u2(t, x) �
1

x − 2t
α/α( 

. (27)

Case 3. D2 > 0, D3 � 0, D4 � 0, and E2 > 0. G(Φ) has two
real roots of multiplicities two, namely,

G(Φ) � (Φ − β)
2
(Φ − c)

2
, (28)

where β> c. By using equation (16), we can obtain

± ξ1 − ξ0(  � 
dΦ

(Φ − β)(Φ − c)
�

1
β − c

ln
Φ − β
Φ − c




. (29)

When Φ> β or Φ< c, we can obtain the solution of
equation (16) as follows:

Φ ξ1(  �
c − β

e
(β− c) ξ1− ξ0( ) − 1

+ c

�
c − β
2

coth
(β − c) ξ1 − ξ0( 

2
− 1  + c.

(30)

*en, we have

u3(ξ) �
(c − β)a

− 1/4
4

2
coth

(β − c) a
1/4
4 ξ − ξ0 

2
− 1⎡⎢⎣ ⎤⎥⎦

+ c −
a3

4a4
.

(31)

When c<Φ< β, we can gain the solution of equation
(16) as follows:
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Φ ξ1(  �
c − β

− e
(β− c) ξ1− ξ0( ) − 1

+ c

�
c − β
2

tanh
(β − c) ξ1 − ξ0( 

2
− 1  + c,

(32)

Similarly, we can have

u4(ξ) �
(c − β)a

− 1/4
4

2
tanh

(β − c) a
1/4
4 ξ − ξ0 

2
− 1⎡⎢⎣ ⎤⎥⎦

+ c −
a3

4a4
.

(33)

We can see that equations (31) and (33) are two solitary
wave solutions. Especially, when k � 1, p � 4, ω � 2,

q � − 12, r � − 12, c0 � − 2, c1 � 11/16, and ξ0 � 0, we have
b1 � − 1, b2 � 0, b3 � 1/4, and − 1<Φ< 1, and then we can
obtain a hyperbolic solution of equation (8) as follows.
Under the given parameters, we draw the traveling wave 3D
solution surface and corresponding 2D solution graphs for
the obtained solution u4(t, x) in Figure 3:

u4(t, x) � tanh x −
2t

α

α
  −

1
2
. (34)

Case 4. D2 > 0, D3 > 0, and D4 � 0. G(Φ) has two real roots
and real roots with multiplicities two, namely,

G(Φ) � Φ − β1( 
2 Φ − β2(  Φ − β3( , (35)

where βi(i � 1, 2, 3) are real numbers and β2 > β3.
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Figure 1: *e graphics of solutions of u1(t, x) for differential values of fractional parameter α.

10

5

0
1

α = 1/4
α = 1/2
α = 3/4

t
2 3

–5

–10

Figure 2: Two-dimensional graphic of solution of u1(t, x) for differential values of fractional parameter α.
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When β1 > β2 andΦ< β2 or when β1 < β3 andΦ< β3, the
following formula can be obtained:

± ξ1 − ξ0(  � 
dΦ

�����������������������

Φ − β1( 
2 Φ − β2(  Φ − β3( 



�
1

β1 − β2(  β1 − β3( 

ln

���������������

Φ − β2(  β1 − β3( 



−

���������������

β1 − β2(  Φ − β3( 



 
2

Φ − β1



.

(36)

When β1 > β2 and Φ< β3 or when β1 < β3 and Φ< β2, we
can obtain the solution of equation (28):

± ξ1 − ξ0(  � 
dΦ

�����������������������

Φ − β1( 
2 Φ − β2(  Φ − β3( 



�
1

β1 − β2(  β1 − β3( 
ln

���������������

Φ − β2(  β3 − β1( 



−

���������������

β2 − β1(  Φ − β3( 



 
2

Φ − β1



.

(37)

When β2 > β1 > β3, we can have the solution of equation
(16):

± ξ1 − ξ0(  � 
dΦ

�����������������������

Φ − β1( 
2 Φ − β2(  Φ − β3( 



�
1

β2 − β1(  β1 − β3( 
arcsin
Φ − β2(  β1 − β3(  + β1 − β2(  Φ − β3( 

Φ − β1(  β2 − β3( 



.

(38)
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Figure 3: *e graphics of solutions of u4(t, x).
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Especially, when k � 1, p � 4, ω � 2, q � − 12, r � − 12,
c0 � − 2, c1 � − 9/16, and ξ0 � 0, we have b1 � − 1, b2 � 0, and
b3 � 0. By taking them into (38), then we can obtain

u5(t, x) � sin x −
2t

α

α
  −

1
2
. (39)

Case 5. D2 > 0, D3 � 0, D4 � 0, and E2 � 0. G(Φ) has real
roots of multiplicities three and real roots with multiplicities
one, namely,

G(Φ) � (Φ − β)
3
(Φ − c), (40)

where β and c are real numbers. Using formula (16) can yield

± ξ1 − ξ0(  � 
dΦ

��������������

(Φ − β)
3
(Φ − c)

 �
2

c − β

�����
Φ − c

Φ − β



. (41)

When Φ> β and Φ> c or when Φ< β and Φ< c, the
solution of equation (16) is given by

Φ ξ1(  �
4(β − c)

(c − β)
2 ξ1 − ξ0( 

2
− 4

+ β. (42)

*en, we can obtain a rational solution of equation (8) as

u6(ξ) �
4a

− 1/4
(β − c)

a
1/4ξ − ξ0 

2
(c − β)

2
− 4

+ β −
a3

4a4
. (43)

Case 6. D2D3 < 0 and D4 � 0. G(Φ) has real roots of
multiplicities two and a pair of conjugate complex roots,
namely,

G(Φ) � Φ − β1( 
2 Φ − β2( 

2
+ β23 , (44)

where βi(i � 1, 2, 3) are real numbers. By using equation (16),
we can obtain

± ξ1 − ξ0(  � 
dΦ

Φ − β1( 

�������������

Φ − β2( 
2

+ β23


�
1

�������������

β1 − β2( 
2

+ β23
 ln

c1Φ + c2 −

������������

Φ − β2( 
2

+ β23


Φ − β1





,

(45)

where c1 � β1 − 2β2/
�������������

(β1 − β2)
2 + β23



and

c2 �

������������

(β1 − β2)
2 + β23



− (β1(β1 − 2β2)/
������������

(β1 − β2)
2 + β23



).
*us, we obtain the solution of equation (16):

Φ ξ1(  �
e
±

��������
β1− β2( )

2
+β23


ξ1− ξ0( ) − c1 +

������������

β1 − β2( 
2

+ β23


2 − c1(  

e
±

��������
β1− β2( )

2
+β23


ξ1− ξ0( ) − c1 

2
− 1

. (46)

Hence,

u7(ξ) �
e
±

��������
β1− β2( )

2
+β23


a1/4
4 ξ− ξ0( ) − c1  +

������������

β1 − β2( 
2

+ β23


2 − c1( 

a
1/4
4 e

±
��������
β1− β2( )

2
+β23


a1/4
4 ξ− ξ0( ) − c1 

2
− 1 

−
a3

4a4
, (47)

which is a solitary wave solution.

Case 7. D2 > 0, D3 > 0, and D4 > 0. G(Φ) has four distinct
real roots, namely,

G(Φ) � Φ − β1(  Φ − β2(  Φ − β3(  Φ − β4( , (48)

where β1, β2, β3, and β4 are real numbers and
β1 > β2 > β3 > β4.

When Φ> β1 or Φ< β4, we make the following
transformation:

Φ �
β2 β1 − β4( sin2θ − β1 β2 − β4( 

β1 − β4( sin2θ − β2 − β4( 
. (49)

When β3 <Φ< β2, similarly

Φ �
β4 β2 − β3( sin2θ − β3 β2 − β4( 

β2 − β3( sin2θ − β2 − β4( 
. (50)

By using equation (16), we obtain

± ξ1 − ξ0(  � 
dΦ

�����������������������������
Φ − β1(  Φ − β2(  Φ − β3(  Φ − β4( 



�
2

���������������
β1 − β3(  β2 − β4( 

 
dθ

����������
1 − m

2sin2θ
 ,

(51)

where m2 � (β1 − β4)(β2 − β3)/(β1 − β3)(β2 − β4).
From equation (50) and the definition of Jacobian elliptic

sine function, we obtain
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sinθ � sn

���������������
β1 − β3(  β2 − β4( 



2
ξ1 − ξ0( , m⎛⎜⎜⎝ ⎞⎟⎟⎠. (52)

Combining equation (51) with expression (48), we can
gain the solutions of equation (16):

Φ ξ1(  �
β2 β1 − β4( sn

2
���������������

β1 − β3(  β2 − β4( 



/2 ξ1 − ξ0( , m  − β1 β2 − β4( 

β1 − β4( sn
2

���������������

β1 − β3(  β2 − β4( 



/2 ξ1 − ξ0( , m  − β2 − β4( 

, (53)

and then we can give the solution of equation (8):

u8(ξ) �
β2 β1 − β4( a

− 1/4
4 sn

2
���������������

β1 − β3(  β2 − β4( 



/2 a
1/4
4 ξ − ξ0 , m  − β1 β2 − β4( 

β1 − β4( sn
2

���������������

β1 − β3(  β2 − β4( 



/2 a
1/4
4 ξ − ξ0 , m  − β2 − β4( 

−
a3

4a4
. (54)

Similarly, combining equation (51) with expression (49),
we can obtain the solution of equation (8):

u9(ξ) �
β4 β2 − β3( a

− 1/4
4 sn

2
���������������

β1 − β3(  β2 − β4( 



/2 a
1/4
4 ξ − ξ0 , m  − β3 β2 − β4( 

β2 − β3( sn
2

���������������

β1 − β3(  β2 − β4( 



/2 a
1/4
4 ξ − ξ0 , m  − β2 − β4( 

−
a3

4a4
. (55)

Case 8. D2D3 ≥ 0 and D4 < 0. G(Φ) has two different real
roots and a pair of conjugate complex roots, namely,

G(Φ) � Φ − β1(  Φ − β2(  Φ − β3( 
2

+ β24 , (56)

where β1, β2, β3, and β4 are real constants, β1 > β2, and β4 > 0.
Making the following transformation, we obtain

Φ �
c1cosθ + c2

c2cosθ + c4
, (57)

where c1 � 1/2(β1 + β2)c3 − 1/2(β1 − β2)c4, c2 � 1/2(β1+
β2)c4 − 1/2(β1 − β2)c3, c3 � β1 − β3 − β4/m1, c4 � β1 − β3−
β4m1, E � β24 + (β1 − β3)(β2 − β3)/β4(β1 − β2), and
m1 � E ±

������
E2 + 1

√
.

By using equation (16), we obtain:

ξ1 − ξ0 � 
dΦ

�������������������������������

± Φ − β1(  Φ − β2(  Φ − β3( 
2

+ β24 



�
2m1m2����������������
∓2β4m1 β1 − β2( ( 

 
dθ

����������

1 − m
2
2sin

2θ
 ,

(58)

where m2
2 � 2/1 + m2

1.
From equation (57) and the definition of Jacobian elliptic

function, we obtain

cosθ � cn

��������������
∓2β4m1 β1 − β2( 



2m1m2
ξ1 − ξ0( , m2

⎛⎜⎜⎝ ⎞⎟⎟⎠. (59)

Combining equation (58) with expression (56), we can
gain the solutions of equation (16):

Φ ξ1(  �
c1cn

��������������

∓2β4m1 β1 − β2( 



/2m1m2 ξ1 − ξ0( , m2  + c2

c3cn

��������������

∓2β4m1 β1 − β2( 



/2m1m2 ξ1 − ξ0( , m2  + c3

, (60)
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and then we can give the solution of equation (8):

u10(ξ) �
a

− 1/4
4 c1cn

��������������

∓2β4m1 β1 − β2( 



/2m1m2 a
1/4
4 ξ − ξ0 , m2  + c2 

c3cn

��������������

∓2β4m1 β1 − β2( 



/2m1m2 a
1/4
4 ξ − ξ0 , m2  + c3

, (61)

which is an elliptic double periodic function solution.

Case 9. D2D3 ≤ 0 and D4 > 0. G(Φ) has two pairs of con-
jugate complex roots, namely,

G(Φ) � Φ − β1( 
2

+ l
2
2  Φ − β2( 

2
+ l

2
2 , (62)

where β1, β2, l1, and l2 are real constants and l1 ≥ l2 > 0.
Making the following transformation, we obtain

Φ �
c1tanθ + c2

c2tanθ + c4
, (63)

where c1 � β1c3 + l1c4, c2 � β1c4 − l1c3, c3 � − l1 − l2/m1,
c4 � β1 − β2, E � (β1 − β2)

2 + l21 + l22/2l1l2, and m1 � E+������
E2 − 1

√
.

By using equation (16), we obtain

ξ1 − ξ0 � 
dΦ

���������������������������

Φ − β1( 
2

+ l
2
2  Φ − β2( 

2
+ l

2
2 



�
c
2
3 + c

2
4

l2

�����������������

c
2
3 + c

2
4  m

2
1c

2
3 + c

2
4 

 
dθ

����������

1 − m
2
2sin

2θ
 ,

(64)

where m2
2 � m2

1 − 1/m2
1.

From equation (62) and the definition of Jacobian elliptic
function, we obtain

sin θ � sn
l2

�����������������

c
2
3 + c

2
4  m

2
1c

2
3 + c

2
4 



c
2
3 + c

2
4

ξ1 − ξ0( , m2
⎛⎜⎜⎝ ⎞⎟⎟⎠,

(65)

cos θ � cn
l2

�����������������

c
2
3 + c

2
4  m

2
1c

2
3 + c

2
4 



c
2
3 + c

2
4

ξ1 − ξ0( , m2
⎛⎜⎜⎝ ⎞⎟⎟⎠.

(66)

Combining equations (64) and (65) with expression (62),
we can gain the solutions of equation (16):

Φ ξ1(  �
c1sn μ ξ1 − ξ0( , m2(  + c2cn μ ξ1 − ξ0( , m2( 

c3sn μ ξ1 − ξ0( , m2(  + c4cn μ ξ1 − ξ0( , m2( 
,

(67)

where μ � l2

�����������������

(c23 + c24)(m2
1c

2
3 + c24)



/c23 + c24. *en, we can
give the solution of equation (8):

u11(ξ) �
a

− 1/4
4 c1sn μ a

1/4
4 ξ − ξ0 , m2  + a

− 1/4
4 c2cn μ a

1/4
4 ξ − ξ0 , m2 

c3sn μ a
1/4
4 ξ − ξ0 , m2  + c4cn μ a

1/4
4 ξ − ξ0 , m2 

−
a3

4a4
, (68)

which is an elliptic double periodic function solution.

4. Conclusion

By using the complete discrimination systemmethod, we obtain
exact traveling wave solutions to generalized fractional Gardner
equations under the given parameter conditions. Many exact
solutions have been obtained, which include hyperbolic function
solutions, Jacobi elliptic function solutions, trigonometric
function solutions, and rational function solutions. Compared
with the previous work, the solution obtained in the paper has
not been reported. Furthermore, the method we employ here
can be used to analyze the exact solutions to other FPDEs.
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