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In the design process of foundations, pavements, retaining walls, and other geotechnical matters, estimation of soil strength-
related parameters is crucial. In particular, the friction angle is a critical shear strength factor in assessing the stability and
deformation of geotechnical structures. Practically, laboratory or field tests have been conducted to determine the friction angle of
soil. However, these jobs are often time-consuming and quite expensive.�erefore, the prediction of geo-mechanical properties of
soils using machine learning techniques has been widely applied in recent times. In this study, the Bayesian regularization
backpropagation algorithm is built to predict the internal friction angle of the soil based on 145 data collected from experiments.
�e performance of the model is evaluated by three specific statistical criteria, such as the Pearson correlation coefficient (R), root
mean square error (RMSE), and mean absolute error (MAE).�e results show that the proposed algorithm performed well for the
prediction of the friction angle of soil (R� 0.8885, RMSE� 0.0442, and MAE� 0.0328). �erefore, it can be concluded that the
backpropagation neural network-based machine learning model is a reasonably accurate and useful prediction tool for engineers
in the predesign phase.

1. Introduction

�e internal friction angle is one of the most important
parameters in analyzing soil geotechnical properties. It
characterizes the soil shear strength and is determined by the
Mohr–Coulomb failure standard [1]. �e determination of
shear strength parameters, including the effective soil fric-
tion angle, is vital for assessing the stability and deformation
of geotechnical structures such as foundations, slopes, and
retaining walls [2–8]. Generally, the determination of geo-
technical parameters is performed in the laboratory and
several others are estimated on the field [9]. Each geo-
technical parameter depends on different factors, in which
the internal friction angle of the soil depends on several
factors such as density, particle size distribution, angle, and
interlacing of particles. �erefore, based on the ground
profile properties, various tests such as the direct shear test

and the triaxial test are recommended to obtain an internal
friction angle parameter [10]. However, these results may
not fully represent the correct soil properties due to the
potential that soil may be disturbed during sampling [11, 12].
While performing sampling, these experiments are often
time-consuming and expensive [5]. To overcome the above
limitations, Salari’s study proposed an equation for deter-
mining the internal friction angle of the soil using the
standard penetration test for different soil types [10]. Be-
sides, the work of Motaghedi and Eslami [13] has proposed
an approach of predicting the unit cohesion and the friction
angle from the cone penetration test (CPT) considering the
bearing capacity mechanism of failure at the cone tip and
direct shear failure along the penetrometer sleeve. In fact, the
soil formation is unsimilar in different regions, so the
correlations developed for one region might not be applied
to another [9]. �erefore, accurate prediction of the internal
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friction angle of the soil is a critical task in geotechnical
design, at the same time, to save time and reduce costs in
construction projects [13].

In recent years, machine learning (ML) techniques have
been widely applied in a variety of fields related to com-
putational mechanics [14, 15], structural engineering
[16, 17], environmental engineering [18], materials science
[19, 20], and Earth sciences [21–26]. Artificial neural net-
work (ANN) is currently one of the popular models due to
its structural flexibility, excellent predictive performance,
and availability of a significant number of training algo-
rithms [27, 28]. �e backpropagation algorithm (BP) is
widely used to adjust ANN’s parameters [29]. Such an al-
gorithm uses a set of input and output values to find the
desired weight and bias of the neural network. However, in
traditional BP networks, there are some shortcomings, such
as the low convergence speed and an easy fall to the local
minimum [30]. �erefore, in order to minimize the error
related to the backpropagation algorithm, some general-
ization methods such as Bayesian regularization (BR) [31]
and Levenberg–Marquardt (LM) [32] are employed, owing
to their advantage in obtaining a lower mean squared error.
As an example, Kayri’s study [33] showed that BR performed
better than LM. In addition, BR algorithm has been used
successfully in many areas, such as data mining, stock price
volatility prediction, and stock market prediction [34–36].
To the best of the authors’ knowledge, there are currently
limited studies proposing the ANN model to estimate the
soil internal friction angle [6, 9, 37]. However, the feasibility
of using BR algorithm has not been investigated to predict
such an important soil property.

In this study, Bayesian regularization-based algorithm
coupling with neural networks is employed to predict the
soil internal friction angle. Common evaluation indicators,
such as the Pearson correlation coefficient (R), mean ab-
solute error (MAE), and root mean square error (RMSE) are
used to evaluate the performance of the proposed model. A
database containing 145 experimental results is collected
from the Danang-Quang Ngai expressway project, Vietnam,
and used to develop the ML model. �e construction and
statistical analysis of the database are presented in Section 2.
Next, a brief introduction of the ANN using Bayesian
regularization backpropagation algorithm is presented in
Section 2.2. �e methodology in the study and the perfor-
mance indicators of the ML model are given in Section 2.3,
followed by the results and discussion in Section 3. Finally,
several conclusions and perspectives are given in Section 4.

2. Materials and Methods

�e present study is carried out based on the proposed
methodology that comprises three main steps as follows: (1)
data preparation, (2) construction of the model, and (3)
validation of the proposed model. Data preparation: in this
first step, the data taken from the laboratory tests are
employed to create two datasets: the testing and training
dataset. �e training dataset is generated from 70% of total
data, whereas the testing dataset is built from 30% of the
remaining data. Construction of the models: in this second

step, the training dataset is employed for training the ANN
model based on the Bayesian regularization back-
propagation algorithm. In this step, the effects of the number
of iteration (or epochs) and random sampling technique are
investigated. Validation of the proposed models: in this final
step, the testing dataset is adopted for validating proposed
models. Statistical indicators, including RMSE, MAE, and R
are employed to validate the model.

2.1. Database Collection and Preparation. In fact, the soil
internal friction angle (denoted as φ) is affected by many
factors. However, this study will focus on the main factors
that significantly govern the soil internal friction angle to
reduce the model complexity. In the current research, 145
data of soil samples were collected from Da Nang-Quang
Ngai expressway project, as shown in Figure 1.�en, the soil
samples were tested in the laboratory to determine input
parameters, namely, clay content (X1), natural moisture
content (X2), liquid limit (X3), plastic limit (X4), specific
density (X5), and void ratio (X6), and the output of these
parameters in modeling is the soil internal friction angle.
Detailed definitions and how to determine the input vari-
ables from particle composition analysis in the laboratory
can be found in [5, 38]. In the collected dataset, the value of
the clay content varies in the range of 4.09–47.96%, the
natural moisture content is in the range 15.53–115.41%, the
liquid limit varies from 20.8–154.12%, the plastic limit
ranges between 13.42 and 63.96%, the specific density value
varies from 2.59–2.75 g/cm, and the void ratio ranges from
0.58–3.25. Besides, the friction angle values were in the range
of 0.04 to 0.37 rad.

Table 1 details the symbol, unit, and role, as well as the
statistical analysis (minimum, maximum, mean, standard
deviation, and skewness) of the six input variables and one
output variable. In addition, 145 data used in this work are
randomly divided into two subdatasets using a uniform
distribution, of which 70% of the data is used for training of
the ANN model and 30% of the remaining data is used for
validating the model. All data is scaled to the range [0-1] to
reduce numerical error during ANN processing, as rec-
ommended by [39]. �is process ensures that the training
phase of the AI models can be performed with functional
generalization capabilities. Such proportions are represented
by

xn �
x − xmin

xmax − xmin
, (1)

where xmax and xmin are the maximum and minimum values
of the considered variable and xn is the normalized value of
the variable x. For illustration purposes, Figure 2 shows a
histogram of all parameters in this study.

2.2. ANN Bayesian Regularization Backpropagation Algo-
rithm (ANN-BR). An artificial neural network (ANN) is a
powerful machine learning-based data analysis algorithm
[40]. �is machine learning approach attempts to simulate
the process of knowledge acquisition and inference occur-
ring in the human brain [41, 42]. ANN has been widely used
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Figure 1: Location of Da Nang-Quang Ngai expressway project, Vietnam.

Table 1: Statistical analysis of the inputs and output in this study.

Variables Task Symbol Unit Min Median Average Max St.D∗ SK∗∗

Clay content Input X1 % 4.09 18.73 20.09 47.96 9.16 0.69
Natural moisture content Input X2 % 15.53 40.67 47.38 115.41 24.33 0.88
Liquid limit Input X3 % 20.80 47.35 51.07 154.12 22.42 2.09
Plastic limit Input X4 % 13.42 20.03 25.35 63.96 8.42 1.72
Specific gravity Input X5 g/cm3 2.59 2.68 2.68 2.75 0.26 −0.10
Void ratio Input X6 0.58 1.25 1.42 3.25 0.66 0.82
Friction angle Output φ rad 0.04 0.14 0.16 0.37 0.09 0.91
∗St.D.� standard deviation. ∗∗SK� skewness.
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Figure 2: Continued.
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to address nonlinear regression analysis problems. It has
been demonstrated that an ANN with a hidden layer can
simulate very complex nonlinear functions [43]. To create a
reliable model, proper training of a neural network is the
most important. Backpropagation is an algorithm com-
monly used to train neural networks [44]. Typical back-
propagation networks typically use a gradient descent
algorithm such asWidrow–Hoff arithmetic. In this network,
weights are changed or moved along the negative value of
the gradient of the executing function. �e term back-
propagation propagation is used because it relates to the way
the gradual computation of nonlinear multilayer neural
networks performed. However, some backpropagation
training algorithms, such as gradient descent, have a slow
convergence rate [45]. �erefore, one of the algorithms that
improve the convergence or learning rate of the neural
network is the backpropagation training network, according
to the Bayesian regularization algorithm.

Bayesian regularization is the linear combination of
Bayesian methods and ANN to determine the optimal
regularization parameters automatically. In contrast to
conventional network training, in which the optimal weight
set is chosen by minimizing the error function, the Bayesian
approach involves the probability distribution of network

weights. As a result, the network predictions are also a
probability distribution [46, 47]. In the training process, a
common performance function is used for computing the
distance between real and predicted data, such as the mean
sum of squared network errors:

F � Ed �
1
N



N

i�1
r0,i − rt,i 

2
. (2)

For the purpose of improving the generalization of the
model, the gradient-based optimization algorithm is pre-
ferred to minimize the target [48, 49]. �e target function in
equation (2) extended with the addition of a term Ew which
is the sum of the squares of the lattice weights:

F � βEd + αEw. (3)

Here, the α and β are parameters that are to be optimized
in the Bayesian framework of MacKay [50]. For the purpose
of finding the optimum regularization parameters, a
Bayesian regularization method is employed. �e optimal
regularization parameters can so be obtained in an auto-
mated fashion. Bayesian optimization of the regularization
parameters requires the computation of the Hessian matrix
of the objective function F. However, the optimal
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Figure 2: Histograms and distribution of the input and output variables used in this study: (a) clay content (%); (b) natural moisture content
(%); (c) liquid limit (%); (d) plastic limit (%); (e) specific density (g/cm3); (f ) void ratio; (g) friction angle (rad).

4 Mathematical Problems in Engineering



regularization technique requires the costly computation
process of the Hessian matrix. To overcome this drawback,
Gauss–Newton approximation to the Hessianmatrix is used.
�e approximation with Bayesian regularization back-
propagation algorithm for network training [51] is used in
this study.

2.3. Performance Indicators. Evaluating the model accuracy
is an essential part of the process in creating machine
learning models to describe how well the model is per-
forming [52, 53]. In this research, the mean absolute error
(MAE), root mean square (RMSE), and Pearson correlation
coefficient (R) are used to evaluate the predicted error rate
and proposed model performance. MAE represents the
difference between the original and predicted values,
extracted by averaging the absolute difference over the
chosen dataset (equation (4)) [54–56]. Besides, RMSE is the
error rate by the square root of MSE, as shown in equation
(5) [5, 57, 58]. R is an important indicator of regression
analysis [59, 60]. �e R index represents the correlation
between the predicted results and the actual output, varying
from −1 to 1, as shown in equation (6). �e closer the
absolute value of R is to 1, the better the model is [61]:

MAE �
1
N



N

i�1
r0,i − rt,i


, (4)

RMSE �

��������������

1
N



N

i�1
r0,i − rt,i 

2




, (5)

R �

�������������������������


N
i�1 r0,i − r0  rt,i − rt 


N
i�1 r0,i − r0 

2
ΣNi�1 rt,i − rt 

2




, (6)

where N is the number of samples in the database, r0, and r0
are the actual experimental value and the average real ex-
perimental value, and rt and rt are the predicted value and
the average predicted value, calculated according to the
model forecast.

3. Results and Discussion

3.1. Analysis of the Number of Iteration. In this section, the
optimization of the weight parameters of ANN is presented
using the BR algorithm.�e performance of the ANNmodel
depends on the structure of the neural network (NN), that is,
the number of hidden layers and the number of neurons in
each hidden layer. Depending on the issue of interest,
predictive results can show a significant change from ar-
chitecture usage to architecture [62, 63]. When the number
of inputs and outputs is fixed, the undefined architecture
parameters are the number of the hidden layer (s) and the
number of neurons in each hidden layer (s) [64]. �erefore,
the number of hidden layers is usually determined firstly,
based on the complexity of the relationship between input
and output. �e process of building the network structure is,

thus, the process of trial and error test. Some studies have
shown that most specific problems using only one hidden
layer can be enough to successfully solve the complicated
nonlinear relationship between input and output [65, 66]. In
this study, the number of selected hidden layers is one, and
the number of neurons in each layer changes from 1 to 20.
�e results show that the ANN structure [6-10-1] provides
optimal performance. �e structure of the ANN model is
illustrated in Figure 3.

Training dataset with 102 samples with six input pa-
rameters and one output parameter is used to build the ANN
tool. In the backpropagation neural network, the training
iteration parameter can have a significant effect on the
generalization accuracy [67, 68].�e generalization accuracy
and the neural network architecture training are directly
influenced by whether the number of training iterations is
small or large [69, 70]. In this study, the impact of training
iterations on ANN application using Bayesian regularization
backpropagation algorithm is analyzed. �e number of it-
erations varies from 100 to 500, with a step of 100. Figure 4
depicts the effect of the number of iteration on the values in
function of the statistical error criteria, with 25%–75%
interpreted as the value in the first and the third quartiles,
and StD is the standard deviation. �e results show that,
considering the value of RMSE and MAE, 100 iterations
provide the lowest error and StD, and the mean value of R is
highest. For the remaining number of iterations (i.e., 200 to
500), it is seen that the errors are higher. Overall, selecting
100 iterations is the optimal choice to obtain the best
prediction results.

3.2. Prediction Capability of ANN-BR. In this work, the
evaluation of the effectiveness of the ANN-BR model with
the structure [6-10-1] is performed.�e correlation between
the friction angle of the experimental data obtained (solid
line) and predicted values (dashed line) from the training
and testing process, according to the ANN model, is shown
in Figure 5.�e predicted friction angle of 102 samples in the
proposed model’s training data is quite close to the results of
the experiment. With the testing dataset, 43 experimental
results are also predicted with small errors.

�e error of the model with respect to the training and
testing data is shown in Figure 6. Figure 6(a) shows the
frequency of the error value of the training data, while
Figure 6(b) represents those related to the testing data. It can
be seen that the error values of the training data are relatively
small, with only several values in the range of [−0.01; 0.01]
(rad). With respect to the testing dataset, several samples
exhibit the error values in the range [−0.005; 0.015] (rad).
�ese values show that the predictability of the ANN-BR
model is excellent.

�e relationships between actual and predicted data are
given as regression graphs in Figure 7. �e correlation value
obtained for the training data is R� 0.8579, and the value of
the testing data is R� 0.8885. Besides, the RMSE values are
0.0436 and 0.0442 and the MAE values are 0.0354 and
0.0328, for training and testing datasets, respectively. It can
be seen that important errors are mainly found at large
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Figure 3: �e architecture of the ANN-BR use in this study.
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Figure 7: Continued.
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values of the friction angle. Besides, most of the predicted
values of training and testing datasets are close to the 95%
confidence bounds. It could be concluded that predicting the
internal friction angle of soil is possible using the ANN-BR
model.

In comparison, we have observed that the performance
of the ANN developed in this study is slightly better than
Regression Tree (RT) (R� 0.882) used to predict the shear
strength of soil in the road construction site of Vietnam [71]
and outperforms Adaptive Network-based Fuzzy Inference
System (ANFIS) and its hybrid models (R� 0.49–0.61).
However, it is noticed that the ML models’ performance
might depend on the quality of the data used, and its
performance might be different for different case studies.
�erefore, it is required to perform a separate investigation
on each case study.

4. Conclusion

In this study, an ANNmodel with BR algorithm is proposed
to predict the internal friction angle of the soil. A total of 145
experimental results are collected from the Danang-Quang
Ngai expressway project, Vietnam, for the construction of
the ANN-BR model. �e input data for the network training
process is clay content, natural moisture content, liquid
limit, plastic limit, specific density, and void ratio. �ree
statistical criteria, namely, the Pearson correlation coeffi-
cient (R), mean absolute error (MAE), and root mean square
error (RMSE) are used to evaluate the correlation between
the predicted values by the ANN-BR model and actual
experimental ones. �e results show that the ANN-BR
model is a good predictor in predicting the internal friction
angle of soil, with R� 0.8885, RMSE� 0.0442 (rad), and
MAE� 0.0328 (rad) for the testing dataset. �e results can
help build a reliable soft computing tool for engineers to
predict the internal friction angle of soil. However, in
machine learning problems, data is the key factor in creating
a reliable predictive tool. �erefore, collecting additional

data to improve the algorithm is the highest aim of the
present study, which helps to avoid costly on-field
experiments.
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