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In this paper, local dynamics, bifurcations and chaos control in a discrete-time predator-preymodel have been explored inR2
+. It is

proved that the model has a trivial fixed point for all parametric values and the unique positive fixed point under definite
parametric conditions. By the existing linear stability theory, we studied the topological classifications at fixed points. It is explored
that at trivial fixed point model does not undergo the flip bifurcation, but flip bifurcation occurs at the unique positive fixed point,
and no other bifurcations occur at this point. Numerical simulations are performed not only to demonstrate obtained theoretical
results but also to tell the complex behaviors in orbits of period-4, period-6, period-8, period-12, period-17, and period-18. We
have computed the Maximum Lyapunov exponents as well as fractal dimension numerically to demonstrate the appearance of
chaotic behaviors in the considered model. Further feedback control method is employed to stabilize chaos existing in the model.
Finally, existence of periodic points at fixed points for the model is also explored.

1. Introduction

In the mid-1920s, an Italian Biologist U. D’Ancona studied
the population variations in different species of fish that were
interacting with one another. In his investigation, he found
some percentage data of total catch of different fish species
during the World War I which was brought into various
Mediterranean ports. In precise, the data determine the
percentage (%) of total catch of selachians, which are not
adorable as food fish, and during the years 1914–1923, the
percentage data for the port of Fiume, Italy, is given in
Table 1.

D’Ancona was surprised by a very large increase in the
percentage of selachians during the World War I. He rea-
soned the increase in the percentage of selachians was be-
cause of decline in fishing during this period. But how does
the intensity of fishing affect the fish populations? +e
answer was obviously the struggle for existence between
competing species, which was of great concern to D’Ancona
and also to the fishing industry. Naturally, selachians depend
on food fish for their survival as selachians are predators and
food fish are prey. D’Ancona thought that this accounted for

the large increase in number of selachians during the war
period. Since the level of fishing was less, there were more
food fish available to selachians, which therefore increased
rapidly. D’Ancona just shows the increase in number of
selachians when fishing’s level is reduced. D’Ancona did not
explain why a declining level of fishing is more helpful to
predators than to their prey. Later, paying all possible bi-
ological clarifications to this phenomenon, D’Ancona
twisted to his coworker, the well-knownmathematician Vito
Volterra. With hope, Volterra would come up with a
mathematical model of the growth of the selachians and food
fish, their prey, and his model would provide the answer to
D’Ancona’s question. Volterra started his analysis on this
problem by separating all the fish into the prey population
x(t) and the predator population y(t). +en, he reasoned
that the food fish do not compete very fast among themselves
for their food supply since this is very plentiful, and the
density of fish population is not very much. Hence, in the
absence of predators, their prey would grow according to the
Malthusian law of population growth: (dx/dt) � rx for
positive constant r. Next, Volterra reasoned the number of
contacts per unit time between selachians (predators) and
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food fish (prey) is bxy for positive constant b. +erefore,
(dx/dt) � rx − bxy, and so Volterra reasoned that predators
have a characteristic pace of lessening − dy relative to their
present number and that they likewise increment at a rate
cxy relative to their present number y and their nourish-
ment supply x, and hence, one has [1–5]

dx

dt
� rx − bxy,

dy

dt
� cxy − dy .

(1)

Now include the effects of fishing in (1). It is observed
that fishing decreases the population of food fish at a rate
εx(t) and decreases the population of selachians at a rate
εy(t), and the parameter ϵ reflects the intensity of fishing.
So, by the effect of fishing, the continuous-time model which
is depicted in (1) becomes as follows [1]:

dx

dt
� (r − ε)x − bxy,

dy

dt
� cxy − (d + ε)y.

(2)

It is important here to note that generally many bio-
logical models are directed by continuous as well as discrete-
time systems, and in recent years, many authors gave great
contribution towards discrete models [6–15]. +e reasons
are that, for nonoverlapping generation, discrete models are
much convincing than continuous models, and moreover,
these models provide more effective computational results
for numerical simulations [6, 16–21]. Due to scientific
computation, in the present study, our aim is to explore the
qualitative behavior of the discrete-time model corre-
sponding to (2). It is predicted that the discrete model is
dynamically consistent with the continuous-timemodel. It is
also mentioned in [15] that if population has a nonover-
lapping generation, as stated above, it is essential to write a
discrete system that corresponds to model (2). So, applying
the forward Euler scheme, (2) becomes as follows:

xt+1 − xt

h
� (r − ε)xt − bxtyt,

yt+1 − yt

h
� cxtyt − (d + ε)yt.

(3)

After some manipulations, from (3), one gets

xt+1 � (1 + h(r − ε))xt − bhxtyt,

yt+1 � (1 − h(d + ε))yt + chxtyt.
(4)

+is paper is organized as follows: Section 2 is about the
topological classifications at fixed points of the model (4),
whereas existence of possible bifurcations at respective fixed
points is given in Section 3. +e comprehensive bifurcation
analysis at a positive fixed point is investigated in Section 4. In
Section 5, some simulations are performed to demonstrate
obtained theoretical results, and this is also about the study of
fractal demission that characterized the strange attractors. In
Section 6, we investigated the chaos control by the feedback
control method, whereas existence of periodic points is studied
in Section 7. +e conclusion of the paper is given in Section 8.

2. Topological Classifications at Fixed Points

Wewill study the topological classifications at fixed points of
the model (4) in this section. In order to determine fixed
points, one need to solve the following system, where (􏽢x, 􏽢y)

is the fixed point of (4):

􏽢x � (1 + h(r − ε))􏽢x − bh􏽢x􏽢y,

􏽢y � (1 − h(d + ε))􏽢y + ch􏽢x􏽢y.
(5)

It is noted that (􏽢x, 􏽢y) � (0, 0), satisfying (5) obviously,
and so Etrival � (0, 0) is a trivial fixed point of (4). For a
positive fixed point, system (5) reduces into the following
form:

h(r − ε) − bh􏽢y � 0,

− h(d + ε) + ch􏽢x � 0.
(6)

From (6), one gets x � ((d + ε)/c) and y � ((r − ε)/b).
+erefore, (4) has the unique positive fixed point: Epositive �

(((d + ε)/c), ((r − ε)/b)) if r> ϵ.
Hereafter, we will study the topological classifications at

Etrival and Epositive of the model (4) by method of lineari-

zation. So, the Jacobian matrix Ω
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌E

(􏽢x,􏽢y)

evaluated at E
(􏽢x,􏽢y)

becomes as follows:

Ω
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌E

(􏽢x,􏽢y)

≔
1 + h(r − ε) − bh􏽢y − bh􏽢x

ch􏽢y 1 − h(d + ε) + ch􏽢x
􏼠 􏼡. (7)

Now, the auxiliary equation of Ω
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌E

(􏽢x,􏽢y)

at E
(􏽢x,􏽢y)

is as
follows:

ζ2 − T E
(􏽢x,􏽢y)􏼒 􏼓ζ + D E

(􏽢x,􏽢y)􏼒 􏼓 � 0, (8)

where

T E
(􏽢x,􏽢y)􏼒 􏼓 � 2 + hr − 2hε − bh􏽢y − h d + ch􏽢x,

D E
(􏽢x,􏽢y)

􏼒 􏼓 � (1 + h(r − ε) − bh􏽢y)(1 − h(d + ε) + ch􏽢x) + bch
2
􏽢x􏽢y.

(9)

Table 1: Percentage data for the port of Fiume, Italy, during the
years 1914–1923.

Number of years % values
1914 11.9
1915 21.4
1916 22.1
1917 21.2
1918 36.4
1919 27.3
1920 16.0
1921 15.9
1922 14.8
1923 10.7
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Now, in the rest of the section, we will give topological
classification at equilibria: Etrival and Epositive as follows:

2.1. Topological Classifications at Etrival. It is noted that, at
Etrival, (7) takes the following form:

Ω
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

≔
1 + h(r − ε) 0

0 1 − h(d + ε)
􏼠 􏼡, (10)

whose characteristic roots are ζ1 � 1 + h(r − ε) and
ζ2 � 1 − h(d + ε). So based on stability theory, one can
conclude the topological classifications at Etrival as the fol-
lowing result.

Proposition 1. For Etrival, the following classifications hold:

(I) If

0< h<min
2

ε − r
,

2
d + ε

􏼚 􏼛, where ε> r, (11)

then Etrival is a sink.
(II) If

h>max
2

ε − r
,

2
d + ε

􏼚 􏼛, where ε> r, (12)

then Etrival is a source.
(III) If

2
ε − r
< h<

2
d + ε

, (13)

then Etrival is a saddle.
(IV) If

h �
2

ε − r
(14)

or

h �
2

d + ε
, (15)

then Etrival is nonhyperbolic.

2.2. Topological Classifications at Epositive. Now, we will give
topological classifications at Epositive for the considered
system. After some manipulations, at Epositive, (7) takes the
following form:

Ω
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Epositive

≔

1 −
bh

c
(d + ε)

ch

b
(r − ε) 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (16)

Furthermore, at Epositive, (8) becomes

ζ2 − T Epositive􏼐 􏼑ζ + D Epositive􏼐 􏼑 � 0, (17)

where

T Epositive􏼐 􏼑 � 2,

D Epositive􏼐 􏼑 � 1 + h
2
(r − ε)(d + ε).

(18)

Finally, from (17) one gets

ζ1,2 �
2 ±

����
Disc

√

2
, (19)

where

Disc ≔ T Epositive􏼐 􏼑􏼐 􏼑
2

− 4D Epositive􏼐 􏼑

� 4h
2
(ε − r)(d + ε).

(20)

Hereafter, at equilibrium: Epositive, we will summarize the
topological classifications by allowing sign of discriminant
quantity, i.e., Disc � 4h2(ε − r)(d + ε)< 0 (respectively ≥ 0),
as a following proposition.

Proposition 2. If Disc � 4h2(ε − r)(d + ε)< 0, then for
Epositive, the following classifications hold:

(I) Epositive is never stable focus.
(II) If

r> ε, (21)

then Epositive is unstable focus.
(III) If

r � ε, (22)

then Epositive is nonhyperbolic.

Proposition 3. If Disc � 4h2(ε − r)(d + ε)≥ 0, then for
Epositive, the following classifications hold:

(I) If

r>
εh2

(d + ε) − 4
h
2
(d + ε)

(23)

with
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d>
4 − ε2h2

εh2 , (24)

then Epositive is a stable node.
(II) If

r<
εh2

(d + ε) − 4
h
2
(d + ε)

, (25)

along with (24) holds, then Epositive is an unstable
node.

(III) If

r �
εh2

(d + ε) − 4
h
2
(d + ε)

, (26)

then Epositive is nonhyperbolic.

3. Existence of Possible Bifurcations at Fixed
Points: Etrival and Epositive

In view of obtained results in Section 2 regarding topological
classifications at equilibria Etrival and Epositive, we will study
the existence of possible bifurcations in this section, as
follows:

(I) Recall that, at Etrival, Ω
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

has two characteristic

roots in which ζ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌(14) � − 1, but

ζ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌(14) � 1 − (2/ε − r)(d + ε)≠ − 1 or 1. +is implies

that (4) may undergo the flip bifurcation if
(b, c, d, h, r, ε) locate in the set:

FB
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� (b, c, d, h, r, ε), h �
2

ε − r
􏼚 􏼛, (27)

or
Again under the nonhyperbolic condition, which is
depicted in (15), one can obtain that

ζ1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌(15) � 1 + (2/d + ε)(r − ε)≠ − 1 or 1, but

ζ2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌(15) � − 1. +is implies that model (4) may undergo

the flip bifurcation if (b, c, d, h, r, ε) locate in the set:

FB
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� (b, c, d, h, r, ε), h �
2

d + ε
􏼚 􏼛. (28)

(II) Under the hypothesis of Proposition 2 and obtained
nonhyperbolic condition, which is depicted in (22),

one gets
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
ζ1,2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌(22)

� 1. Hence, model (4) may

undergo a Neimark–Sacker bifurcation if parame-
ters (b, c, d, h, r, ε) locate in the set:

HB
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Epositive

� (b, c, d, h, r, ε), r � ε{ }. (29)

(III) Under the hypothesis of Proposition 3 and obtained
nonhyperbolic condition, which is depicted in (26),
one gets ζ1|(26) � − 1, but ζ2|(26) � 3≠ − 1 or 1. So
model (4) may undergo the flip bifurcation if
(b, c, d, h, r, ε) locate in the set:

FB
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Epositive

� (b, c, d, h, r, ε), r �
εh2

(d + ε) − 4
h
2
(d + ε)

􏼨 􏼩. (30)

Note: for case I, it is easy to see that model does not
undergo flip bifurcation if (b, c, d, h, r, ε) ∈ FB|Etrival, and
hence, Etrival is degenerated with a higher codimension.

In the subsequent section, we will present comprehen-
sive N-S and flip bifurcations analysis when parameters,
respectively, (b, c, d, h, r, ε) ∈ HB|Epositive

and (b, c,

d, h, r, ε) ∈ FB|Epositive
.

4. Comprehensive Bifurcation
Analysis at Epositive

4.1. N-S Bifurcation atEpositive. In the subsequent section, we
will discuss N-S bifurcation of model (4) at Epositive if
(b, c, d, h, r, ε) ∈ HB|Epositive

, and hence, the result can be
stated as the following theorem.

Theorem 1. If (b, c, d, h, r, ε) ∈ HB|Epositive
, then at Epositive,

model (4) does not undergo N-S bifurcation.

Proof. Since (b, c, d, h, r, ε) ∈ HB|Epositive
and hence if bifur-

cation parameter r varies in a small neighborhood of r∗, that
is, r � r∗ + τ, where τ≪ 1, then (4) becomes as follows:

xt+1 � 1 + h r
∗

+ τ − ε( 􏼁( 􏼁xt − bhxtyt,

yt+1 � (1 − h(d + ε))yt + chxtyt,
(31)

with Epositive(τ) � ((d + ε/c), (r∗ + τ − ε/b)) if r∗ + τ > ε. +e
auxiliary equation of Ω|Epositive

(τ) at Epositive(τ) becomes

ζ2 − T Epositive(τ)􏼐 􏼑ζ + D Epositive(τ)􏼐 􏼑 � 0, (32)

where

T Epositive(τ)􏼐 􏼑 � 2,

D Epositive(τ)􏼐 􏼑 � 1 + h
2

r
∗

+ τ − ε( 􏼁(d + ε).
(33)

Finally, from (32), one gets

ζ1,2(τ) � 1 ± h

���������������

r
∗

+ τ − ε( 􏼁(d + ε)
􏽱

ι. (34)

From (34), we obtain
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ζ1,2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≔

������������

D Epositive(τ)􏼐 􏼑

􏽱

,

d ζ1,2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ�0
≔

h
2

2
(d + ε)> 0.

(35)

Hereafter by using the following transformation

Φt � xt −
d + ε

c
,

Ψt � yt −
r
∗

+ τ − ε
b

,

(36)

transform Epositive(τ) in origin. In view of (36), from (31),
one gets

Φt+1 � 1 + h r
∗

+ τ − ε( 􏼁( 􏼁 Φt +
d + ε

c
􏼠 􏼡 − bh Φt +

d + ε
c

􏼠 􏼡 Ψt +
r
∗

+ τ − ε
b

􏼠 􏼡 −
d + ε

c
,

Ψt+1 � (1 − h(d + ε)) Ψt +
r
∗

+ τ − ε
b

􏼠 􏼡 + ch Φt +
d + ε

c
􏼠 􏼡 Ψt +

r
∗

+ τ − ε
b

􏼠 􏼡 −
r
∗

+ τ − ε
b

.

(37)

Now, we will study normal form of (37) if τ � 0. After
Taylor series expansion about (Φt,Ψt) � (0, 0), one gets

Φt+1 � Φt −
bh

c
(d + ε)Ψt − bhΦtΨt,

Ψt+1 �
ch

b
(r − ε)Φt + Ψt + chΦtΨt.

(38)

In order to transform liner part of (38) into canonical
form, we use the following transformation that can be easily
constructed by computation:

Φt

Ψt

⎛⎝ ⎞⎠ �

−
bh

c
(d + ε) 0

0 h
�����������
(r − ε)(d + ε)

􏽰

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Xt

Yt

⎛⎝ ⎞⎠. (39)

In view of (39) and (38),

Xt+1

Yt+1
􏼠 􏼡 �

1 h
�����������
(r − ε)(d + ε)

􏽰

− h
�����������
(r − ε)(d + ε)

􏽰
1

⎛⎝ ⎞⎠
Xt

Yt

􏼠 􏼡 +
F Xt, Yt( 􏼁

G Xt, Yt( 􏼁
􏼠 􏼡 , (40)

where

F Xt, Yt( 􏼁 � − bh
2 �����������

(r − ε)(d + ε)
􏽰

XtYt,

G Xt, Yt( 􏼁 � − bh
2
(d + ε)XtYt.

(41)

From (41), one gets

FXtXt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� FYtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� 0,

FXtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� − bh
2 �����������

(r − ε)(d + ε)
􏽰

,

GXtXt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� GYtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� 0,

GXtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� − bh
2
(d + ε),

FXtXtXt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� FXtXtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� FXtYtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� FYtYtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� 0,

GXtXtXt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� GXtXtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� GXtYtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� GYtYtYt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

� 0.

(42)

In order to undergo the said bifurcation, the following
quantity should be nonzero [22–29]:

Mathematical Problems in Engineering 5



Γ � − R
(1 − 2ζ)ζ

2

1 − ζ
δ11δ20⎛⎝ ⎞⎠ −

1
2
δ11

����
����
2

− δ02
����

����
2

+ R ζδ21􏼐 􏼑,

(43)

where

δ02 �
1
8
FXtXt

− FYtYt
+ 2GXtYt

+ ι GXtXt
− GYtYt

+ 2FXtYt
􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

,

δ11 �
1
4

FXtXt
+ FYtYt

+ ι GXtXt
+ GYtYt

􏼐 􏼑􏽨 􏽩|Etrival
,

δ20 �
1
8

FXtXt
− FYtYt

+ 2GXtYt
+ ι GXtXt

− GYtYt
− 2FXtYt

􏼐 􏼑􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌Etrival

,

δ21 �
1
16

FXtXtXt
+ FXtYtYt

+ GXtXtYt
+ GYtYtYt

+ ι GXtXtXt
+ GXtYtYt

− FXtXtYt
− FYtYtYt

􏼐 􏼑􏽨 􏽩
Etrival

.

(44)

Utilizing (42) in (44), one gets

δ02 � −
bh

2

4
(d + ε +

�����������
(r − ε)(d + ε)

􏽰
ι),

δ11 � δ21 � 0,

δ20 �
bh

2

4
(− d − ε +

������������
(r − ε)(d + ε)ι

􏽰
).

(45)

Using (45) in (43), one gets Ω � − (bh4/16)(d + ε)2 < 0.
Finally, the model considered undergoing N-S bifurcation
requires that ζm

1,2 ≠ 1, m � 1, 2, 3, 4 if τ � 0 which corre-
sponds to T(Epositive(0))≠ − 2, 0, 1, 2.
However,T(Epositive(0)) � 2 which contradicts to the fact
thatT(Epositive(0))≠ − 2, 0, 1, 2, and hence, eigenvalues ζ1,2
of fixed point (0, 0) lay in the interaction of the unit circle
with the coordinate axes when τ � 0. +erefore, model (4)
does not undergo N-S bifurcation.

4.2. Flip Bifurcation atEpositive. In the subsequent section, we
will discuss flip bifurcation of model (4) at Epositive if

(b, c, d, h, r, ε) ∈ FB|Epositive
, and hence, the result can be stated

as the following theorem.

Theorem 2. If (b, c, d, h, r, ε) ∈ FB|Epositive
, then at Epositive,

model (4) undergoes the flip bifurcation if p varies in a small
neighborhood of the origin.

Proof. It is noted that if r in a small nbhd of r∗, i.e,
r � r∗ + p, where p≪ 1, then model (4) becomes

xt+1 � 1 + h r
∗

+ p − ε( 􏼁( 􏼁xt − bhxtyt,

yt+1 � (1 − h(d + ε))yt + chxtyt.
(46)

Now, one can transform Epositive(p) in origin by using
the following transformations:

􏽦Φt � xt −
d + ε

c
, 􏽥Ψt � yt −

r
∗

+ p − ε
b

. (47)

From (47), (46) takes the following form:

􏽧Φt+1 � 1 + h r
∗

+ p − ε( 􏼁( 􏼁 􏽦Φt +
d + ε

c
􏼠 􏼡 − bh 􏽦Φt +

d + ε
c

􏼠 􏼡 􏽥Ψt +
r
∗

+ p − ε
b

􏼠 􏼡 −
d + ε

c
, 􏽧Ψt+1 � (1 − h(d + ε)) 􏽥Ψt +

r
∗

+ p − ε
b

􏼠 􏼡

+ ch 􏽦Φt +
d + ε

c
􏼠 􏼡 􏽥Ψt +

r
∗

+ p − ε
b

􏼠 􏼡 −
r
∗

+ p − ε
b

. (48)

By Taylor series about (􏽦Φt,
􏽥Ψt) � (0, 0), one gets

􏽧Φt+1 � 􏽦Φt −
bh

c
(d + ε) 􏽥Ψt − bh􏽦Φt

􏽥Ψt + hp􏽦Φt,
􏽧Ψt+1 �

ch

b
(r − ε)􏽦Φt + 􏽥Ψt + ch􏽦Φt

􏽥Ψt. (49)

Now by using following transformation
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􏽦Φt

􏽥Ψt

⎛⎜⎝ ⎞⎟⎠ ≔
−

b

c(r − ε)
�����������
(ε − r)(d + ε)

􏽰 b

c(r − ε)
�����������
(ε − r)(d + ε)

􏽰

1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
􏽦Xt

􏽥Yt),( (50)

linear part of (49) transforms into canonical form. In view of
(50), (49) becomes

􏽧Xt+1

􏽧Yt+1

⎛⎝ ⎞⎠ �
− 1 0

0 3
􏼠 􏼡 +

􏽥F 􏽦Xt,
􏽥Yt, p􏼐 􏼑

􏽥G 􏽦Xt,
􏽥Yt, p􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠ , (51)

where

􏽥F 􏽦Xt,
􏽥Yt, p􏼐 􏼑 � −

1
2

bh􏽦Xt

2
+
1
2

bh 􏽥Yt

2
−
1
2

hp􏽦Xt,
􏽥G 􏽦Xt,

􏽥Yt, p􏼐 􏼑 �
1
2

ch􏽦Xt

2
−
1
2

ch 􏽥Yt

2
. (52)

Now, for (51), center manifold McEtrival at Etrival is ex-
plored in a small nbhd of p. +erefore, McEtrival can be
expressed as follows:

M
c
Etrival � 􏽦Xt,

􏽥Yt􏼐 􏼑: 􏽥Yt � c0p + c1
􏽦Xt

2
+ c2

􏽦Xtp + c3p
3

+ O 􏽦Xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +|p|􏼐 􏼑

3
􏼒 􏼓􏼚 􏼛. (53)

After some manipulations, one gets

c0 � c2 � c3 � 0,

c1 � −
1
4

ch.

(54)

Finally, the map (51) restricting to McEtrival is

􏽥F 􏽦Xt􏼐 􏼑 � − 􏽦Xt + h1
􏽦Xt

2
+ h2

􏽦Xtp + h3
􏽦Xt

2
p + h4

􏽦Xtp
2

+ h5
􏽦Xt

3
+ O 􏽦Xt

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +|p|􏼐 􏼑

4
􏼒 􏼓, (55)

with

h1 � −
1
2

bh,

h2 � −
h

2
,

h3 � h4 � h5 � 0.

(56)

In order for the map (51) to undergo flip bifurcation, the
following discriminatory quantities are required to be
nonzero [28, 29]:

∧
1

�
z2􏽥F

z􏽦Xtzp
+
1
2

z􏽥F

zp

z2􏽥F

z􏽦Xt

2
⎛⎝ ⎞⎠| 􏽥Xt,p( 􏼁

� (0, 0),

∧
2

�
1
6

z3􏽥F

z􏽦Xt

3 +
1
2

z2􏽥F

z􏽦Xt

2
⎛⎝ ⎞⎠

2

⎛⎝ ⎞⎠| 􏽥Xt,p( 􏼁
� (0, 0).

(57)

On computation, one gets ∧
1

� − (h/2)≠ 0, but
∧
2

� (1/6)b2h2 > 0, which shows that model (4) undergoes

flip bifurcation if (b, c, d, h, r, ε) ∈ FB|Epositive
and, in partic-

ular, stable period-2 points bifurcating from Epositive.
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Figure 2: (a, b) Flip bifurcation diagram with r ∈ [0.2, 3.95] and (0.24, 0.25). (c) M.L.E corresponding to (a, b).
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xt
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y t

(a)
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xt
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0.65
0.7

y t

(b)

Figure 1: Stable node of model (4). (a) r� 2.1 with (0.24, 0.23). (b) r� 2.3 with (0.4, 0.5).
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5. Numerical Simulations

Here, some simulations will be presented in order to
verify the obtained results in Sections 2 and 4. For instance,
choose ε � 1.9, h � 1, then from (24), one gets d>
0.2052631578947369. Furthermore, if d � 0.5>
0.2052631578947369, then from (23), one gets r>
0.23333333333333317. But for the existence of unique
positive fixed point, it is required that r> ε � 1.9. So, for
these numerical values and the condition on parameter r

where unique positive fixed point is stable focus is
r>max 0.23333333333333317, 1.9{ }. Hence, if one choose
parametric value r � 2.1 which satisfies r>max
0.23333333333333317, 1.9{ } and b � 0.4, c � 0.5, then it is
clear from Figure 1(a) that Epositive � (4.8, 0.5) is stable
focus. Similarly, Figure 1(b) also shows that Epositive of (4) is
stable focus. Now, from (25), one can say that Epositive of (4)
is unstable focus if r< 0.23333333333333317, and hence, flip
bifurcation takes place if r< 0.23333333333333317. For
instance, if r � 0.09 < 0.23333333333333317, then

0
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0.06

0.08

0.1
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y t

0.02 0.04 0.06 0.08 0.1 0.120
xt

(a)
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xt

(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y t
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xt

(e)

0
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1
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2
xt

(f )

Figure 3: Complex dynamics of model (4). (a) r� 0.01 with (0.4, 0.5). (b) r� 0.12 with (0.4, 0.5). (c) r� 0.193 with (0.04, 0.02). (d) r� 0.2112
with (0.61, 0.61). (e) r� 0.21 with (0.0023, 0.6). (f ) r� 0.221 with (0.24, 0.22).
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ζ1 � − 1.0842264752180841, but
ζ2 � 3.084226475218084≠ 1 or − 1. Moreover, ∧

1
� − 0.5≠ 0

but ∧
2

� 0.026666666666666672> 0 which implies that stable
period-2 points bifurcating from Epositive. Hence, this sim-
ulation agrees with theoretical results in Section 4. +e 2D

bifurcation diagrams with corresponding maximum Lya-
punov exponents for said parametric values are plotted in
Figure 2. Finally, the trajectories associated with Figures 2(a)
and 2(b) are also plotted in Figures 3(a)–3(f) that indicates
(4) exhibits complex dynamics having orbits of period-4,
period-6, period-8, period-12, period-17, and period-18.

5.1. Fractal Dimension. It is defined by using Lyapunov
exponents as follows [30, 31]:

DL � J +
􏽐

J
i�1 ζJ
ζJ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

, (58)

with ζ1, . . . , ζn being Lyapunov exponents, where J is the
largest integer s.t. 􏽐

J
i�1 ζJ ≥ 0 and 􏽐

J+1
i�1ζJ < 0. +e fractal di-

mension for considered model (4) becomes

DL � 1 +
ζ1
ζ2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
. (59)

Now for values of d, ε, h, c, b, and r, two Lyapunov ex-
ponents are numerically computed. If d � 0.5,

ε � 1.9, h � 1, c � 0.5, b � 0.4, then ζ1 � 3.031748015872047
(resp., ζ1 � 3.024648117575002) and ζ2 �

− 1.0317480158720471 (resp., ζ2 � − 1.0246481175750022 for
r � 0.18 (resp., r � 0.192). So fractal dimension for the
model (4) is

dL � 1 +
3.031748015872047

| − 1.0317480158720471|

� 3.938457810659876 for r � 0.18,

dL � 1 +
3.024648117575002

| − 1.0246481175750022|

� 3.951889595750518 for r � 0.192.

(60)

For above chosen parametric values, strange attractors
are also plotted in Figures 4(a) and 4(b) that demonstrate (4)
has a complex dynamical behavior.

6. Chaos Control

By a state feedback control method, we will stabilize chaotic
orbits at an unstable fixed point motivated from existing lit-
erature [32, 33]. By adding control force Ct to model (4), then

xt+1 � (1 + h(r − ε))xt − bhxtyt + Ct,

yt+1 � (1 − h(d + ε))yt + chxtyt,

Ct � − g1 xt −
d + ε

c
􏼠 􏼡 − g2 yt −

r − ε
b

􏼒 􏼓,

(61)

with g1 and g2 being feedback gains. Now, ΩC|Epositive
at

Epositive for the controlled system (61) is

ΩC
|Epositive
≔

1 − g1 −
bh

c
(d + ε) − g2

ch

b
(r − ε) 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (62)
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Figure 4: Strange attractors if r � 0.18 (resp., r � 0.192) with (0.8, 0.2).
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whose auxiliary equation is

ζ2C − T Epositive􏼐 􏼑ζC + D Epositive􏼐 􏼑 � 0, (63)

with

T Epositive􏼐 􏼑 � 2 − g1,

D Epositive􏼐 􏼑 � 1 − g1 + h
2
(r − ε)(d + ε) +

ch

b
(r − ε)g2.

(64)

If ζ1,2 are roots of (63), then

ζ1 + ζ2 � 2 − g1, (65)

ζ1ζ2 � 1 − g1 + h
2
(r − ε)(d + ε) +

ch

b
(r − ε)g2. (66)

Here, it is noted that solution of the following equations

ζ1 � 1, (67)

ζ1 � − 1, (68)

ζ1ζ2 � 1, (69)

gives the lines of marginal stability, which further grantee the
fact that |ζ1,2|< 1. From (66) and (69), one gets

L1: − g1 +
ch

b
(r − ε)g2 + h

2
(r − ε)(d + ε) � 0. (70)

From (65), (66), and (67), one gets

L2:
ch

b
(r − ε)g2 + h

2
(r − ε)(d + ε) � 0. (71)

From (65), (66), and (68), one gets
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y t
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Figure 5: Control of chaotic trajectories of (61) for d � 0.5, ε � 1.9, h � 1, c � 0.5, b � 0.4, and r � 0.12 with (0.4, 0.5): (a) stability region in
(g1, g2)-plane; (b, c) dynamics for xt and yt, respectively.
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L2: 2g1 −
ch

b
(r − ε)g2 − h

2
(r − ε)(d + ε) � 4. (72)

+us, L1, L2, and L3 in (g1, g2)-plane determines the
triangular region that gives |ζ1,2|< 1 (see Figure 5(a)),
whereas Figures 5(b) and 5(c) tell about Epositive that the
chaotic trajectories are stabilized. For the qualitative be-
havior of continuous dynamical systems, we refer the in-
terested readers to [34–36] and references cited therein.

7. Periodic Points of Model (4)

Existence of periodic points at Etrival and Epositive is inves-
tigated in this section.

Theorem 3. Etrival is a periodic point having prime period-1.

Proof. From (4), we have

F(x, y) ≔ (f(x, y), g(x, y)), (73)

where

f(x, y) � (1 + h(r − ε))x − bhxy,

g(x, y) � (1 − h(d + ε))y + chxy.
(74)

From (73) along with (74), one gets the required results:

F|Etrival
� Etrival. (75)

Theorem 4. Epositive is a periodic point having prime period-
1.

Proof. From (73) along with (74), one gets the required
results:

F |Epositive
� Epositive. (76)

Theorem 5. Etrival is a periodic point of period-2, 3, . . . , n.

Proof. From (73), one gets

F
2
(x, y) � ((1 + h(r − ε))f(x, y) − bhf(x, y)g(x, y),

(1 − h(d + ε))g(x, y) + chf(x, y)g(x, y))⟹F
2
|Epositive

� Epositive,

F
3
(x, y) � (1 + h(r − ε))f2

(x, y) − bhf
2
(x, y)g

2
(x, y),􏼐

(1 − h(d + ε))g2
(x, y) + chf

2
(x, y)g

2
(x, y)􏼑⟹F

3
|Epositive

� Epositive,

⋮

F
i
(x, y) � (1 + h(r − ε))fi− 1

(x, y) − bhf
i− 1

(x, y)g
i− 1

(x, y),􏼐

(1 − h(d + ε))gi− 1
(x, y) + chf

i− 1
(x, y)g

i− 1
(x, y)􏼑⟹F

i
|Epositive

� Epositive.

(77)

So, from (77), one gets the required statement. □

Theorem 6. Epositive is a periodic point of period-2, 3, . . . , n.

Proof. From (77), one gets the required statement:

F
2
|Epositive

� Epositive,

F
3
|Epositive

� Epositive,

⋮

F
i
|Epositive

� Epositive.

(78)

8. Conclusion

In this paper, we have investigated the topological classifi-
cations at fixed points, bifurcation analysis, and chaos in a
model, which is depicted in (4). It is examined that
∀d, ε, h, c, b, r model has a trivial fixed point: Etrival and the
unique positive fixed point: Epositive if r> ε. By existing linear
theory of stability, we have studied the topological classi-
fications at Etrival and Epositive, and conclusion is reported in
Table 2. Furthermore, we have examined the existence of
possible bifurcations at Etrival and Epositive and proved that
model (4) does not undergo flip bifurcation if
(b, c, d, h, r, ε) ∈ FB|Etrival

, and hence, Etrival is degenerated

Table 2: Behavior of model (4) at Etrival and Epositive

Fixed points Respective behavior

Etrival
Sink if 0< h<min (2/ε − r); (2/d + ε){ }, where ε> r; source if h>max (2/ε − r), (2/d + ε){ }, where ε> r

Saddle if (2/ε − r)< h< (2/d + ε); nonhyperbolic if h � (2/ε − r) or h � (2/d + ε)

Epositive

Never stable focus; unstable focus if r> ε; nonhyperbolic if r � ε
Stable node if r> (εh2(d + ε) − 4/h2(d + ε)); unstable node if r< (εh2(d + ε) − 4/h2(d + ε))

Nonhyperbolic if r � (εh2(d + ε) − 4/h2(d + ε))
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with a higher codimension. We have also examined that if
(b, c, d, h, r, ε) ∈ HB|Epositive

, then at Epositive, model (4) does
not undergo N-S bifurcation. Moreover, at fixed point
Epositive, we have proved that model (4) undergoes the flip
bifurcation if (b, c, d, h, r, ε) ∈ FB|Epositive

. Some numerical
simulations are performed not only to demonstrate obtained
theoretical results but also to tell the complex behaviors in
orbits of period-4, period-6, period-8, period-12, period-17,
and period-18.We have also computedmaximum Lyapunov
exponents numerically. By the feedback control method, we
have stabilized chaos existing in the considered model. Fi-
nally, existence of periodic points at Etrival and Epositive of
model (4) is explored.
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[4] T. Räz, “+e volterra principle generalized,” Philosophy of
Science, vol. 84, no. 4, pp. 737–760, 2017.

[5] A. Q. Khan and T. Khalique, “Bifurcations and chaos control
in a discrete-time biological model,” International Journal of
Biomathematics, vol. 13, pp. 1–35, 2020.

[6] J. R. Beddington, C. A. Free, and J. H. Lawton, “Dynamic
complexity in predator-prey models framed in difference
equations,” Nature, vol. 255, no. 5503, pp. 58–60, 1975.

[7] F. Chen, “Permanence and global attractivity of a discrete
multispecies Lotka-Volterra competition predator-prey sys-
tems,” Applied Mathematics and Computation, vol. 182, no. 1,
pp. 3–12, 2006.

[8] X. Chen, “Periodicity in a nonlinear discrete predator-prey
system with state dependent delays,” Nonlinear Analysis: Real
World Applications, vol. 8, no. 2, pp. 435–446, 2007.

[9] N. Fang and X. X. Chen, “Permanence of a discrete multi-
species lotka-volterra competition predator-prey system with
delays,” Nonlinear Analysis: Real World Applications, vol. 9,
no. 5, pp. 2185–2195, 2008.

[10] Q. Fang, X. Li, and M. Cao, “Dynamics of a discrete predator-
prey system with beddington-deangelis function response,”
Applied Mathematics, vol. 03, no. 04, pp. 389–394, 2012.

[11] E.-G. Gu, “+e nonlinear analysis on a discrete host-parasitoid
model with pesticidal interference,” Communications in Non-
linear Science and Numerical Simulation, vol. 14, no. 6,
pp. 2720–2727, 2009.

[12] H. N. Agiza, E. M. ELabbasy, H. EL-Metwally, and
A. A. Elsadany, “Chaotic dynamics of a discrete prey-predator
model with holling type ii,” Nonlinear Analysis: Real World
Applications, vol. 10, no. 1, pp. 116–129, 2009.

[13] H.-F. Huo and W.-T. Li, “Stable periodic solution of the discrete
periodic leslie-gower predator-prey model,” Mathematical and
Computer Modelling, vol. 40, no. 3-4, pp. 261–269, 2004.

[14] L. Li and J. Zhi, “Global stability of periodic solutions for a
discrete predator-prey system with functional response,”
Nonlinear Dynamics, vol. 72, pp. 507–516, 2003.

[15] C. Lu and L. Zhang, “Permanence and global attractivity of a
discrete semi-ratio dependent predator-prey systemwith holling ii
type functional response,” Journal of Applied Mathematics and
Computing, vol. 33, no. 1-2, pp. 125–135, 2010.

[16] X. Liu and D. Xiao, “Complex dynamic behaviors of a dis-
crete-time predator-prey system,” Chaos, Solitons & Fractals,
vol. 32, no. 1, pp. 80–94, 2007.

[17] M. T. Morgan, W. G. Wilson, and T. M. Knight, “Plant
population dynamics, pollinator foraging, and the selection of
self-fertilization,” Be American Naturalist, vol. 166, no. 2,
pp. 169–183, 2005.

[18] M. Zhao and L. Zhang, “Permanence and chaos in a host-
parasitoid model with prolonged diapause for the host,”
Communications in Nonlinear Science and Numerical Simu-
lation, vol. 14, no. 12, pp. 4197–4203, 2009.

[19] M. Zhao, L. Zhang, and J. Zhu, “Dynamics of a host-parasitoid
model with prolonged diapause for parasitoid,” Communi-
cations in Nonlinear Science and Numerical Simulation,
vol. 16, no. 1, pp. 455–462, 2011.

[20] L. Zhu andM. Zhao, “Dynamic complexity of a host-parasitoid
ecological model with the Hassell growth function for the host,”
Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1259–1269, 2009.
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