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Increasing the possible capacity of distributed generations (DGs) supplying to distribution system (DS) is a highly effective
solution to attract the investment of distributed generation (DG) installation in the DS. However, the presence of DGs will affect
the technical indicators of the DS. This paper determines solutions of the DG placement problem for maximizing the size of
distributed generations (DGs) and improving the technical indicators consisting of power loss reduction, increasing of balance
among feeders and balance among branches, and voltage deviation reduction. A max-min method is proposed to combine the
membership objective functions. The location and size of DGs are optimized based on an improved cuckoo search algorithm
(ICSA). The simulation results for the 84-node system show that the proposed multiobjective problem not only helps to increase
the capacity of DGs but also improves the technical factors. Moreover, the DG’s uncertainty is also validated to show its negative
impacts on the technical indicators of the DS. Furthermore, ICSA is worthy for finding the optimal solution for the DG

placement problem.

1. Introduction

DG is small power sources that are connected directly to the
DS [1, 2]. The definition of DG based on its size is a little
different among different countries as well as organizations
[2, 3], but in general, it can be classified into categories as
micro DGs with rating less than 5 kW, small DGs with rating
from 5kW to smaller than 5 MW, medium DGs with rating
from 5MW to smaller than 50 MW, and large DGs with
rating from 50 to 300 MW [2, 4]. The benefits related to
economic, technical, and environmental obtained by in-
stalling of DGs in the distribution systems are remarkable
[5]. Thus, the DG placement problem has attracted the
attention of the researchers.

One of the biggest technical benefits of DG installation
on the DS is to decrease power loss. In addition, because of
operating at low voltage level, power loss of the DS always

takes a higher portion compared to other parts of the power
system. Thus, as installation of DGs on the distribution
system, power loss reduction is one of the most concerned
objectives. In [6], location and size of DGs are optimized for
loss reduction based on genetic algorithm (GA). In [7],
binary particle swarm optimization is presented to find the
optimal location and size of photovoltaic for loss reduction
in the DS. In [8], stud krill herd algorithm is employed for
optimizing DG installation in the DS for minimizing the
losses. Similar to the above studies, the DG installation in the
DS for loss reduction is also addressed in [9-15].
However, installing of DG on the DS affects not only
power loss but also other technical factors. Therefore, some
studies have focused on solving the DG placement problem
to satisfy the multigoal function. In [16], the multigoal
function for DG placement consisting of power loss, op-
erational cost, and voltage deviation reduction is considered
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based on the invasive weed algorithm. In [17], backtracking
search algorithm is presented for the DG installation
problem for losses reduction and voltage profile enhancing.
In [18], the multigoal function for DG placement consisting
of power losses, voltage stability, and voltage profile indexes
is solved based on the quasioppositional teaching learning
algorithm. The location and size of DGs are determined to
enhance the transient stability factor and voltage and de-
crease losses in [19]. In [20], power loss, voltage profile, load
balancing, and voltage stability indexes are the membership
functions considered for optimizing location and size of DGs
in the DS.

In terms of solving technique for the DG placement
problems, there are two major method groups consisting of
the classical optimization methods, such as linear pro-
gramming [21], mixed integer [22, 23], and dynamic pro-
gramming [24], and the metaheuristic methods comprising
of GA [6], particle swarm optimization [7], honey bee
mating optimization [25], cuckoo search [26], runner root
algorithm [27], Salp swarm algorithm [28], etc., in which, the
first method group proved to be more disadvantaged when
compared to the latter group in aspects of quality of obtained
solution and handling constraints for the problem.

Cuckoo search algorithm (CSA) belongs to the second
group method aforementioned. The CSA was inspired by the
generative strategy of cuckoo birds [29]. Since being pro-
posed, CSA has been being used for many optimal problems
in different fields [30] and in the power system field
[26, 31-33]. In addition, to improve the efficiency of the
CSA, alot of improved versions of CSA have been proposed
[34-37], in which, the improved cuckoo search algorithm
(ICSA) in [37] is a recent improved version of CSA that has
been successfully proposed for a problem related to oper-
ation of the distribution system. Moreover, ICSA has
demonstrated a better performance compared to CSA. In
ICSA, the new local search strategy is used for exploiting the
better solution nearby the so-far best solution beside the
searching strategies of the original CSA.

Vietnam is located on the equatorial line and has a long
coastline, which results in a lot of sunshine and wind re-
sources. In recent years, with many positive policies for the
development of renewable energy sources, many electricity
sources related to renewable energy such as photovoltaic and
wind generations have been built and connected to the
electricity system. However, most of them are built with
large-capacity, centralized power generation and linked to
the transmission system. The small-capacity sources con-
nected to the DS are still very limited. One of the reasons for
this situation is that the investment cost per unit of capacity
for small DGs connected to distribution system is higher
than that of large DGs connected to the transmission system.
Therefore, increasing the possible capacity of DGs pumped
into the distribution system is one of the solutions to attract
investment of small DGs installation in the distribution
systems. Increasing DG capacity pumped to the DS will
undoubtedly affect the technical factors of the system such as
load balancing, power loss, nodes’ voltage, and branches’
current. Thus, it is essential to address the problem of DG
placement under multiobjective perspective.
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This paper presents the DG placement problem for
maximizing the size of DGs pumped to the DS and im-
proving the technical indicators related to operating the
distribution system comprising of power loss reduction,
increase of balance among feeders, and balance among
branches and voltage deviation reduction. The fuzzy tech-
nique based on the max-min method is proposed to combine
the membership objective functions. In order to search the
optimal size and location of DGs, ICSA is adapted to solve
the problem. The calculated results for the 84-node practical
distribution system show that the proposed multiobjective
DG placement problem not only helps to increase the DGs’
capacity but it also improves the technical factors of the
system. In terms of solving method, ICSA is one of the
efficient methods for searching location and size of DGs to
satisfy the multiobjective as well as other goals. The main
highlights of this work can be recapitulated as follows:

(i) The problem of optimizing location and size of DGs
is addressed in terms of maximizing DGs’ capacity
pumped to distribution system and improving the
technical indicators of the system

(ii) The max-min technique is proposed for choosing
the final solution for the membership objective
functions

(iii) The ICSA is adapted to optimize the location and
size of DGs in the DS

(iv) The proposed problem and ICSA method are
evaluated on the 84-node practical distribution
system

(v) The multiobjective problem helps to gain more
DGs’ capacity and improvement of technical indi-
cators compared to the case of no DGs placement
and the single-objective problems

(vi) The comparisons of ICSA with other methods in the
literature present the reliability of ICSA for the DG
placement problem

2. Problem Formulation of DG Placement

In this work, the DG placement problem in the DS is
considered to satisfy five objective functions consisting of
power loss reduction, increasing balance among feeders as
well as among branches, increasing the sum of capacity of
DGs connected to the DS, and deviation voltage reduction.
The details of the membership functions are demonstrated as
follows.

2.1. Reduce Power Loss (PL). Because of low voltage level and
high current of the DS, its power loss usually takes a high
portion in the power system’s losses. DG installation is one
of the efficient methods for power loss reduction. The first
goal function considered is to reduce the power loss of the
DS that is presented as follows:

minfl = ZPloss’ (1)

where ) P, is the power loss of the DS.
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2.2. Increase the Balance among the Feeders (BF).
Increasing the balance among the feeders in the DS helps to
reduce the load of the heavy feeders and increase the load for
the light feeders. It contributes to enhancing the available
power capacity of the feeders as well as the distribution
system. The suitable DG installation will improve the bal-
ance of the system. Thus, the second objective function
considered is to enhance the balance among the feeders,
which is determined by the following mathematical
formulation:

min f, = Var[SF’l-], i=1,...,Ng, (2)

where Sp; is the power energy of the ith feeder, N, is the
number of feeders in the DS, and var is the variance function.

2.3. Increase the Balance among the Branches (BB).
Enhancing the balance among the branches in the distri-
bution system helps to transfer the loads from the heavy
branches to other branches. It will help to increase the
transferring capacity of the DS. The DG installation in the
DS not only provides power for on-site demand but also
contributes to reducing the overload and ensuring load
balancing among branches. Therefore, the third objective
function is to increase the balance among the branches,
which is determined by the following mathematical
formulation:

min f; =var[LCL;], i=1,...,Ny, (3)
where LCI, is the load carrying index of the ith branch that is
determined by the quotient of the load current flowing in the
ith branch and its rated current and N, is the number of
lines of the DS.

2.4. Increase the Capacity of DGs Embedded in the DS (CDG).
Compared with the small capacity of DGs, the larger the
capacity of DG is, the smaller the investment cost per unit of
capacity is. However, the large DGs are usually installed in
the transmission system. Thus, maximizing the DGs’ ca-
pacity which can be pumped to the DS is one of the most
effective solutions to entice investors paying for DG in-
stallation on the DS. Thus, the fourth goal function con-
sidered is to enhance the capacity of DGs connected to the
distribution system, which is determined by the following
mathematical formulation:

NG
minf4=<l—M>, (4)

Z PDG,max

where Pg; is the capacity of the ith DG, N is the number of
DGs in the DS, and )’ Pp ., is the total permitted capacity
of DGs pumped to the distribution system.

2.5. Decrease the Deviation Voltage of the DS (DV). The DG
placement is one of the most effective techniques to enhance
the nodes’ voltage of the DS and contribute to decreasing the
voltage deviation. Thus, the deviation voltage reduction is

the final objective function of the DG placement for mul-
tiobjective function. It is formulated as follows:

min fo =V, -V, ., (5)

where V is the amplitude of voltage at the slack bus and
V min 1s the minimum amplitude of voltage in the distri-
bution system.

2.6. Constraints of the DGs Placement on the DS.
Integration of DG into the DS has not caused additional
overload and over/underpermitted voltage. Thus, the fol-
lowing constraints must be ensured:

(i) Voltage and current limits:

I I .
{ Vo <V, <VD o i=12,...,Ny, 6
li )
LCL,<LCI, ., i=12,...,Ny.
(i) where Vi, ‘and VI are the permitted lower and

upper voltage limits. LCI, is the load carrying index
of the ith branch. LCI is the permitted overload
index. Ny, is the number of nodes of the DS.

(ii) Capacity limits of DGs: the total capacity of the DGs
has not been greater than the total loads and losses of
distribution the system

Ny

Ng
Z( Pg; < Z Load; + Z Poses (7)
in i

(i) where Loadj is the jth load of the DS.

3. Improved Cuckoo Search Algorithm for the
DG Placement on the DS

In this section, the overview of ICSA is presented. In ad-
dition, the solution vector and the adaptive function for the
DG placement with the multiobjective function are de-
scribed. Finally, the application of ICSA for finding location
and size of DGs is demonstrated. Details of the aforemen-
tioned sections are presented as follows.

3.1. Improved Cuckoo Search Algorithm. The ICSA is pro-
posed based on the original CSA. Compared to CSA,
ICSA is supplemented with a local search technique for
exploiting around the so-far best solution. Thus, ICSA has
the capability of finding results of the optimization
problem with better quality than CSA. In [37], the ef-
fectiveness of ICSA has been also demonstrated to out-
perform many other improved versions of CSA. The
details of ICSA for typical problem are depicted as
follows:

Step 1 Initialization of the current population of
solutions:

At the beginning of the ICSA, the current population of
solutions is generated randomly as follows:



s; :Slo,j+P1'(5hi,j_Slo,j)> i=1,...,Ngj=1,...,N,,

(8)

where s; is the ith solution in the population with size of
N.. 51, and sy ; are the permitted lower and upper
limits of the jth variable. N, is the number of variables
of the candidate solution vector. p, is a random number
in [0, 1].

After the initial solutions are generated, their quality is
validated by the adaptive function and the solution with
the best adaptive function value (Qy.) is considered as
the so-far best solution (sp.)-

Step 2Production of new solutions based on the Lévy
flight mechanism:

The Lévy flight mechanism helps to produce new so-
lutions that distribute far from the current ones in the
search space. It is formulated as follows:

Snew,i = Si T 9. (Si - Sbest) ® LéVY(9)> (9)

where 9 is the step size that is often chosen to be 1. 6 is
distribution coeflicient in [0, 2]. Lévy (0) is the Lévy
distribution with the distribution coefficient 0. s, is
the so-far best solution. The symbol of ® stands for the
entry-wise multiplications.

After the new solutions are generated, their quality is
validated. Then, the current population is updated
based on the comparison between the adaptive function
value of the new solutions and that of the corre-
sponding ones in the old population. The updated
population is performed by

s = { snew,i’ 1f Qnew,i < Qi’ (10)

1

S otherwise.

From the current population updated, the so-far best
solution is updated again.

Step 3Production of new solutions based on the se-
lective random walk mechanism:

The selective mechanism helps to produce new solu-
tions that distribute near the current solutions. New
solutions are created by adjusting a part of control
variables of the current solutions. It is formulated as
follows:

sitpyc (se=sn) ifps<p,
Snew,i = . (11)
S otherwise,
where p, and p; are a random number in [0, 1]. y is the
mutation index that is chosen to be 0.2. s, and s, are
two candidate solutions taken randomly from the
current population.

Then, equation (10) is used to renew the current
population and the so-far best solution is updated one
more time.

Mr(t,h):{ t=1,...,N

_ Shew,l> if Qnew,l < Qbest’
Sbest =
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Step 4 Production of new solutions nearby the so-far
best solution:

This mechanism helps to generate some new solutions
in the vicinity of the so-far best solution by modifying a
part of variables of the so-far best solution. However,
this mechanism is not executed for each iteration, it is
performed based on a comparison between the adaptive
function value of the so-far best solution in two con-
secutive iterations. If the so-far best solution is not
enhanced in two consecutive iterations, the mechanism
is triggered as follows:

Firstly, there are 2- N, new solutions generated by
changing only one control variable of the so-far best
solution as follows:

Shew, =M(k,:) * Tyt Pyt Spese k= 1"">Nv;l=k> (12)

Snew,l :M(k,:) 'TZ'p5+SbeSt’ k: 1,...,Nv;l:l+k,
(13)

where M is the identity matrix of size N,. 7, and 7, are
the space between the current variables and the new
variables with 7, > 7,. p, and p5 are a random number
between —1 and 1.

Secondly, 2- N, new solutions are also produced by
adjusting some control variables of the so-far best
solution as follows:

Snew,l :Mr(k’:) 'Tl 'p6+5best’ k: ].,...,Nv;l:l'f'k,
(14)

Snew,l :Mr(k’:) '72'P7+Sbest> k: ].,...,Nv;l:l'f'k,
(15)

where pg and p, are random numbers between —1 and
1.

In the above equations, Mr is a matrix of size N, by N,
that its element is defined by the following equation:

1, ifp,>o0,
p7 h=1,...,N,,

VI v

0, otherwise,
(16)

where o is the scale factor that is usually set to 0.8. p; isa
random number between 0 and 1.

From 4- N, new solutions generated, their quality is

evaluated, and the so-far best solution is updated as
follows:

I=1,...,4-N,. (17)
Spesr  Otherwise.

Steps 2 to 4 are implemented until the stopping con-
dition is reached.
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3.2. Solution Vector. To apply ICSA for the DG placement
problem, the unknown variables are location and size of
DGs, in which, location of DG is one of the nodes of the DS
except for the slack bus. Thus, the solution vector is
expressed as follows:

s;=[Lo% S|, i=1,...,N;j=1,...,Ng, (18)

where Lo’ represents location; meanwhile, Si; represents size
of the jth DG in the ith solution.

3.3. The Adaptive Function. To combine the five membership
functions, the max-min approach is proposed for selecting
the final solution as follows [38-43]:

FS = max{min{Fj}}, (19)
where FS is the final quality of each candidate solution. F; is
the normalized vector of the jth objective function and
expressed as follows:

(1, fi<FP,

fmax_f

_ j j min ma

F;=1 e i< fi<fi™ (20)
J J

o frz

where f}“i“ and f™ are, respectively, the minimum and
maximums value of the jth membership goal function. f is
the jth objective function value.

From the fact that the value of each F ; is not greater than
one, the maximization problem described in (19) is altered to
the minimization problem as follows [43]:

FS =1 - min {F;}. (21)

In addition, each candidate solution has to satisfy the
constraints of the DG placement problem consisting of
current and voltage limits and capacity limit of DGs.
Therefore, the adaptive function of the DG placement for
multiobjective function is formulated as follows:

min f = K- FS+ K, - [(max(V , - Vi), 0)
+(max(V o = Vi )»0) +(max(LCI,,, — LCI}, ), 0)],
(22)

where K and K, are the scale factor and penalty coefficient,
respectively. V.. and V. are the maximum and minimum
voltages and LCI,, is the maximum load carrying index of
the distribution system.

3.4. Steps of ICSA for the DGs Placement on the Distribution
System. The location and the capacity of DGs are considered
as control variables of the problem. These variables are
selected by ICSA to satisfy the member goals and ensure the
considered constraints, in which, the member goals consist
of reducing power loss, improving the balance of feeders,

improving the balance of branches, increasing the capacity
of DGs, and decreasing voltage deviation meanwhile the
constraints are limits of current, voltage, and DG capacity.
For each candidate solution vector including the position
and capacity of DGs, the bus data parameters of the dis-
tribution system are updated and the power flow problem is
solved to calculate the value of the component target
tunctions and the constraint conditions. Then, the solution
vector’s quality is determined by calculating the fitness
function presented in (22). The process of creating and
updating solution vector to find the best solution for the
problem is done based on ICSA. The proposed ICSA ap-
plication for the DG placement problem is described in
detail as follows:

Step 1 Set control parameters of ICSA:

To apply ICSA for the DG placement, the control
parameters of ICSA are required to be set before ex-
ecuting, consisting of population size N, dimension of
the problem N, the space between the current variable
and the new variable 7, and 7,, and the maximum
number of the adaptive function evaluations AFE_,..

Step 2 Generate the current population of solutions:

Generate randomly the current population by using (8)
and adjust them according to (18) to be suitable for the
DG placement problem.

Evaluate the quality of each candidate solution by the
adaptive function as described in (22).

Determine the so-far best solution sy, with the best
adaptive function value (Qp.)-

Step 3 Generate new solutions based on the Lévy flight
mechanism:

Generate the new solutions by (9) and adjust them
according to (18).

Validate the quality of each new solution by using the
adaptive function in (22).

Update the current population by using (10).

Update the so-far best solution s.., with the best
adaptive function value (Q.q)-

Step 4 Generate new solutions based on the selective
random walk mechanism:

Generate the new solutions by using (11) and adjust
them according to (18).

Evaluate the quality of each solution by using the
adaptive function in (22).

Update the current population by using (10).

Update the so-far best solution s, with the best
adaptive function value (Qp.q)-

Step 5 Check the condition for triggering the mecha-
nism of generating new solutions nearby the so-far best
solution:

In this paper, the condition for activating the mecha-
nism is based on the number of successive iterations
that the so-far best adaptive function value is not
improved (it,). After it iterations, the so-far best



solution is not enhanced; the mechanism of creating
new solutions nearby the current best one is activated
by performing step 6. Otherwise, the searching process
will move to step 7.

Step 6 Generate new solutions nearby the so-far best
solution:

In case of the mechanism activated, the following
procedures are performed:

Generate 4 - N, new solutions by using (12) to (15) in
turn and adjust them according to (18).

Validate the quality of each new solution by using the
adaptive function in (22).

Update the so-far best solution s,., with the best
adaptive function value (Q.,) by using (17).

Step 7 Check the stopping condition:

In general, ICSA will stop finding better solutions as the
number of the adaptive function evaluations (AFE)
reaches the maximum value AFE_, . However, in order
to avoid wasting simulation time, an additional stop-
ping condition is the maximum number of consecutive
generations that the best solution function is not im-
proved (ityp). After ityp consecutive iterations, the so-
far best solution is still not better than before, ICSA will
stop searching, and the so-far best solution is examined
as the optimal result of the DG placement problem with
the multiobjective function. The steps of ICSA for the
multiobjective DG placement are demonstrated in
Figure 1.

4. Numerical Results

In this section, the efficiency of the problem and the pro-
posed method are evaluated on a practical distribution
system [44]. It has the 11.4kV level, 11 feeders, and 13 open
switches. The total active and reactive loads are 28.35 MW
and 20.70 MV Ar, respectively. The diagram of the system is
presented in Figure 2. The data of the system is referenced
from [44]. In addition, the impact of uncertainty of DG on
the obtained results is also analyzed in this section. The
details of them are as follows:

4.1. Finding the Optimal Location and Size of DGs. For op-
timizing location and capacity of DGs in the system, the
rated current of all branches is assumed equal to 200 A. At
the initial state, the power loss and the minimum voltage
amplitude are 531.9924 kW and 0.9285 pu, respectively. The
BF and BB indexes are 1.4418 and 0.1475, respectively. Note
that, with the rated current of 200A for all branches, the
maximum LCI of the system is 1.1748. It means that there
exists a branch that is overloaded about 17.48%. The number
of DGs connected to the system is limited to three.

For applying ICSA to find DGs’ location and size, the
population size N is selected to be 30. Because the number
of DGs is limited to three, the dimension of the problem N,
is set to 6. The maximum number of the adaptive function
evaluations AFE_,. is set to 18000 corresponding to about
300 iterations. The space between the current variable and
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- Set control parameters: Ny, N,, 7y, 7o, AFE, .., it;,, and ityp
- Set current iteration it = 1, counters co;, co,, and AFE = 0

v
- Generate randomly the current population by using (8)
- Adjust the new solutions using (18)
- Evaluate the quality of each solution by using (22)
- AFE = AFE + N,
- Determine the best so-far solution

[

*‘
- Generate the new solutions by using (9)
- Adjust the new solutions by using (18)
- Evaluate the quality of each solution by using (22)
- AFE = AFE + N,
- Update the current population by using (10)
- Update the best so-far solution

v

- Generate the new solutions by using (11)

- Adjust the new solutions by using (18)

- Evaluate the quality of each solution by using (22)
- AFE = AFE + N,

- Update the current population by using (10)

- Update the best so-far solution

- Generate the new solutions by using (12-15)

- Adjust the new solutions by using (18)

- Evaluate the quality of each solution by using (22)
- AFE = AFE + 4.N,

- Update the best so-far solution by using (17)
-Setcoy =0

| Output: the best solution |

FiGure 1: The flowchart of ICSA for the DGs placement problem.

the new variables 7, and 7, is, respectively, set to 4 and 2. The
number of consecutive iterations that the so-far best
adaptive function value is not improved it;, is set to 3. Fi-
nally, the maximum number of consecutive iterations that
the best solution function is not improved ityp is set to 50. If
the scale coefficient of the objective function is much smaller
than the penalty coeflicient for violation of constraints, the
objective function value of the obtained solution will be
trivial because the value of constraints takes a high portion in
the adaptive function value which consists of the objective
function and the constraints. Otherwise, if the scale
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FIGURE 2: The 84-node test distribution system.

coeflicient of the objective function is much higher than the
penalty coefficient, the obtained solution may violate deeply
the constraints. Based on the initial value of the objective
functions and many experiments, the scale factor K, and
penalty coeflicient K, are selected to be 10000 and 1000,
respectively.

To calculate the adaptive function value for the multigoal
function, the minimum and maximum values of the
membership function described in (20) have to be deter-
mined. Thus, for obtaining the maximum and minimum
values of each membership function, the ICSA is applied to
solve the DG placement problem for each single-objective
function to determine the minimum value of each mem-
bership function. The maximum value of each membership
function is calculated based on the system without DG
placement. Both of the maximum and minimum values for
the membership functions are presented in Table 1.

The obtained results for the single-objective and mul-
tiobjective functions are shown in Table 2. By using the
multigoal function, the optimal location and size of three
DGs are 5.5357 MW at the 80th node, 5.0542 MW at the 6th
node, and 5.4158 MW at the 32th node. For the total capacity
of 16.0058 MW located on the above locations, it caused the
power loss of 416.7929kW, the BF of 0.8329, the BB of
0.0949, and the DV of 0.0512 corresponding to V . of
0.9488 and LCI,,, of 1.1454. It can be seen that all of these
indexes have been improved compared to the case of without
DG installation, in which, power loss has been decreased
from 531.9924 kW to 416.7929 kW. The BF and BB indexes

TaBLE 1: The maximum and minimum values of the membership
functions for the multigoal function.

Item fi f2 f3 fa fs
Maximum 531.9924 1.4418 0.1475 1.0000 0.0715
Minimum 359.1712 0.3663 0.0949 0.0004 0.0399

have been decreased from 1.4418 and 0.1475 to 0.8329 and
0.1177, respectively. The minimum voltage has been raised
from 0.9285 to 0.9488 and the maximum load carrying index
has been reduced from 1.1748 to 1.1454 after installation of
DGs. For the cases of single-objective optimization, the
target index is significantly improved, but the other indi-
cators, which are affected by location and capacity of DGs,
are worse than those of the case of no DG installation. For
example, for the single-objective function of power loss
reduction, the total loss has been decreased from
531.9924 kW to 359.1712kW corresponding to 32.49% re-
duction. The BF and BB indexes as well as the minimum
voltage amplitude have also been improved after installing
9.2402 MW of DGs in the system. In more details, the BF and
BB indexes have been reduced from 1.4418 and 0.1475 to
1.1321 and 0.1028, respectively. The minimum voltage has
been raised from 0.9285 pu to 0.9556 pu. However, the
LCI,, index has not been improved after placing of DGs for
power loss reduction. The target index is improved but the
other indexes are worse than before for the case with the
single-objective functions of BF, BB, CDG, and DV indexes.
This situation has been completely overcome when solving
the DG placement problem satisfying multiobjective func-
tion. The demonstration for this point can be viewed in
Table 3. The balance among membership functions shown by
their normalized vector value is better than that of the single-
objective functions with smaller standard deviation (STD)
compared with other cases.

Figures 3 shows the current profiles of the system. From
the figure, in the case of multigoal function, the load carrying
index of branches reaches better balance than other cases.
Except for the case of single-goal function of BB index, the
maximum carrying factor index obtained by the multigoal
function has been lower than that of other single-objective
goals. The voltage profiles of all cases are shown in Figure 4.
From the figure, the voltage profile has been enhanced
significantly after installation of DGs by the multigoal
function. In addition, except for the case of single-goal
function of DV index, the voltage profile obtained in the case
of multiobjective function is the best one with the better
improvement compared to other cases. The capacity of
feeders of all cases is presented in Figure 5. Similar to the
current and voltage profiles, the capacity of feeders obtained
in the case of multiobjective function can reach better
balance than those of other cases except for the case of
single-objective function of BF index.

The performance of ICSA for the multigoal DG place-
ment as well as the single-objective functions is shown in
Table 4. The convergence curve in each trial as well as the
maximum, minimum, and average convergence curves in 30
trials for the multiobjective DG placement is presented in
Figure 6. The convergence characters of ICSA for five single-
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TaBLE 2: Comparisons of the multiobjective function with five single-objective functions.

Objective function . . > DG

(OF) Location and size of DGs PL (kW) BF BB CDG DV (MW) Vmin (pu) LCI..
No DGs — 531.9924 1.4418 0.1475 1 0.0715 0 0.9285 1.1748
Min (f,) 3.5835(80), 2.5263 (72),3.1304 (7) 359.1712 1.1321 0.1028 0.6741 0.0444 9.2402 0.9556  1.1748
Min (f,) 52679 26223)8:(;;2)15 (46), 673.5146 0.3663 0.1796 0.4583 0.0715  15.3577 0.9285  1.1748
Min (f;) 2.2288 (41), 2.7389 (9), 2.4391 (25) 439.7255 0.8396 0.0949 0.7387 0.0521 7.4069 0.9479  1.1688
Min (f,) 9.4350 (32), 9.4303 (2), 9.4731 (78) 654.703 3.741 0.1874 0.0004 0.0567  28.3384 0.9433  1.6567
Min (f5) 2.8674 (83), 3.7468 (8), 1.7221 (72) 378.0717 1.1011 0.1058 0.7060 0.0399 8.3362 0.9601 1.1748
Multiob;. 5.5357 (80), 5.0542 (6), 5.4158 (32) 416.7929 0.8329 0.1177 0.4354 0.0512  16.0058 0.9488  1.1454

TaBLE 3: The balance among the membership functions.

OF F, F, F, F, F, STD
Min (f;) 1 02880 08498 0.3261 0.8576 0.3319
Min (f,) 0 1 0 05419 0 04522
Min (f;) 0.5339 05599 1 02614 06139 0.2649
Min (f,) 0 0 0 1 04684 0.4434
Min (f;) 0.8906 03169 07928 02942 1 03309
Multiobj.  0.6666 0.5662 0.5665 0.5648 0.64241 0.0493

objective functions are shown in Appendix, in which, the PL
reduction is presented in Figure 7, the BF reduction is shown
Figure 8, the BB reduction is presented in Figure 9;
meanwhile, Figure 10 and Figure 11 show the objective of
maximum of DGs capacity and deviation voltage reduction,
respectively. From Table 4 and Figure 6, for the multi-
objective function, ICSA usually converges about 115 iter-
ations. The maximum number of convergence iterations is
201 iterations that has happened for only one trial though
the maximum number of iterations is chosen to be 300. This
trend also occurs for the single-goal optimization cases. The
short number of convergence iterations is due to the
stopping condition of the algorithm. When the adaptive
function between consecutive iterations is not improved, the
number of iterations is not increased and recored as final
iteration. Furthermore, the average curve for 30 runs con-
verges very close to the minimum characteristic curve as well
as the average adaptive function value is quite close to its
minimum value with a small standard deviation. This
demonstrates the stability of ICSA for optimizing location
and size of DGs. The average run times of each trial for the
multiobjective function are about 87.7417 seconds that is
suitable for the complex practical system as the 84-node
system. The achievement promises positive results for using
ICSA to solve DG problem to satisfy other goals.

The multiobjective function in the paper is first proposed.
Thus, in order to compare the effectiveness of ICSA with the
previous studies, the single-goal optimization problem for
power loss reduction is used. This single-goal optimization
problem is also the case to find the smallest value of the power
loss reduction membership function that ICSA has reached
before solving the multiobjective problem. The results

compared with some recent studies are demonstrated in
Table 5. The results presented that the installation locations of
the three DGs obtained are completely similar to those of the
stochastic fractal search algorithm (SFSA) [45] and the exact
loss formula-based analytical approach (ELF) [46] while the
optimum power value of the DGs has a slight difference.
Specifically, by using ICSA, the capacity of the DGs installed
at the 80th, 72th, and 7th are 3.5835, 2.5263, and 3.304 MW,
respectively, while this value is {3.5847 (80), 2,883 (72) 3,139
(7)} and {3.5996 (80), 2.5166 (72), 3.1045 (7)} for SFSA and
ELF. The power loss obtained by ICSA is 359.1712 kW while
this value is 359.7300 and 359.2000 kW for SFSA and ELF,
respectively, which are slightly higher than that of ICSA. The
value of power loss obtained by using ICSA compared to the
above methods shows the efficiency and reliability of the
proposed ICSA approach.

4.2. Impact of Uncertainty of DG on the Obtained Results.
In order to evaluate the impact of the DG uncertainty, the
2nd DG is assumed to be a wind turbine and the power of the
remaining DGs is kept constant. In this case, based on the
optimal DG size that has been gained by ICSA and the wind
speed at the installation area, the DG capacity at different
wind speed values and their effect on the technical indicators
of the distribution system are evaluated as follows:

The uncertainty of wind speed can be modeled based on
the Weibull PDF as follows [47-52]:

_h i\ e
fo=2() e

where h is the shape coefficient that is chosen to be 2 [49]. c is
the scale coefficient that is chosen based on the mean wind
speed at the installation area by ¢ = 1.128v,,. [49, 53].

The probability of the state ith with the wind speed in the
range of v;; and v,, is determined as follows [49, 53]:

(23)

Pro(v;) = Jm f(v)dv. (24)

The generated power of the DG based on wind turbine
corresponding to the state ith is calculated as follows [49]:
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FIGURE 4: Voltages of the 84-node system for the cases of DGs placements.
(0, 0< v, < Vep» 16-20, and 20-25 m/s and the mean wind speed at this area
is 6.07 m/s. The parameters of the DG based on the wind
Ve — s turbine consisting of v, v,, and v, are, respectively, 4, 14,
p, ;m_ » S Vg SV SV, and 25 m/s. The probabilities of the speed states based on the
P, =1 T (25)  Weibull PDF model according to (23) and (24) are given in
Figure 12.
Py, Ve S Vi < Vo The obtained parameters of the wind speed state and
the output power of DG corresponding to the velocity
o, Voo < Vani» states are given in Table 6, wherein the 1st column in-

where v,; is the mean wind speed of the state ith. v and v,
are the cut-in and cut-off speeds of the DG and v, is its rated
speed.

It is assumed that the wind speed at the DG installation
area is divided into states including 0-4, 4-8, 8-12, 12-16,

dicates the name of the wind speed states. The 2nd and 3rd
columns indicate the speed limits and the mean speed of
the states. The 4th column shows the probability values of
each state that are determined by (24). The 5th column
presents the output power of the DG for each state, which
is obtained by (25).
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Power (MVA)

...... No DGs ------ CDG obj.
——— PLobj. ——— DV obj.
,,,,,, BF obj. —— Multiob;.
—-—- BBobj

FIGURE 5: The capacity of feeders of the 84-node system for the cases of DGs placements.

TaBLE 4: The performance of ICSA for the DGs placement in the 84-node system.

The adaptive function Convergence iteration .
OF . o o Run times (sec)
Max. Min. Average Standard deviation =~ Max. Average Standard deviation
Min (f,) 3713189 3591887 3632150 32755 123 86 15.8739 59.676
Min (f,) 6656.3658  3859.2445  4849.6476 1232 202 107 39.5122 80.9646
Min (f3;) 1144.2555 1119.5946 1138.7884 5.5796 108 69 11.0451 49.4073
Min (f,) 832.5342 667.4547 735.4465 39.6525 211 96 37.4920 92.1776
Min (f5) 574.0958 574.0958 574.0958 0 95 19 9.3371 46.8115
Multiobj. 5489.4966  4498.5513 4700.1722 205.6555 201 115 41.8766 87.7417

11000

10000 |
9000
8000
7000
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Adaptive function value

5000

4000 i i i i i i i i i i
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Iteration

FIGURE 6: Convergence curves for the multiobjective function.
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Figure 8: Convergence curves for the single-goal function of BF reduction.

The results show that, when the wind speed is lower than
the rated speed of the DG, the generated power of the DG
decreases. Specifically, when the wind speed is below the cut-
off value, the output power of DG is 0 and when the wind
speed is in the range of 4-8 m/s in the state no. 2, the DG’s
power only reaches 1.01084 MW corresponding to about
20% of its rated power or in the state no. 3, the DG’s power
reaches 3.03252 MW corresponding to about 60% of the
rated power when the wind speed reaches 8-12 m/s. Thus, it
is necessary to validate the impact of the output power of this
DG at the states no. 1, no. 2, and no. 3 on the technical factors
of the distribution system. It is noted that the states no. 4, no.
5,and no. 6 are identical to the optimal solution in the case of

multigoal function DG placement and the state no. 7 is
similar to the state no. 1.

The calculation results for the states no. 1 to no. 4 are
given in Table 7. For the states no. 1 and no. 2, the
component target functions including PL, BF, BB, CDG,
and DV are all higher than those of the state no. 4
wherein their value reaches the worst value for the state
no. 1. For the state no. 3 when DG output power reaches
60% of the rated capacity, the power loss and load bal-
ancing index among the branches are lower than that of
the state no. 4, but the feeder balance index and the DG
capacity index are higher than those of the state no. 4.
Therefore, it can be seen that the technical indicators
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Ficure 10: Convergence curves for the single-goal function of maximum of DGs capacity.

have been negatively affected when the wind speed
changes.

The balance among the member target functions given
in Figure 13 shows that state no. 3 is the best one
compared to the states no. 1 and no. 2 when the balance
characteristic among member functions is almost similar
to the state no. 4. The comparison of capacity among
feeders, load carrying coeflicient among branches, and

node voltage for the wind speed states are shown in
Figures 8(b)-8(d), respectively. When the DG output
power is much lower than its rated value, it can cause high
voltage drop and power loss in the system. Therefore, the
process of designing, installing, and operating DG based
on renewable energy such as wind turbine should con-
sider the uncertainty of DG to determine suitable op-
eration measures.
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TaBLE 5: Comparisons of the single-goal function of power loss reduction with other methods.
Method Location and size of DGs Ap (kW)  Loss reduction BF BB Y DG (MW) V.. (pu) LCI,,,
No DGs — 531.9924 — 1.4418 0.1475 0 0.9285 1.1748
ICSA 3.5835 (80), 2.5263 (72), 3.1304 (7)  359.1712 32.49% 1.1321 0.1028 9.2402 0.9556 1.1748
SFSA [45]  3.5847 (80), 2.8350 (72) 3.1389 (7)  359.7300 32.38% — — 9.5586 0.9557 —
ELF [46]  3.5996 (80), 2.5166 (72), 3.1045 (7)  359.2000 32.48% - - 9.2207 0.9554 -
0.14 T T T T T
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FIGURE 12: Weibull PDF corresponding to wind speed states.
TaBLE 6: Wind speed probabilities and the corresponding power of the DG.
State v; Vi Pro(v;) P; (MW)
State no. 1 0-4 4 0.2891 0
State no. 2 4-8 6 0.4555 1.01084
State no. 3 8-12 10 0.2090 3.03252
State no. 4 12-16 14 0.0421 5.0542
State no. 5 16-20 18 0.0041 5.0542
State no. 6 20-25 22.5 0.0002 5.0542
State no. 7 >25 - 0 0
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TaBLE 7: Impacts of the DG output power on technical indicators of the distribution system.

State Location and size of DGs PL (kW) BF BB CDG DV YDGMW) V. (pu) LCI,,,
State no. 1 5.5357 (80), 0 (6), 5.4158 (32) 473.7643 1.0347 0.1305 0.6137 0.0715 10.9516 0.9285  1.1454
State no. 2 5.5357 (80), 1.01084 (6), 5.4158 (32) 428.0447 0.8689 0.1197 0.5780 0.0625 11.9624 0.9375  1.1454
State no. 3 5.5357 (80), 3.03252 (6), 5.4158 (32) 389.8885 0.8458 0.1126 0.5067 0.0512 13.9841 0.9488  1.1454
State no. 4 (multiobj.) 5.5357 (80), 5.0542 (6), 5.4158 (32) 416.7929 0.8329 0.1177 0.4354 0.0512 16.0058 0.9488  1.1454
1 T T T 5 T T T T T T T T T
A
2 4b /’ \\ - . ]
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G T 3E SN N AN /N /]
> 5} . v \ / N/ 0N /
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FIGURE 13: The balance among member functions, feeder and branch balance, and the node voltages corresponding to wind speed states.

5. Conclusion

Placement of DGs in the DS not only reduces power loss
but also affects many other technical factors of the DS.
This paper presents the method of optimizing the location
and capacity of DGs in the DS to satisfy the technical
criteria including power loss reduction, increase of bal-
ance among feeders as well as balance among branches,
and voltage deviation reduction. In addition, to attract
investment for installing of DGs on the DS, the maxi-
mizing DG’s capacity that can be pumped to the DS is also
considered as a membership objective function. In terms
of the solving method, ICSA is first proposed to apply for
the problem of optimizing position and size of DGs. The
simulated results on the practical complex distribution
system show that the indicators that need to be optimized
are improved by using the multiobjective problem and the
satisfaction among component objectives is better than

the results gained by using the single-objective problems.
In addition, the uncertainty of DG is also evaluated to
show the negative impacts of the uncertainty of DG on the
indicators of the system. Furthermore, the comparisons of
ICSA with other studies in the literature have also shown
that the effectiveness of ICSA is remarkable and promising
to be one of the most reliable methods for DG installation
problem.

Data Availability

Data of the 84-node distribution system were taken from
[44].

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this paper.



Mathematical Problems in Engineering

References

(1]

(2]

(3]

[6

(10]

(11

(12

(13]

(14]

K. Alanne and A. Saari, “Distributed energy generation and
sustainable development,” Renewable and Sustainable Energy
Reviews, vol. 10, no. 6, pp. 539-558, 2006.

T. Ackermann, G. Andersson, and L. Soder, “Distributed
generation: a definition,” Electric Power Systems Research,
vol. 57, no. 3, pp- 195-204, 2001.

N. Acharya, P. Mahat, and N. Mithulananthan, “An analytical
approach for DG allocation in primary distribution network,”
International Journal of Electrical Power ¢ Energy Systems,
vol. 28, no. 10, pp. 669-678, 2006.

P. Paliwal, N. P. Patidar, and R. K. Nema, “Planning of grid
integrated distributed generators: a review of technology,
objectives and techniques,” Renewable and Sustainable Energy
Reviews, vol. 40, pp. 557-570, 2014.

W. L. Theo, J. S. Lim, W. S. Ho, H. Hashim, and C. T. Lee,
“Review of distributed generation (DG) system planning and
optimisation techniques: comparison of numerical and
mathematical modelling methods,” Renewable and Sustain-
able Energy Reviews, vol. 67, pp. 531-573, 2017.

S. Ganguly and D. Samajpati, “Distributed generation allo-
cation on radial distribution networks under uncertainties of
load and generation using genetic algorithm,” Institute of
Electrical and Electronics Engineers Transactions on Sustain-
able Energy, vol. 6, no. 3, pp. 688-697, 2015.

N. Phuangpornpitak and S. Tia, “Optimal photovoltaic
placement by self-organizing hierarchical binary particle
swarm optimization in distribution systems,” Energy Proce-
dia, vol. 89, pp. 69-77, 2016.

S. A. ChithraDevi, L. Lakshminarasimman, and
R. Balamurugan, “Stud Krill herd Algorithm for multiple DG
placement and sizing in a radial distribution system,” Engi-
neering Science and Technology, an International Journal,
vol. 20, no. 2, pp. 748-759, 2017.

T.N. Ton, T. T. Nguyen, A. V. Truong, and T. P. Vu, “Optimal
location and size of distributed generators in an electric
distribution system based on a novel metaheuristic algo-
rithm,” Engineering, Technology & Applied Science Research,
vol. 10, no. 1, pp. 5325-5329, 2020.

N. Khuan, S. R. A. Rahim, M. H. Hussain, A. Azmi, and S. A.
Azmi, “Integration of distributed generation and compen-
sating capacitor in radial distribution system via firefly al-
gorithm,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 16, no. 1, pp. 67-73, 2019.

M. Abdelbadea, T. A. Boghdady, and D. Khalil Ibrahim,
“Enhancing active radial distribution networks by optimal
sizing and placement of DGs using modified crow search
algorithm,” Indonesian Journal of Electrical Engineering and
Computer Science, vol. 16, no. 3, pp. 1179-1188, 2019.

A. Rajendran and K. Narayanan, “Optimal multiple instal-
lation of DG and capacitor for energy loss reduction and
loadability enhancement in the radial distribution network
using the hybrid WIPSO-GSA algorithm,” International
Journal of Ambient Energy, vol. 41, no. 2, pp. 129-141, 2018.
T. P. Nguyen, D. N. Vo, and T. T. Tran, “Optimal number,
location, and size of distributed generators in distribution
systems by symbiotic organism search based method,” Ad-
vances in Electrical and Electronic Engineering, vol. 15, no. 5,
pp. 724-735, 2018.

M. Subramaniyan, S. Subramaniyan, M. Veeraswamy, and
V. R. Jawalkar, “Optimal reconfiguration/distributed gener-
ation integration in distribution system using adaptive
weighted improved discrete particle swarm optimization,”

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

15

COMPEL-The international journal for computation and
mathematics in electrical and electronic engineering, vol. 38,
no. 1, pp. 247-262, Article ID 08-2017-0344, 2018.

D. Q. Hung and N. Mithulananthan, “Multiple distributed
generator placement in primary distribution networks for loss
reduction,” Institute of Electrical and Electronics Engineers
Transactions on Industrial Electronics, vol. 60, no. 4,
pp. 17001708, 2013.

D. Rama Prabha and T. Jayabarathi, “Optimal placement and
sizing of multiple distributed generating units in distribution
networks by invasive weed optimization algorithm,” Ain
Shams Engineering Journal, vol. 7, no. 2, pp. 683-694, 2016.
A. El-Fergany, “Optimal allocation of multi-type distributed
generators using backtracking search optimization algo-
rithm,” International Journal of Electrical Power & Energy
Systems, vol. 64, pp. 1197-1205, 2015.

S. Sultana and P. K. Roy, “Multi-objective quasi-oppositional
teaching learning based optimization for optimal location of
distributed generator in radial distribution systems,” Inter-
national Journal of Electrical Power & Energy Systems, vol. 63,
pp. 534-545, 2014.

M. Nayeripour, E. Mahboubi-Moghaddam, J. Aghaei, and
A. Azizi-Vahed, “Multi-objective placement and sizing of
DGs in distribution networks ensuring transient stability
using hybrid evolutionary algorithm,” Renewable and Sus-
tainable Energy Reviews, vol. 25, pp. 759-767, 2013.

M. H. Moradi, A. Zeinalzadeh, Y. Mohammadi, and
M. Abedini, “An efficient hybrid method for solving the
optimal sitting and sizing problem of DG and shunt capacitor
banks simultaneously based on imperialist competitive al-
gorithm and genetic algorithm,” International Journal of
Electrical Power & Energy Systems, vol. 54, pp. 101-111, 2014.
A. Keane and M. O’Malley, “Optimal allocation of embedded
generation on distribution networks,” Institute of Electrical
and Electronics Engineers Transactions on Power Systems,
vol. 20, no. 3, pp. 1640-1646, 2005.

S. Kaur, G. Kumbhar, and J. Sharma, “A MINLP technique for
optimal placement of multiple DG units in distribution
systems,” International Journal of Electrical Power ¢ Energy
Systems, vol. 63, pp. 609-617, 2014.

Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and
R. Seethapathy, “Optimal renewable resources mix for dis-
tribution system energy loss minimization,” Institute of
Electrical and Electronics Engineers Transactions on Power
Systems, vol. 25, no. 1, pp. 360-370, 2010.

N. Khalesi, N. Rezaei, and M. -R. Haghifam, “DG allocation
with application of dynamic programming for loss reduction
and reliability improvement,” International Journal of Elec-
trical Power ¢ Energy Systems, vol. 33, no. 2, pp. 288-295,
2011.

N. Ghadimi, “Using HBMO algorithm to optimal sizing &
sitting of distributed generation in power system,” Bulletin of
Electrical Engineering and Informatics, vol. 3, no. 1, pp. 1-8,
2014.

T. T. Nguyen, A. V. Truong, and T. A. Phung, “A novel
method based on adaptive cuckoo search for optimal network
reconfiguration and distributed generation allocation in
distribution network,” International Journal of Electrical
Power & Energy Systems, vol. 78, pp. 801-815, 2016.
A.V.Truong, T.N. Ton, T. T. Nguyen, and T. L. Duong, “Two
states for optimal position and capacity of distributed gen-
erators considering network reconfiguration for power loss
minimization based on runner root algorithm,” Energies,
vol. 12, no. 1, p. 106, 2019.



16

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

K. S. Sambaiah and T. Jayabarathi, “Optimal reconfiguration
and renewable distributed generation allocation in electric
distribution systems,” International Journal of Ambient En-
ergy, vol. 0, no. 0, pp. 1-14, 2019.

X. S. Yang and S. Deb, “Cuckoo Search via Lévy Flights,” in
Proceedings of the 2009 World Congress on Nature And Bi-
ologically Inspired Computing, NABIC 2009-Proceedings,
pp- 210-214, Coimbatore, India, December 2009.

X.-S. Yang and S. Deb, “Cuckoo search: recent advances and
applications,” Neural Computing and Applications, vol. 24,
no. 1, pp. 169-174, 2014.

T. T. Nguyen, D. N. Vo, and A. V. Truong, “Cuckoo search
algorithm for short-term hydrothermal scheduling,” Applied
Energy, vol. 132, pp. 276-287, 2014.

Z. Moravej and A. Akhlaghi, “A novel approach based on
cuckoo search for DG allocation in distribution network,”
International Journal of Electrical Power ¢ Energy Systems,
vol. 44, no. 1, pp. 672-679, 2013.

T. T. Nguyen and A. V. Truong, “Distribution network
reconfiguration for power loss minimization and voltage
profile improvement using cuckoo search algorithm,” Inter-
national Journal of Electrical Power & Energy Systems, vol. 68,
pp. 233-242, 2015.

E. Afzalan and M. Joorabian, “An improved cuckoo search
algorithm for power economic load dispatch,” International
Transactions On Electrical Energy Systems, vol. 25, no. 6,
pp. 958-975, 2015.

A. Majumder and D. Laha, “A new cuckoo search algorithm
for 2-machine robotic cell scheduling problem with sequence-
dependent setup times,” Swarm and Evolutionary Compu-
tation, vol. 28, pp. 131-143, 2016.

H. Rakhshani and A. Rahati, “Snap-drift cuckoo search: a
novel cuckoo search optimization algorithm,” Applied Soft
Computing, vol. 52, pp. 771-794, 2017.

T.T. Nguyen and T. T. Nguyen, “An improved cuckoo search
algorithm for the problem of electric distribution network
reconfiguration,” Applied Soft Computing, vol. 84, p. 105720,
2019.

G. A. A. Brigatto, C. C. B. Carmargo, and E. T. Sica, “Mul-
tiobjective Optimization of Distributed Generation Portfolio
Insertion Strategies,” in Proceedings of the 2010 IEEE/PES
Transmission And Distribution Conference And Exposition,
pp- 622-628, Latin America, T and D-LA, New Orleans, LA,
USA, November 2010.

I. J. Ramirez-Rosado and J. A. Dominguez-Navarro, “Possi-
bilistic model based on fuzzy sets for the multiobjective
optimal planning of electric power distribution networks,”
Institute of Electrical and Electronics Engineers Transactions on
Power Systems, vol. 19, no. 4, pp. 1801-1810, 2004.

M. -R. Haghifam, H. Falaghi, and O. P. Malik, “Risk-based
distributed generation placement,” IET Generation, Trans-
mission & Distribution, vol. 2, no. 2, pp. 252-260, 2008.

K. Nekooei, M. M. Farsangi, H. Nezamabadi-pour, and
K.Y. Lee, “An improved multi-objective harmony search for
optimal placement of DGs in distribution systems,” Institute
of Electrical and Electronics Transactions on Smart Grid, vol. 4,
no. 1, pp. 557-567, 2013.

D. Sudha Rani, N. Subrahmanyam, and M. Sydulu, “Multi-
Objective Invasive Weed Optimization - an application to
optimal network reconfiguration in radial distribution sys-
tems,” International Journal of Electrical Power & Energy
Systems, vol. 73, pp. 932-942, 2015.

T. T. Nguyen, T. T. Nguyen, A. V. Truong, Q. T. Nguyen, and
T. A. Phung, “Multi-objective electric distribution network

(44]

(45]

(46]

(47]

(48]

(49]

(50]

[51]

(52]

(53]

Mathematical Problems in Engineering

reconfiguration solution using runner-root algorithm,” Ap-
plied Soft Computing, vol. 52, pp. 93-108, 2017.

C. T. Su and C. S. Lee, “Network reconfiguration of distri-
bution systems using improved mixed-integer hybrid dif-
ferential evolution,” Institute of Electrical and Electronics
Transactions on Power Delivery, vol. 18, no. 3, pp. 1022-1027,
2003.

T. T. Tran, K. H. Truong, and D. N. Vo, “Stochastic fractal
search algorithm for reconfiguration of distribution networks
with distributed generations,” Ain Shams Engineering Journal,
vol. 11, no. 2, p. 389, 2020.

K. Jasthi and D. Das, “Simultaneous distribution system
reconfiguration and DG sizing algorithm without load flow
solution,” IET Generation, Transmission ¢ Distribution,
vol. 12, no. 6, pp- 1303-1313, 2018.

N. Nikmehr and S. Najafi Ravadanegh, “Heuristic probabi-
listic power flow algorithm for microgrids operation and
planning,” IET Generation, Transmission ¢ Distribution,
vol. 9, no. 11, pp. 985-995, 2015.

N. Nikmehr and S. Najafi Ravadanegh, “Reliability evaluation
of multi-microgrids considering optimal operation of small
scale energy zones under load-generation uncertainties,”
International Journal of Electrical Power ¢ Energy Systems,
vol. 78, pp. 80-87, 2016.

Y. M. Atwa and E. F. El-Saadany, “Probabilistic approach for
optimal allocation of wind-based distributed generation in
distribution systems,” IET Renewable Power Generation,
vol. 5, no. 1, pp. 79-88, 2011.

M. Sedighizadeh, M. Esmaili, A. Jamshidi, and
M. -H. Ghaderi, “Stochastic multi-objective economic-envi-
ronmental energy and reserve scheduling of microgrids
considering battery energy storage system,” International
Journal of Electrical Power & Energy Systems, vol. 106,
pp. 1-16, 2019.

Z. Yue, Y. Liu, Y. Yu, and J. Zhao, “Probabilistic transient
stability assessment of power system considering wind power
uncertainties and correlations,” International Journal of
Electrical Power & Energy Systems, vol. 117, Article ID 105649,
2020.

F. Hu, K. J. Hughes, D. B. Ingham, L. Ma, and
M. Pourkashanian, “Dynamic economic and emission dis-
patch model considering wind power under Energy Market
Reform: a case study,” International Journal of Electrical
Power & Energy Systems, vol. 110, pp. 184-196, 2019.

A. Zakariazadeh, S. Jadid, and P. Siano, “Economic-environ-
mental energy and reserve scheduling of smart distribution
systems: a multiobjective mathematical programming ap-
proach,” Energy Conversion and Management, vol. 78, pp. 151-
164, 2014.



